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3.1 Introduction 
The nominal and ordinal outcome models can be seen as generalizations of the binary 
outcome model. In order to understand these models, an understanding of the binary outcome 
model is required.  
 
A binary random variable is a discrete random variable that has only two possible values, 
such as whether a subject dies (event) or lives (non-event). Such events are often described as 
success versus failure, and coded using the values 0 or 1. Consequently, the assumption that 
this type of outcome variable has a normal distribution does not hold anymore.  
 
The most common distribution used for a binary outcome is the Bernoulli distribution, which 
takes a value 1 with probability of success p  and a value 0 with probability of failure 

1q p= − . The selection of the distribution for the outcome variable is not fixed. For 
example, if the occurrence is very rare, the Poisson distribution can be used. 
 

3.1.1 Link functions 

In the case of a binary variable, observed values are usually assigned as either 0 or 1. When 
such a variable is treated as if it were continuous, predicted values, indicating the probability 
of the event occurring, can fall outside the (0,1) interval. Moreover, the assumption of 



normality at level 1 is not realistic as the random effects can no longer be assumed to have a 
normal distribution or to have homogeneous variance. 
 
The multilevel generalized linear model (MGLM) generalizes the multilevel model for 
continuous outcomes by additionally allowing for error distributions from the exponential 
family (see, for example, McCullagh & Nelder, 1989). Let y  denote the outcome variable, 
and ( )E y  the expected value of y . The key to MGLM models is that a nonlinear relationship 
between ( )E y  and β  is allowed, with the aid of a link function.  
 
Suppose that ( )1 nx x=x   is the vector of all the predictors and that ( )1 nβ β=β   is the 
vector of unknown regression parameters. In the models discussed up to now, it was assumed 
that the outcomes were normally distributed variables and that a model of the form 

 ' ' , 1, 2,...,ij ij ij i ij iy e j n= + + =x β z v  

could be used to describe the relationship between the outcome and predictor variables. The 
vector '

ijz  denotes a design vector for the random effects contained in the vector iv , and '
ijx  

is the design vector for the predictors in the fixed part of the model with corresponding 
vector β  of regression parameters. The covariance matrix of iv  is denoted by (2)Φ  and the 

variance of ije  by 2
eσ .  

 
The link function specifies a nonlinear transformation between the linear predictor η  and the 
assumed distribution function. These link functions transform the observed outcome value to 
a function η ′= x β  and ensure that the predicted probability lies within the (0,1) interval. 
Instead of y, η  is being analyzed. For the binary outcome, the probability of success η  is the 
predictor of interest. 
 
The most commonly used link functions are the log, logit, probit and complementary log-log 
link functions. The log link generally is used for the count variable with Poisson distribution, 
which will be discussed in the next chapter. The link functions available in SuperMix include 
the logit, probit and complementary log-log functions for models with an ordinal dependent 
variable, and the logit link function for models with a nominal dependent variable. Table 4.1 
shows these link functions, along with their distribution functions (CDF), means and 
variances. 
 



Table 4.1: Link functions for the Bernoulli distribution 
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These link functions map the probability η  with an open interval (0,1) to the entire set of real 
numbers  . Figure 4.1 illustrates how a real number w is transformed to the probability η . 

 
As shown below, the logit and probit link functions are both symmetric around a value of 0. 
The logit function has a larger variance. The complementary log-log link function is 
asymmetric. When the probability of a successful outcome ( p ) is extremely small or large, 
the linear relationship does not hold. Understanding the nature of the link function used in an 
analysis is essential to the correct interpretation of the results.  
 

 
Figure 4.1: Cumulative density of link functions 



 

3.1.2 Methods of estimation 

For models with binary, ordinal, count, and nominal outcomes, SuperMix offers two methods 
of estimation: maximization of the posterior distribution (MAP) and numerical integration 
(adaptive and non-adaptive quadrature) to obtain parameter and standard error estimates. 
 
The MAP method of estimation can be used to obtain a point estimate of an unobserved 
quantity on the basis of empirical data. It is closely related to Fisher's method of maximum 
likelihood (ML), but employs an augmented optimization objective which incorporates a prior 
distribution over the quantity one wants to estimate. 
 
Quadrature is a numeric method for evaluating multi-dimensional integrals. For mixed effect 
models with count and categorical outcomes, the log-likelihood function is expressed as the 
sum of the logarithm of integrals, where the summation is over higher-level units, and the 
dimensionality of the integrals equals the number of random effects. 
 
Typically, MAP estimates are used as starting values for the quadrature procedure. When the 
number of random effects is large, the quadrature procedures can become computationally 
intensive. In such cases, MAP estimation is usually selected as the final method of estimation. 
Numerical quadrature, as implemented in SuperMix, offers users a choice between adaptive 
and non-adaptive quadrature. Quadrature uses a quadrature rule, i.e., an approximation of the 
definite integral of a function, usually stated as a weighted sum of function values at 
specified points within the domain of integration.  
 
Adaptive quadrature generally requires fewer points and weights to yield estimates of the 
model parameters and standard errors that are as accurate as would be obtained with more 
points and weights in non-adaptive quadrature. The reason for that is that the adaptive 
quadrature procedure uses the empirical Bayes means and covariances, updated at each 
iteration to essentially shift and scale the quadrature locations of each higher-level unit in 
order to place them under the peak of the corresponding integral.  
 
A brief description of MAP estimation and quadrature follows below. 
 



