Two-level logistic model
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3.1 Introduction

The nominal and ordinal outcome models can be seen as generalizations of the binary
outcome model. In order to understand these models, an understanding of the binary outcome
model is required.

A binary random variable is a discrete random variable that has only two possible values,
such as whether a subject dies (event) or lives (non-event). Such events are often described as
success versus failure, and coded using the values 0 or 1. Consequently, the assumption that
this type of outcome variable has a normal distribution does not hold anymore.

The most common distribution used for a binary outcome is the Bernoulli distribution, which
takes a value 1 with probability of success p and a value 0 with probability of failure

qg=1—p. The selection of the distribution for the outcome variable is not fixed. For
example, if the occurrence is very rare, the Poisson distribution can be used.

3.1.1 Link functions

In the case of a binary variable, observed values are usually assigned as either 0 or 1. When
such a variable is treated as if it were continuous, predicted values, indicating the probability
of the event occurring, can fall outside the (0,1) interval. Moreover, the assumption of



normality at level 1 is not realistic as the random effects can no longer be assumed to have a
normal distribution or to have homogeneous variance.

The multilevel generalized linear model (MGLM) generalizes the multilevel model for
continuous outcomes by additionally allowing for error distributions from the exponential
family (see, for example, McCullagh & Nelder, 1989). Let y denote the outcome variable,

and E(y) the expected value of y. The key to MGLM models is that a nonlinear relationship
between E(y) and £ is allowed, with the aid of a link function.

Suppose that x =(x,...x,) is the vector of all the predictors and that p=(4,...3,) is the

vector of unknown regression parameters. In the models discussed up to now, it was assumed
that the outcomes were normally distributed variables and that a model of the form

Yy = Xi/B+ZziVi +te, Jj= L2,..,n,

could be used to describe the relationship between the outcome and predictor variables. The
vector z, denotes a design vector for the random effects contained in the vector v,, and x;

is the design vector for the predictors in the fixed part of the model with corresponding
vector B of regression parameters. The covariance matrix of v, is denoted by @, and the

: 2
variance of ¢, by o, .

The link function specifies a nonlinear transformation between the linear predictor 7 and the

assumed distribution function. These link functions transform the observed outcome value to
a function 7 =x'p and ensure that the predicted probability lies within the (0,1) interval.

Instead of y, 7 is being analyzed. For the binary outcome, the probability of success 7 is the
predictor of interest.

The most commonly used link functions are the log, logit, probit and complementary log-log
link functions. The log link generally is used for the count variable with Poisson distribution,
which will be discussed in the next chapter. The link functions available in SuperMix include
the logit, probit and complementary log-log functions for models with an ordinal dependent
variable, and the logit link function for models with a nominal dependent variable. Table 4.1
shows these link functions, along with their distribution functions (CDF), means and
variances.



Table 4.1: Link functions for the Bernoulli distribution
] Link function CDF .
Link name F'(p) 0<p<I < W< on Mean|Variance
w 2
logit (logistic) |logit(p)= ln( P J ¢ 0 L
l-p 1+e" 3
®"'(p), where @' is the
probit inverse of the standard normal D(w) 0 1
cumulative distribution
complementary 2
log-log log(—log(l—p)) l—exp(—exp(w)) -0.577 ?

These link functions map the probability 7 with an open interval (0,1) to the entire set of real
numbers R . Figure 4.1 illustrates how a real number w is transformed to the probability 7.

As shown below, the logit and probit link functions are both symmetric around a value of 0.
The logit function has a larger variance. The complementary log-log link function is
asymmetric. When the probability of a successful outcome ( p) is extremely small or large,
the linear relationship does not hold. Understanding the nature of the link function used in an
analysis is essential to the correct interpretation of the results.
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Figure 4.1: Cumulative density of link functions



3.1.2 Methods of estimation

For models with binary, ordinal, count, and nominal outcomes, SuperMix offers two methods
of estimation: maximization of the posterior distribution (MAP) and numerical integration
(adaptive and non-adaptive quadrature) to obtain parameter and standard error estimates.

The MAP method of estimation can be used to obtain a point estimate of an unobserved
quantity on the basis of empirical data. It is closely related to Fisher's method of maximum
likelihood (ML), but employs an augmented optimization objective which incorporates a prior
distribution over the quantity one wants to estimate.