MAP estimation 

For level-2 unit i , let 1 2, ,...,i i irv v v  denote the random effects and 1 2, ,...,
ni i iny y y  the 

outcomes. Let ( ),i if v y  denote the joint distribution of ( )1 2, ,...,i i i irv v v=v  and 

( )1 2, ,...,
ii i i iny y y=y .  

 
Using standard results for conditional distributions, it follows that 

 ( ) ( ) ( ) ( )| | / .i i i i i if f f f=v y y v v y  

By taking logarithms on both sides of the equation, the following density function is 
obtained: 

 ( ) ( ) ( )ln | ln | lni i i i if f f K= + −v y y v v  

where K  is a constant. Mode estimates iv
∧

 of the random effects and estimates 
∧

β  of the fixed 
parameters are obtained by iteratively solving the equations 
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k

f
γ
∂

=
∂
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where kγ   is a typical element of the unknown parameters 1 2, ,...,i i irv v v  and 1 2, ,..., pβ β β . 

 

As a by-product of the iterative procedure, estimates of cov , 1,2,...,iv i N
∧  = 

 
 are obtained 

and these, in turn, are used to estimate  ( ) ( )2 cov iΦ = v . 

Numerical quadrature 

Since 

 ( ) ( ) ( ), |i i i i if f f=y v y v v  

it follows that the marginal distribution of iy  can be obtained as the solution to the multi-
dimensional integral  

 ( ) ( ) ( )
1

1... | .... .
r

i i i r
v v

f f f dv dv= ∫ ∫y y v v  

Since it is assumed that ( )(2)~ ,i Nv 0 Φ  it follows, for example, that 



 ( ) ( ) / 2 1/ 2 ' 1
(2) (2)

12 | | exp .
2

r
i i if π − − − = −  
v Φ v Φ v  

In general, a closed-form solution to this integral does not exist. To evaluate integrals of the 
type described above, we use a direct implementation of Gauss-Hermite quadrature (see, e.g., 
Krommer & Ueberhuber, 1994, Section 4.2.6 and Stroud & Sechrest, 1966, Section 1).  
 
With this rule, an integral of the form 

 2( ) ( ) expI t f t t dt = − ∫  

is approximated by the sum 

 ( )
1

( ) ,
Q

u u
u

I t w f z
=

≈∑  

where uw  and uz  are weights and nodes of the Hermite polynomial of degree Q. A Q-point 
adaptive quadrature rule is a quadrature rule constructed to yield an exact result for 
polynomials of degree 2 1Q − , by a suitable choice of the n points ix  and n weights iw . 

 

3.2 Models based on a subset of the TVSFP data 

3.2.1 The data 

The data are from the Television School and Family Smoking Prevention and Cessation 
Project (TVSFP) study (Flay, et. al., 1988) described in Section 3.3. The study was designed 
to test the independent and combined effects of a school-based social-resistance curriculum 
and a television-based program in terms of tobacco use and cessation.  
 
A tobacco and health knowledge scale was used in classifying subjects as knowledgeable or 
not. In its original form, the student's score was defined as the number of correct answers to 
seven items on tobacco and health knowledge. The structure of this study indicates a three-
level hierarchical structure. However, we will first consider two two-level structures. In the 
first, students are nested within schools; in the second, students are nested within classrooms. 
Finally, a three-level model recognizing the role of both classroom and school in the 
hierarchical structure of the data will be considered.  
 
Data for the first 10 participants on most of the variables used in this section are shown 
below in the form of a SuperMix spreadsheet file, named tvsfpors.ss3, located in the 
Examples\Binary subfolder. 
 



  

 
The variables of interest are: 

o School indicates the school a student is from (28 schools in total). 
o Class identifies the classroom (135 classrooms in total). 
o THKSord represents the tobacco and health knowledge scale, with 4 categories ranging 

between 1 and 4. The frequency distribution of the post-intervention THKS scores 
indicated that approximately half the students had scores of 2 or less, and half of 3 or 
greater. In terms of quartiles, four ordinal classifications were suggested 
corresponding to  0 – 1, 2, 3, and 4 – 7 correct responses. 

o THKSbin is a recoded version of the ordinal variable THKSord, but in binary form: a 
value of "0" indicates an original scale score of 1 or 2, while a value of "1" indicates 
an scale score of 3 or 4. This variable will serve as our outcome variable in the 
current chapter.  

o PreTHKS indicates a student's score prior to intervention, i.e., the number correct of 7 
items.  

o CC is a binary variable indicating whether a social-resistance classroom curriculum 
was introduced, with 0 indicating "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with a "1" 
indicating the use of media intervention, and "0" the absence thereof. 

o CC*TV is the product of the variables TV and CC, and represents the CC by TV 
interaction. 

In this chapter, we consider models for binary outcomes, using quadrature as method of 
estimation. 
 

3.2.1.1 Exploring the data 

Crosstabulation 

The focus is on the influence of the intervention on the tobacco health knowledge scores of 
the students, as represented by the binary outcome variable THKSbin. A cross-tabulation of 
the variables CC and TV for the two categories of the binary variable THKSbin is given in 
Table 4.1 below.  



 
Table 4.1: Crosstabulation of CC, TV and THKSbin 

 
THKSbin      CC Total 
  0 1  
0 TV 0 246 140 386 
    1 215 152 367 
Total 461 292 753 
1 TV 0 175 240 415 
    1 201 231 432 
Total 376 471 847 

  
The proportion of students with high scale scores (THKSbin = 1) in each of the four cells 
formed by the categories of CC and TV can be derived from Table 4.1. For example, 246 
students in the category CC = 0, TV = 0 had a low score (THKSbin = 0), while 175 students 
had a high score (THKSbin = 1). The proportion of students in this cell with a high score is 

thus 175 0.4157
175 246

=
+

. The observed proportions of high scores are summarized in Table 

4.2 below. 
 

Table 4.2: Observed proportion of high post–intervention scores 
 

Study condition Proportion odds logits 
CC = 0, TV = 0 0.4157 0.711 –0.340 
CC = 0, TV = 1 0.4832 0.935 –0.067 
CC = 1, TV = 0 0.6316 1.714 0.539 
CC = 1, TV = 1 0.6031 1.520 0.418 

 
Proportions less than 0.5 indicate odds less than one and negative logits, while proportions 
above 0.5 yield odds greater than one and positive logit values. We note that, based on the 
observed proportion of high post-intervention scores, the use of only the social-resistance 
classroom curriculum (as represented by the variable CC) seemed the most successful, 
followed by the use of both curriculum and media intervention (CC = 1, TV = 1).  
 

Exploratory graphs 

The pre-intervention scores of the students may be useful as a covariate in the analysis. To 
get an idea of the relationship between the scale score PreTHKS and the post-intervention 



score THKSbin, an exploratory graph is created. Select the Data-based Graphs, Exploratory 
option from the File menu. 
 
The New Graph dialog box is activated. Select the binary outcome variable THKSbin as the Y 
variable and the pre-intervention score PreTHKS as the X variable. Uncheck the Draw points 
check box, which is checked by default, to obtain the settings as shown. 
 

 

 
Click OK to obtain Figure 4.1. The value associated with the tick marks on the X-axis 
represents the proportion of students with that PreTHKS score that had a value of 1 on the 
THKSbin variable, in other words the proportion of students with a post-intervention score of 
3 or 4. We note that the relationship is reasonably linear, and that higher post-intervention 
scores are more often observed for students with high pre-intervention scores, which is what 
one intuitively would expect.  
 

 
Figure 4.1: Exploratory graph of THKSbin vs. PreTHKS 
 



Univariate graphs 

We now take a closer look at the distribution of the pre-intervention scores by utilizing the 
Data-based Graphs, Univariate option on the File menu. By default, a bar chart will be 
produced. Select the variable PreTHKS in the Plot column, and click Plot. 
 

 

 
By clicking anywhere in the bars, the Bar Graph Parameters dialog box is activated. Click the 
Data button and then OK to display the data used to construct the bar chart. 
 

 

 

Figure 4.2 below shows both the graphing window with bar chart and the data in spreadsheet 
format. Note that only 55 of the 1600 observations showed a score of 5 or higher, and that no 
student obtained a post-intervention score of 7 out of 7.  
 



 
Figure 4.2: Bar chart of PreTHKS values 

 
Finally, we also take a look at the mean pre-intervention scores of the students for each of the 
four subgroups. These are summarized in Table 4.3 below, and show that the mean pre-
intervention scores do not differ much. 
 

Table 4.3: Mean pre-intervention scores 
 

Study condition Mean 
CC = 0, TV = 0 2.152 
CC = 0, TV = 1 2.087 
CC = 1, TV = 0 2.050 
CC = 1, TV = 1 1.979 

 

3.2.2 A 2-level random intercept logistic model with 2 predictors 

3.2.2.1 The model 

The outcome variable THKSbin used here is binary. It assumes a value of  "0" when the 
original scale score was either 1 or 2, and a value of "1"  for an  original scale score of 3 or 4. 
The predicted value of the outcome can be viewed as the predicted probability that THKSbin 
is 1. As explained in Section 4.1.1, predicted values outside the interval [0,1] would not be 
meaningful and a model constraining predicted values to lie in this interval would be 
appropriate, in contrast with the model for a continuous outcome (see above) where effect 
sizes outside this interval would be interpretable. In addition, the assumption of normality at 
level 1 is not realistic, as the level-1 random effect can only assume one of two values: 0 or 
1. This random effect can thus not have homogeneous variance.  
 



In order to insure that the predicted values lie within the (0,1) interval, a transformation of 
the level-1 predicted probability can be used. For the binary case considered here, the 
following link function is used: 

Prob(THKSbin 1| , )
1

ij

ijij
e

e

η

η= =
+

β v  

where ijη  represents the log of the odds of success.  

 
For the current model, we want to explore the relationship between the post-intervention 
scores and the type of intervention applied. This relationship can be expressed as 
 
Level 1 model:  

0 1 2 3 4CC TV CC *TV PreTHKSij i i i i i i i ij i ij ijb b b b b eη = + × + × + × + × +  

Level 2 model: 

0 0 0
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2 2
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i i
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An equivalent expression for the model is 

0 1 2 3 4 0CC TV CC *TV PreTHKS .ij i i i ij ij i ijv eη β β β β β= + × + × + × + × + +  

The interpretation of the logistic regression model is made in terms of the logits, as the model 
is linear in terms of the logits. Thus the coefficients 1 2 4, , ,β β β  can be interpreted as 
follows: 
 

o 0β  is the THKS logit for CC = 0, TV = 0, that is the log odds of a positive outcome for 
an individual from the control group where no intervention was made and with a pre-
intervention score of 0. One could also refer to 0β  as the PreTHKS adjusted logit for 
the CC = 0, TV = 0 subgroup. 

o 1β  = the logit difference between (CC = 1, TV = 0) and (CC = 0, TV = 0) for the case 
where  PreTHKS = 0: 

   0 1 3 2 4 0( TV )CC TV PreTHKSij i i i ij ivη β β β β β= + + + + + , 

in other words, the  PreTHKS adjusted logit difference between  these two subgroups. 



o 2β  = the logit difference between (TV = 1, CC = 0) and (TV = 0, CC = 0) with 
PreTHKS = 0: 

   0 2 3 1 4 0( CC )TV CC PreTHKSij i i i ij ivη β β β β β= + + + + + . 

o 3β  is the difference in logit attributable to the interaction between the two 
intervention methods. 