Quadrature is a numeric method for evaluating multi-dimensional integrals. For mixed effect
models with count and categorical outcomes, the log-likelihood function is expressed as the
sum of the logarithm of integrals, where the summation is over higher-level units, and the
dimensionality of the integrals equals the number of random effects.

Typically, MAP estimates are used as starting values for the quadrature procedure. When the
number of random effects is large, the quadrature procedures can become computationally
intensive. In such cases, MAP estimation is usually selected as the final method of estimation.
Numerical quadrature, as implemented in SuperMix, offers users a choice between adaptive
and non-adaptive quadrature. Quadrature uses a quadrature rule, i.e., an approximation of the
definite integral of a function, usually stated as a weighted sum of function values at
specified points within the domain of integration.

Adaptive quadrature generally requires fewer points and weights to yield estimates of the
model parameters and standard errors that are as accurate as would be obtained with more
points and weights in non-adaptive quadrature. The reason for that is that the adaptive
quadrature procedure uses the empirical Bayes means and covariances, updated at each
iteration to essentially shift and scale the quadrature locations of each higher-level unit in
order to place them under the peak of the corresponding integral.

A brief description of MAP estimation and quadrature follows below.



MAP estimation

For level-2 unit i, let v,,v

i12 72200

v, denote the random effects and y,,»,,...», the

outcomes. Let f(v,y,) denote the joint distribution of v,=(v,,v,,..,v,) and

i12 7i29 0 Vir

Y, :(y,-py[Z""’yf”i)'

Using standard results for conditional distributions, it follows that
f(Vi |yi):f(yi | Vi)f(vi)/f(yi)'

By taking logarithms on both sides of the equation, the following density function is
obtained:

lnf(vi|yi):1nf(yi|Vi)+1nf(vi)_K

where K is a constant. Mode estimates v, of the random effects and estimates B of the fixed
parameters are obtained by iteratively solving the equations

0
a_lnf(vi |Yi)=05

Vi

where y, is a typical element of the unknown parameters v,,v,,,...,v,. and ,,f,,.... B,

As a by-product of the iterative procedure, estimates of cov(v[j, i=1,2,..., N are obtained
and these, in turn, are used to estimate @, = cov(v,).

Numerical quadrature

Since
f(yi’vi):f(yi|vi)f(vi)

it follows that the marginal distribution of y, can be obtained as the solution to the multi-

dimensional integral

f(y) =_[...If(yi 1v,) f(V)av,...dv,.

Since it is assumed that v, ~ N (0,(1)(2)) it follows, for example, that



—r/2 _ | B
f(v,)=(27)"" |®,]| 12 exp{—avid)(zl)v[}.
In general, a closed-form solution to this integral does not exist. To evaluate integrals of the

type described above, we use a direct implementation of Gauss-Hermite quadrature (see, e.g.,
Krommer & Ueberhuber, 1994, Section 4.2.6 and Stroud & Sechrest, 1966, Section 1).

With this rule, an integral of the form
1(6)= [ f(yexp| ¢ dt

is approximated by the sum

[¢]
1= w,f(z,),

u=1

where w, and z, are weights and nodes of the Hermite polynomial of degree Q. A Q-point

adaptive quadrature rule is a quadrature rule constructed to yield an exact result for
polynomials of degree 20 —1, by a suitable choice of the n points x; and n weights w, .

3.2 Models based on a subset of the TVSFP data
3.2.1 The data

The data are from the Television School and Family Smoking Prevention and Cessation
Project (TVSFP) study (Flay, et. al., 1988) described in Section 3.3. The study was designed
to test the independent and combined effects of a school-based social-resistance curriculum
and a television-based program in terms of tobacco use and cessation.

A tobacco and health knowledge scale was used in classifying subjects as knowledgeable or
not. In its original form, the student's score was defined as the number of correct answers to
seven items on tobacco and health knowledge. The structure of this study indicates a three-
level hierarchical structure. However, we will first consider two two-level structures. In the
first, students are nested within schools; in the second, students are nested within classrooms.
Finally, a three-level model recognizing the role of both classroom and school in the
hierarchical structure of the data will be considered.