 
The interpretation of the coefficients is dependent on the coding of the variables used in the 
model. 
 

3.2.2.2 Setting up the analysis 

Using the data in tvsfpors.ss3, we consider the situation where students are nested within 
schools, and fit a two-level model with the binary variable THKSbin as outcome. We wish to 
examine the relationships between the outcome and the two intervention methods employed, 
simultaneously taking students' pre-intervention scores into account. To do so, we use the 
model described above with schools as the level-2 units. 
 
Use the File, Open Spreadsheet option to activate the Open dialog box. Browse for the file 
tvsfpors.ss3 in the Examples\Binary folder. Select the file and click the Open button to return 
to the main SuperMix window, where the contents of the SuperMix system file are displayed. 
 

 

 
Next, we use the SuperMix interface to provide the model specifications. From the main menu 
bar, select the File, New Model Setup option.  
 
The Model Setup dialog box that appears has six tabs: Configuration, Variables, Starting 
Values, Patterns, Advanced, and Linear Transforms. In this example, only three of the tabs 
are used.  
 



As a first step, the binary outcome variable THKSbin is selected from the Dependent Variable 
drop-down list box. The type of outcome is specified as binary using the drop-down list box 
in the Dependent Variable Type field. Once this selection is made, the Categories field is 
displayed. The school identification variable is used to define the hierarchical structure of the 
data, and is selected as the Level-2 ID from the Level-2 IDs drop-down list box. A title for the 
analysis (optional) is entered in the Title fields. A convergence criterion of 0.0001 is 
requested. By default, the maximum number of iterations performed is set to 100. Empirical 
Bayes residuals, written to additional output files, are requested by setting the Write Bayes 
Estimates option to means and (co)variances. Default settings for all other options associated 
with this tab are used. Proceed to the Variables tab by clicking on this tab. 
 

  

 
The Variables tab is used to specify the fixed and random effects to be included in the model. 
Start by selecting the explanatory (fixed) variables using the first column of boxes in the 
Available group field. The first variable selected is PreTHKS, followed by CC, TV, and the 
interaction term CC*TV. After selecting these explanatory variables, the random effect(s) at 
level 2 must be selected. In this case, we wish to allow only the intercept to vary randomly 
over the schools. By default, the intercept is assumed to vary randomly over higher levels of 
the hierarchy as indicated by the checked box for the Include Intercept option in the L-2 
Random Effects group field. A common fixed intercept coefficient is also included, as shown 
in the Explanatory Variables group field. 
  



  

 
We opt to increase the number of quadrature points to be used during estimation. To do so, 
click the Advanced tab. First select adaptive quadrature from the Optimization Method drop-
down list box, then change the Number of Quadrature Points field to 25. The default 
distribution for a binary outcome variable is Bernoulli and the default link function is probit. 
Change probit to logistic by using the drop-down list box in the Function Model field. 

 

 

 



Before running the analysis, the model specifications have to be saved. Select the File, Save 
option, and provide a name for the model specification file, for example TVBS.mum. Run the 
analysis by selecting the Run option from the Analysis menu. 
 

3.2.2.3 Discussion of results 

Portions of the output file tvbs.out are shown below.  
 

Syntax 

At the top of the file, the syntax saved to the TVBS.mum file is shown. The first part states the 
selection of iteration control options, requests for Bayes residuals, and the specifications 
necessary to define the model fitted as an binary model with a logistic link function. The 
second part of the syntax provides information on the structure of the data, the name and 
structure of the outcome variable, and the predictors included in the model. Text to the left of 
the equal sign in each line denote keywords recognized by the program; text to the right are 
either keywords (for example, in the case of Cov2PatType = Correlated) or variable names as 
given in the ss3 file (for example, Level2ID = School). 
 

 

 

Model and data description 

The next section of the output file contains a description of the hierarchical structure and 
model specifications.  

 



  

 
The use of a logistic response function (logit link function) with the assumption of a 
Bernoulli distribution is indicated. This is followed by a summary of the number of students 
nested within each school. The number of students per school (level-2 unit) ranges between 
23 and 137. 
 

Descriptive statistics  

The data summary is followed by descriptive statistics for all variables included in the model. 
We note that 47% of the students had a value of 0 on the binary knowledge score outcome 
variable THKSbin, and 53% a value of 1. 
 

 

 

 



Results for the model without any random effects 

Descriptive statistics are followed by parameter estimates obtained under the assumption that 
all random effects are zero. The parameter values for the predictors CC, TV, CC*TV and 
PreTHKS are given in the first column, followed by the standard errors and z- and p-values.  
 

 

 
This is followed by the odds ratios and associated confidence intervals. The odds ratios are 

the exponents ( eβ
∧

) of the estimated regression coefficients. 
 

 

 

Results for the model fitted with adaptive quadrature 

The output describing the estimated parameters after convergence is shown next. Three 
iterations were required to obtain convergence. The number of quadrature points used per 



dimension was 25. The likelihood function value at convergence as well as the deviance are 
also given, and may be used to compare a set of nested models. 
 

 

 
The estimates are shown in the column with heading Estimate, and correspond to the 
coefficients 0 1 4, , ,β β β  in the model specification. Significant effects of PreTHKS and CC 
are observed. The variation in the intercept over the schools is estimated as 0.1065, and from 
the associated p -value we conclude that there is significant variation, at a 10% level of 
significance, in the intercept between the schools included in this analysis.  
 

 

 



In the case of the fixed effects, a 2-tailed p -value is used, as the alternative hypothesis 
considered here is of the form 1 : 0H β ≠ . As variances are constrained to be elements of the 
interval [0, )+∞ , the p -values used for these effects are 1-tailed.  
 
If the model is true, it is assumed that the level-1 error variance is equal to 2 / 3π  = 3.29895 
for the logistic link function (see, e.g., Hedeker & Gibbons (2006), p. 157), where π  
represents the constant 3.141592654.  
 
Thus the estimated ratio between level-2 variation and the total variation is calculated as 

2

0.1065 0.031
0.1065 / 3

ICC
π

= =
+

 

 

 

This indicates that almost all variation is attributable to students, rather than to the schools. 
 

3.2.2.4 Interpreting the adaptive quadrature results 

The expected log-odds of having a high post-intervention knowledge score (THKSbin score of 
1) for a student with a zero value on all the predictors (that is, no social-resistance 
curriculum, no media intervention, and a pre-intervention knowledge score of 0) is 
represented by the estimated intercept of –1.2281. When a social-resistance curriculum was 
in place (CC = 1), or a mass-media intervention was performed (TV = 1), the log-odds of a 
typical student is expected to increase, as indicated by the positive estimated coefficients for 
CC and TV. Similarly, a higher score on the pre-intervention knowledge test is associated 
with higher log-odds of a higher post-intervention knowledge score. It can be concluded from 
the results that the implementation of a classroom curriculum was more likely to lead to a 
higher post-intervention knowledge score than was the case when mass-media intervention 
was used. In contrast, the log-odds of a high post-intervention knowledge score was expected 
to be lower for a typical student from a school where both social resistance classroom 
curriculum and mass-media intervention defined the study condition for that school, as the 
estimated coefficient for the interaction term CC*TV was negative.  
 



Estimated outcomes for different groups: unit-specific results 

To evaluate the expected effect of CC, TV, CC*TV, and PreTHKS on the predicted probability 
that the post-intervention score is equal to 1, we use the following expression for the 
predicted log odds of success 

0 1 2 3 4CC TV CC TV PreTHKSij i i i i ijη β β β β β
∧ ∧ ∧ ∧ ∧ ∧

= + × + × + × × + ×  

for the four groups defined by the categories of CC and TV. Note the similarity of this 
equation with that given for ijη  earlier: random coefficients are not included, as their 
expected value is 0. 
 
For a typical student with a PreTHKS score of 0 from any school where no media television 
intervention and no social-resistance classroom curriculum was implemented, CC = TV = 0, 
and thus 

0ijη β
∧ ∧

=  

In the case of a typical student with a PreTHKS score of 0 from any school where only media 
television intervention was implemented (TV = 1),  

0 2 TV .ij iη β β
∧ ∧ ∧

= + ×  

The equations for similar students from a school with only a social–resistance classroom 
curriculum implemented (CC = 1, TV = 0), and from a school with both interventions 
implemented  (TV = 1, CC = 1) are 

0 1 4CC PreTHKSij i ijη β β β
∧ ∧ ∧ ∧

= + × + ×  

and 

0 1 2 3 4CC TV CC TV PreTHKSij i i i i ijη β β β β β
∧ ∧ ∧ ∧ ∧ ∧

= + × + × + × × + ×  

 
respectively. 
 
For a student with an average PreTHKS score (2.152, see exploratory analysis) from any 
school with similar values of CC and TV we find that 

0 4

0 4

PreTHKS

2.152.

ij ijη β β

β β

∧ ∧ ∧

∧ ∧

= + ∗

= + ∗
 



Using the 0β
∧

 and 4β
∧

 estimates of –1.2280 and 0.3870 respectively as obtained for the 
current analysis, we can calculate the estimated probability of a THKSbin score of 1 for 
typical students with PreTHKS scores of 2.152 and 0 respectively as 

1.2280 0.3870(2.152)

1.2280 0.3870(2.152)

0.39518

0.39518

Prob(THKSbin 1| CC TV 0;PreTHKS 2.152)
1

1
0.40247

ij
e

e
e

e

− +

− +

−

= = = = =
+

=
+

=

 

and 
1.2280

1.2280Prob(THKSbin 1| CC TV PreTHKS 0)
1

0.22653.

ij
e

e

−

−= = = = =
+

=

 

A student with an average observed score of PreTHKS is almost twice as likely to have a 
THKSbin score of 1 as a student with the lowest observed score on the same variable. Note 
that we opted to use the mean pre-intervention score for this specific subgroup. 
 
On the other end of the scale in terms of intervention, we have schools where both a social-
resistance classroom curriculum and a mass-media intervention were implemented (CC = TV 
= 1). For two typical students from these schools, an observed PreTHKS score of 0 or the 
mean score of 1.979 will imply a predicted probability of a THKSbin score of 1 of 0.4201 for 
the first and 0.6091 for the second. Again, the higher the pre-intervention score, the higher 
the predicted probability of a high post-intervention score. 
 