Data for the first 10 participants on most of the variables used in this section are shown
below in the form of a SuperMix spreadsheet file, named tvsfpors.ss3, located in the
Examples\Binary subfolder.
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The variables of interest are:
School indicates the school a student is from (28 schools in total).
Class identifies the classroom (135 classrooms in total).

THKSord represents the tobacco and health knowledge scale, with 4 categories ranging
between 1 and 4. The frequency distribution of the post-intervention THKS scores
indicated that approximately half the students had scores of 2 or less, and half of 3 or
greater. In terms of quartiles, four ordinal classifications were suggested
corresponding to 0 — 1, 2, 3, and 4 — 7 correct responses.

o THKSbin is a recoded version of the ordinal variable THKSord, but in binary form: a
value of "0" indicates an original scale score of 1 or 2, while a value of "1" indicates
an scale score of 3 or 4. This variable will serve as our outcome variable in the
current chapter.

o PreTHKS indicates a student's score prior to intervention, i.e., the number correct of 7
items.

o CC is a binary variable indicating whether a social-resistance classroom curriculum
was introduced, with 0 indicating "no" and 1 "yes."

o TV is an indicator variable for the use of media (television) intervention, with a "1"
indicating the use of media intervention, and "0" the absence thereof.

o CC*TV is the product of the variables TV and CC, and represents the CC by TV
interaction.

In this chapter, we consider models for binary outcomes, using quadrature as method of
estimation.

3.211 Exploring the data
Crosstabulation

The focus is on the influence of the intervention on the tobacco health knowledge scores of
the students, as represented by the binary outcome variable THKSbin. A cross-tabulation of
the variables CC and TV for the two categories of the binary variable THKSbin is given in
Table 4.1 below.



Table 4.1: Crosstabulation of CC, TV and THKSbin

THKSbin CcC Total
0 1

0 TV 0 246 140 386
215 152 367

Total 461 292 753

1 TV 0 175 240 415
201 231 432

Total 376 471 847

The proportion of students with high scale scores (THKSbin = 1) in each of the four cells
formed by the categories of CC and TV can be derived from Table 4.1. For example, 246
students in the category CC = 0, TV = 0 had a low score (THKSbin = 0), while 175 students
had a high score (THKSbin = 1). The proportion of students in this cell with a high score is

175

us ——
175+ 246
4.2 below.

=0.4157. The observed proportions of high scores are summarized in Table

Table 4.2: Observed proportion of high post-intervention scores

Study condition |Proportion| odds logits
CC=0,Tv=0 0.4157 0.711 | —0.340

CC=0,Tv=1 | 04832 | 0.935 | —0.067
cC=1,Tv=0 | 0.6316 1.714 | 0.539
cc=1,Tv=1 | 0.6031 1.520 | 0.418

Proportions less than 0.5 indicate odds less than one and negative logits, while proportions
above 0.5 yield odds greater than one and positive logit values. We note that, based on the
observed proportion of high post-intervention scores, the use of only the social-resistance
classroom curriculum (as represented by the variable CC) seemed the most successful,
followed by the use of both curriculum and media intervention (CC =1, TV = 1).

Exploratory graphs

The pre-intervention scores of the students may be useful as a covariate in the analysis. To
get an idea of the relationship between the scale score PreTHKS and the post-intervention



score THKSbin, an exploratory graph is created. Select the Data-based Graphs, Exploratory
option from the File menu.

The New Graph dialog box is activated. Select the binary outcome variable THKSbin as the Y
variable and the pre-intervention score PreTHKS as the X variable. Uncheck the Draw points
check box, which is checked by default, to obtain the settings as shown.

New Graph
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Click OK to obtain Figure 4.1. The value associated with the tick marks on the X-axis
represents the proportion of students with that PreTHKS score that had a value of 1 on the
THKSbin variable, in other words the proportion of students with a post-intervention score of
3 or 4. We note that the relationship is reasonably linear, and that higher post-intervention
scores are more often observed for students with high pre-intervention scores, which is what
one intuitively would expect.
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Figure 4.1: Exploratory graph of THKSbin vs. PreTHKS



Univariate graphs

We now take a closer look at the distribution of the pre-intervention scores by utilizing the
Data-based Graphs, Univariate option on the File menu. By default, a bar chart will be
produced. Select the variable PreTHKS in the Plot column, and click Plot.