In Table 4.4, the estimated probabilities of high post-intervention scores on the tobacco and 
health questionnaire are given for typical students with high or low pre-intervention scores 
for each of the subpopulations formed by mass-media intervention and implementation of 
social-resistance classroom curriculum. 
 

Table 4.4: Estimated unit-specific probability of a high post-intervention knowledge score 
 

Group prescore prob. prescore prob. 
CC = 0, TV = 0 0 22.65% 2.152 40.25% 
CC = 1, TV = 0 0 46.54% 2.05 65.81% 
CC = 0, TV = 1 0 29.86% 2.87 48.85% 
CC = 1, TV = 1 0 42.01% 1.979 60.91% 

 
These estimated probabilities can also be presented graphically, as shown in the bar chart 
below. 



 
Figure 4.3: Bar chart of estimated unit-specific probabilities 

 
Students with a high pre-intervention score were predicted to have a high post-intervention 
score too, regardless of the study conditions. Similarly, students with a low pre-intervention 
score were generally likely to have a low post-intervention score too. If only curriculum 
intervention (CC = 1) was used, scores for students were likely to be higher regardless of their 
pre-intervention scores. On both ends of the pre-intervention knowledge score scale, in 
groups where mass-media intervention was used (TV = 1), scores were predicted to be higher 
than where media intervention was not used, except when both mass-media and curriculum 
intervention were used. For these groups, with CC = TV = 1, the estimated probabilities of a 
high post-intervention score were actually lower than for the group where only a classroom 
curriculum was used (42.01% vs. 46.54%, and 60.91% vs. 65.80%).  
 
We conclude that for most students, the implementation of a social-resistance classroom 
curriculum is more likely to be effective in increasing their knowledge (predicted 
probabilities of a high score being 46.54% and 65.80% respectively) than mass-media 
intervention (predicted probabilities of a high score being 29.86% and 48.85% respectively). 
The control group, where neither method was implemented, had the lowest predicted 
knowledge scores (22.65% and 40.25% respectively). While the implementation of both 
procedures was associated with higher probabilities than either the control group or the group 
where only mass-media intervention was used, its predicted gain was disappointing when 
compared to the use of only social-resistance curriculum implementation. Generally 
speaking, the implementation of a curriculum only seems to be most effective in increasing 
the predicted knowledge of students on the tobacco and health questionnaire. 
 

Estimated outcomes for different groups: population-average results 

In the introduction to this section, we defined the latent response variable model as  

 ' ' , 1, 2,...,ij ij ij i ij iy e j n= + + =x β z v  

where '
ijz  denotes a design vector for the random effects contained in the vector iv , and '

ijx  
the design vector for the predictors in the fixed part of the model with corresponding vector 



β  of regression parameters. The covariance matrix of iv  is denoted by ( )vΦ  and the variance 

of ije  by 2
eσ .  

 
For a probit link function 2 1eσ = , and for a logistic link function it is assumed to be 

2 2 / 3eσ = π . Under the assumption that iv  and ije  are independently distributed, it follows 
that 

 2 ' 2.
ij iy ij v ij eσ = +σz zΦ  

The design effect ijd  is defined in terms of 2
eσ  and 2

ijyσ :  

 
2

2 .ijy
ij

e

d
σ

=
σ

 

This design effect may be used to obtain the estimated population-average probabilities in a 

similar fashion as the unit-specific probabilities, but with replacing ijη
∧

 with 
*

/ij ij ijdη η
∧ ∧

=  
(Hedeker & Gibbons, 2006).  
 
We can compare these estimated population-average probabilities with the observed data for 
the four groups formed by the categories of TV and CC as shown in Table 4.5. To illustrate, 
we calculate the estimated population-average probabilities for a few of the subgroups. 
 
From the output, we have ( )0var 0.1065iv = , where 0iv  denotes the random intercept 

coefficient. In this case, '
ik =z 1  and hence, with 2 2 / 3eσ = π  for the logistic link,  

 2 1 0.1065 1 3.2899 3.3964.
ijyσ = × × + =  

Therefore 

 3.3964 1.0324.
3.2899ijd = =  

To obtain the population-average probability estimates, we now replace the ijη
∧

 values 

calculated for the unit-specific case with 
*

/ij ij ijdη η
∧ ∧

= . 

 
For the subgroup where TV = CC = 0 and the mean  PreTHKS value is equal to 2.152, for 
example, we find that 



 1.2281 0.3871(2.152)
0.39506

ijη
∧

= − +
= −

 

so that 
*

0.39506 / 1.0324
0.38881

ijη
∧

= −
= −

 

and 
*

*(THKSbin 1| CC TV 0,PreTHKS 2.152)
1

0.67786 40.40%.
1.67786

ij

ij
ij

eP
e

η

η
= = = = =

+
= =

 

Similarly, for the group where TV = CC = 0 and  PreTHKS = 0, we find that 

 *

1.2281

1.2281/1.01606
1.2087.

ij

ij

η

η

∧

∧

= −

= −
= −

 

 
Table 4.5: Estimated population-average probabilities 

 
Group prescore prob. prescore prob. 

CC = 0, TV = 0 0 22.99% 2.15 40.40% 
CC = 1, TV = 0 0 46.59% 2.05 65.57% 
CC = 0, TV = 1 0 30.14% 2.87 48.87% 
CC = 1, TV = 1 0 42.13% 1.98 60.74% 

 
A comparison of these probabilities with the observed ratios given in Table 4.6 for the 
control group at the end of the study indicates that the population-average results are slightly 
closer to the observed ratios than is the case for the unit-specific results. Recall that 

1.0161ijd = . The extent of differences between unit-specific and population-average results 

is highly dependent on the "scaling" induced by dividing the  sijη
∧

 by ijd . 

 



Table 4.6: Observed and predicted proportions of high post–intervention scores 
 

Group Proportion observed Unit-specific 
predicted prob. 

Population-average 
predicted prob. 

CC = 0, TV = 0 41.57% 40.25% 40.40% 
CC = 1, TV = 0 63.16% 65.80% 65.57% 
CC = 0, TV = 1 48.32% 48.84% 48.86% 
CC = 1, TV = 1 60.31% 60.91% 60.74% 

 

3.2.2.5 Interpreting the contents of the level-2 residual file 

In addition to the standard output file, the Write Bayes Estimates field on the Configuration 
tab of the Model Setup dialog was used to request Bayes estimates for the individual random 
terms. These estimates are written to the file TVBS.ba2. The first few lines of this file are 
shown below. 
 
Four pieces of information per school are given:  
 

o all 1s for the level-2 model, 
o the school's ID,  
o the value of random intercept,  
o the empirical Bayes estimate,  
o the associated posterior variance for the school estimate, and 
o the name of the associated random coefficient. 

 



 

 
The mean of the empirical Bayes estimates is – 0.0002. The estimates ranged from 

0.473614−  for school 506 to 0.4110043 for school 407. In both cases a mass-media 
intervention procedure was applied, and thus TV = 1, but CC = CC*TV = 0. For students with a 
PreTHKS score of 3 from each of these schools, this implies 

0.473614 0.3741 0.3870(3)

0.473614 0.3741 0.3870(3)

1.061486

1.061486

Prob(THKSbin 1| CC 0,PreTHKS 3, ID 506)
1

0.7430
1

ij
e

e
e

e

− + +

− + += = = = =
+

= =
+

 

 

and 
0.4110043 0.3741 0.3870(3)

0.4110043 0.3741 0.3870(3)

1.9461043

1.9461043

Prob(THKSbin 1| CC 0, PreTHKS 3, ID 407)
1

0.8750
1

ij
e

e
e

e

+ +
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= =
+

 

respectively. The fact that the intercept for school 407 lies higher than the average is 
reflected in the higher probability (87.5%) that a student with average pre-intervention 
knowledge score will obtain a high post-intervention score. School 506, on the other hand, 
has an intercept far below the average, and a student from this school has, in effect, a 74.30% 
chance of obtaining a high post-intervention score.   
 



3.2.3 A 2-level random intercept logistic regression model 

Using the same data (tvsfpors.ss3) and model setup file TVBS.mum from the previous 
example, we now consider the situation where students are nested within classrooms and fit a 
two-level model of the form described earlier, again with the binary variable THKSbin as 
outcome.  
 

3.2.3.1 Setting up the analysis 

Use the File, Open Spreadsheet option to re-open the previously used spreadsheet 
tvsfpors.ss3 from the Examples\Binary folder. Next, use the File, Open Existing Model Setup 
option to browse and open the syntax file TVBS.mum.  
 
The biggest change to be made to the syntax file is in terms of the ID variable. Change the 
Level-2 IDs field on the Configuration tab of the Model Setup dialog box from School to Class, 
as shown below. Also, turn of the writing out of Bayes estimates by setting the Write Bayes 
Estimates field to no. 
 

   

 
Save the revised syntax file under a new name such as TVBC.mum and run the analysis. 
 

3.2.3.2 Discussion of results  

Partial output for this run is provided below. The summary of units now reflects the number 
of students nested within each classroom. The number of students per class (level-2 unit) 



ranges between 2 and 28. In this analysis, there were 135 level-2 units, compared to 28 in the 
previous analysis. 
 

 

 
Estimated coefficients with adaptive quadrature and the estimated level-2 variances are given 
below. 
 

 

 

 
The estimates for the classroom analysis are very similar to those of the school analysis. All 
estimated fixed coefficients are slightly lower than was the case in the previous analysis. 



There seems to be more variation between classrooms than between schools, as indicated by 
the estimated variation in the random intercept of 0.2193, compared to the similar estimate of 
0.1065 in the school analysis. 
 

The estimates can again be used to obtain predicted probabilities by first calculating the 
*

sijη
∧

, 
using the formulae 

 ( )1.2535 0.9883 CC 0.2870 TV 0.369 CC TV

0.401 PreTHKS
ij i i i

ij

η
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= − + × + × − × ×

+ ×
 

and 
*

/ij ij ijdη η
∧ ∧

=  where 

 

2 2

2 2

0.2193 / 3
/ 3

0.2193 3.289865 1.0666.
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ijy
ij

e

d
σ + π

= =
σ π

+
= =

 

A comparison of unit-specific and population-average predicted probabilities for the current 
model are given in Table 4.7. For comparison purposes, similar results for the previous 
model can be found in Table 4.7. 
 

Table 4.7: Observed and predicted proportions of high post–intervention scores 
 

Group Proportion observed Unit-specific 
predicted prob. 

Population-average 
predicted prob. 

CC = 0, TV = 0 41.57% 40.36% 40.66% 
CC = 1, TV = 0 63.16% 63.57% 63.16% 
CC = 0, TV = 1 48.32% 46.76% 46.87% 
CC = 1, TV = 1 60.31% 60.98% 60.64% 

 

3.2.4 A 3-level random intercept logistic regression model 

Having fitted 2-level models where students were nested within either classrooms or schools 
thus far, we now consider a 3-level model with both classroom and school defining levels of 
the hierarchy.  
 