Univariate plot
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Flot | Cancel |

By clicking anywhere in the bars, the Bar Graph Parameters dialog box is activated. Click the
Data button and then OK to display the data used to construct the bar chart.

Bar Graph Parameters

Data.. |

Type
¥ Border BORDER ATTRIBUTES... |
Hatch Styles Bar Calor
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 Left | I

% Center 0 128 0

width [08728 Cancell

Figure 4.2 below shows both the graphing window with bar chart and the data in spreadsheet
format. Note that only 55 of the 1600 observations showed a score of 5 or higher, and that no
student obtained a post-intervention score of 7 out of 7.
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Figure 4.2: Bar chart of PreTHKS values

Finally, we also take a look at the mean pre-intervention scores of the students for each of the
four subgroups. These are summarized in Table 4.3 below, and show that the mean pre-
intervention scores do not differ much.

Table 4.3: Mean pre-intervention scores

Study condition | Mean
CC=0,Tv=0 |2.152

cCC=0,Tv=1 |2.087
cc=1,Tv=0 |2.050
cc=1,Tv=1 |1.979

3.2.2 A 2-level random intercept logistic model with 2 predictors

3.2.21 The model

The outcome variable THKSbin used here is binary. It assumes a value of "0" when the
original scale score was either 1 or 2, and a value of "1" for an original scale score of 3 or 4.
The predicted value of the outcome can be viewed as the predicted probability that THKSbin
is 1. As explained in Section 4.1.1, predicted values outside the interval [0,1] would not be
meaningful and a model constraining predicted values to lie in this interval would be
appropriate, in contrast with the model for a continuous outcome (see above) where effect
sizes outside this interval would be interpretable. In addition, the assumption of normality at
level 1 is not realistic, as the level-1 random effect can only assume one of two values: 0 or
1. This random effect can thus not have homogeneous variance.



In order to insure that the predicted values lie within the (0,1) interval, a transformation of
the level-1 predicted probability can be used. For the binary case considered here, the
following link function is used:

Iy
e’

1+e"

Prob(THKSbin, =1|B,v) =

where 7, represents the log of the odds of success.

For the current model, we want to explore the relationship between the post-intervention
scores and the type of intervention applied. This relationship can be expressed as

Level 1 model:

1m; =by; +b,;xCC, +by,, xTV, +b,, x CC*TV, +b,, x PreTHKS,, + ¢,

Level 2 model:

by = Py + vy
b, =p
b, = p,
by, = p,
b, = p,

An equivalent expression for the model is

n; =By + B xCC + B, xTV, + By xCC, *TV, + B, xPreTHKS, +v,, +e¢;.

The interpretation of the logistic regression model is made in terms of the logits, as the model
is linear in terms of the logits. Thus the coefficients S, f,,..., B, can be interpreted as

follows:

o f, is the THKS logit for CC =0, TV = 0, that is the log odds of a positive outcome for

an individual from the control group where no intervention was made and with a pre-
intervention score of 0. One could also refer to £, as the PreTHKS adjusted logit for

the CC =0, TV = 0 subgroup.
o f, = the logit difference between (CC = 1, TV = 0) and (CC = 0, TV = 0) for the case
where PreTHKS =0:

My = By + (B + BTV)CC, + BTV, + f,PreTHKS,, +v,,,

in other words, the PreTHKS adjusted logit difference between these two subgroups.



o B, = the logit difference between (TV = 1, CC = 0) and (TV = 0, CC = 0) with
PreTHKS = 0:

i =By + (B, + B,CCHTV, + B CC, + B,PreTHKS,, +v,, .

o f, is the difference in logit attributable to the interaction between the two

intervention methods.

The interpretation of the coefficients is dependent on the coding of the variables used in the
model.

3.2.2.2 Setting up the analysis

Using the data in tvsfpors.ss3, we consider the situation where students are nested within
schools, and fit a two-level model with the binary variable THKSbin as outcome. We wish to
examine the relationships between the outcome and the two intervention methods employed,
simultaneously taking students' pre-intervention scores into account. To do so, we use the
model described above with schools as the level-2 units.