3.2.4.1 The model 

The level-1 and level-2 models are the same as for the previous two models, as shown below. 
 
Level 1 model ( 1 )ijk n= , , : 

0 1THKSbin PRETHKSijk ij ij ijk ijkb b e= + +  

 
Level-2 model ( 1 )ij n= , , : 

0 00 01 02 03 0

1 10

CC TV (CC TV )ij i i ij i ij i ij ij ij

ij i

b b b b b v
b b

= + + + × +

=
 

 
With classrooms nested within schools, however, a third level of the hierarchy is defined. At 
this level, the level-2 coefficients become outcomes again, and can potentially vary over the 
schools (level-3 units). In the current model, we allow only the intercept to vary randomly 
over the schools. 
 
Level-3 model ( 1 )i N= , ,  

00 0 0

01 1

02 2

03 3

10 4

i i

i

i

i

i

b v
b
b
b
b

β
β
β
β
β

= +
=
=
=
=

 

 

3.2.4.2 Setting up the analysis 

We modify our model setup saved to the syntax file TVBS.mum by first using the Open 
Existing Model Setup option on the File menu to retrieve the syntax file. Then click on File, 
Save as to save the model setup in a new file, such as TVBCS.mum. Next, select CLASS as the 
Level-2 ID and SCHOOL as the Level-3 IDs as shown below. We now have both level-2 and 
level-3 IDs selected. 
 



 
 
Keep all the other settings unchanged. Save the changes to the file TVBCS.mum and select the 
Run option on the Analysis menu to run the analysis.  
 

3.2.4.3 Discussion of results  

The portions of the output file TVBCS.out containing the estimates of the fixed and random 
coefficients in the current model are shown below.  
 

 



 

 

 

Table 4.8: Comparison of results for three models with binary variable THKSbin as 
outcome 

 

Coefficient 
2-level: 2-level: 

3-level 
CLASS as ID SCHOOL as ID 

Fixed effects:     

Intercept 
estimate –1.2535 –1.228 –1.2465 
standard error 0.1695 0.1949 0.1957 

PRETHKS 
estimate 0.401 0.3871 0.3954 
standard error 0.0461 0.0451 0.0463 

CC 
estimate 0.9883 1.0893 1.0383 
standard error 0.1973 0.2454 0.2448 

TV 
estimate 0.287* 0.3741* 0.3325* 
standard error 0.192 0.235 0.2358 

CCxTV 
estimate –0.369* –0.5578* –0.4644* 
standard error 0.2774 0.3403 0.3427 

Random effects:         

Var(between classrooms) 
estimate 0.2193 

  
0.1649 

standard error 0.0802 0.0813 

Var(between schools) 
estimate 

  
0.1065 0.063* 

standard error 0.0578 0.0616 
 
*: Not significant at 5% level of significance. 
 



Results for this model are compared to those obtained using the two 2-level models in Table 
4.8. Generally, there is close agreement between the models in terms of both the sign and 
size of the effects. Note that the only intervention method that consistently has an estimated 
coefficient significantly different from zero is CC. While use of the media intervention (TV) 
can positively influence the post-intervention score, it seems clear that using both methods 
simultaneously does not have any real benefits. 
 

3.2.4.4 Interpreting the adaptive quadrature results 

3-level ICCs 

Intraclass correlation coefficients can be obtained for the three-level dichotomous outcome 
model. As mentioned earlier, it is assumed that the level-1 error variance is equal to 2 / 3π  
for the logistic link function if the model is true (see, e.g., Hedeker & Gibbons (2006), p. 
157). Using this approximation, the formulae for the standard ICCs can be adjusted. 
 
From the output for the random effects, we have  

( )
( )
( )

2Level-1: estimated error var  = /3=3.2899

Level-2: estimated class var  = 0.1649

Level-3: estimated school var  = 0.0630.

π

 

Based on this information, we can calculate the ICC as shown below. 
 
Similarity of students within the same school:  

2
(3)

2 2 2
(3) (2)

0 063
0 063 0.1649 3.28986

0 0179.

v

v v e

ICC
σ

σ σ σ
.

= =
+ + . + +

= .
 

Similarity of students within the same classrooms (and schools):  
2
(2)

2 2 2
(3) (2)

0 1649
0 063 0.1649 3.28986

0 04688.

v

v v e

ICC
σ

σ σ σ
.

= =
+ + . + +

= .
 



Similarity of classes within the same school:  
2
(2)

2 2
(3) (2)

0 1649
0 063 0.1649

0 7236.

v

v v

ICC
σ

σ σ
.

= =
+ . +

= .
 

 

Estimated unit-specific and population-average probabilities 

Under the assumption that iv , ijv and ijkε  are independently distributed, it follows that for 
the three-level model the design effect is defined as 

2 2 2
(3) (2)

2

( )
1.0692.v v e

ijk
e

d
σ +σ +σ

= =
σ

 

The estimated unit-specific probabilities are calculated using 

1.2465 1.0383 CC 0.3325 TV 0.4.644 CC TV

0.3954 PreTHKS
ijk i i i i

ijk

η
∧

= − + × + × − × ×

+ ×
 

and 

1Prob(THKSbin 1| )
1 ijke η−= =
+

β  

The estimated population-average probabilities (Hedeker & Gibbons, 2006) are obtained in a 

similar fashion as the unit-specific probabilities after replacing ijkη
∧

 with * /ijk ijk ijkdη η
∧ ∧

=  in 
the second of the equations shown above. 
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