Use the File, Open Spreadsheet option to activate the Open dialog box. Browse for the file
tvsfpors.ss3 in the Examples\Binary folder. Select the file and click the Open button to return
to the main SuperMix window, where the contents of the SuperMix system file are displayed.

_ai
BH Ele Edit window Help ===l
|403— Apply |
&) School | [B] Class | [CLTHKSwr | DL THKSKI | (ELPreTHE | (FLec | Gov | mpcoomy | =]
1 an3.00 4030000 200 1.00 200 1.00 0.00 0.00) |
2 0300 403101.00 400 1.00 4.00 1.00 0.00 0.00
3 40300 403101.00 300 1.00 4.00 1.00 0.00 0.00
4 40300 4079101.00 400 1.00 3.00 1.00 0.00 0.00
5 40300 403101.00 400 1.00 3.00 1.00 0.00 0.00
B 40300 403101.00 3.00 1.00 4.00 1.00 0.00 0.00
7 40300 40101.00 200 0.00 2.00 1.00 0.00 0.00
5 40300 40101.00 400 1.00 4.00 1.00 0.00 0.00
5 40300 40101.00 400 1.00 5.00 1.00 0.00 0.00
10 40300 407101.00 400 1.00 200 1.00 0.00 0.00 -
Al Ll_l

Next, we use the SuperMix interface to provide the model specifications. From the main menu
bar, select the File, New Model Setup option.

The Model Setup dialog box that appears has six tabs: Configuration, Variables, Starting
Values, Patterns, Advanced, and Linear Transforms. In this example, only three of the tabs
are used.



As a first step, the binary outcome variable THKSbin is selected from the Dependent Variable
drop-down list box. The type of outcome is specified as binary using the drop-down list box
in the Dependent Variable Type field. Once this selection is made, the Categories field is
displayed. The school identification variable is used to define the hierarchical structure of the
data, and is selected as the Level-2 ID from the Level-2 IDs drop-down list box. A title for the
analysis (optional) is entered in the Title fields. A convergence criterion of 0.0001 is
requested. By default, the maximum number of iterations performed is set to 100. Empirical
Bayes residuals, written to additional output files, are requested by setting the Write Bayes
Estimates option to means and (co)variances. Default settings for all other options associated
with this tab are used. Proceed to the Variables tab by clicking on this tab.

= Model Setup: TYBS.mum =101

Wariables | Starting \u"aluesl Eatternsl Advanced | Linear Transhorms

Title 1: |L0gistic 2 level random intercept model

Title 2. |TVSFF data

Dependent ¥ ariable Type: Ibinar_l,l j Level-2 1D ISchool j
Dependent arable; ITHKS bin j Level-31Ds: I j
Categaries: "alue ‘write Baves E stimates: Imeans & [covariances j

12 'ID Canvergence Criterior: [0.0001

Mumber of lkerations: |'| 0o

Mizsing Values Prezent: | falze j Perfarm Crazstabulation: Ino 'l
Clutput Type: Istandard j

The Variables tab is used to specify the fixed and random effects to be included in the model.
Start by selecting the explanatory (fixed) variables using the first column of boxes in the
Available group field. The first variable selected is PreTHKS, followed by CC, TV, and the
interaction term CC*TV. After selecting these explanatory variables, the random effect(s) at
level 2 must be selected. In this case, we wish to allow only the intercept to vary randomly
over the schools. By default, the intercept is assumed to vary randomly over higher levels of
the hierarchy as indicated by the checked box for the Include Intercept option in the L-2
Random Effects group field. A common fixed intercept coefficient is also included, as shown
in the Explanatory Variables group field.



% Model Setup: TYBS.mum =10l x]

LConfiguration tarting Valuesl Eattemsl Advanced | Linear Transforms
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Use the arrow keys or click on the desired tab to select the categary of interest for the model.

We opt to increase the number of quadrature points to be used during estimation. To do so,
click the Advanced tab. First select adaptive quadrature from the Optimization Method drop-
down list box, then change the Number of Quadrature Points field to 25. The default
distribution for a binary outcome variable is Bernoulli and the default link function is probit.
Change probit to logistic by using the drop-down list box in the Function Model field.

Model Setup: TYBS.mum -0 x|

Eonfigurationl Ealiablesl Starting \Faluesl Patterns  fAdwanced |I=inear Transformz

— General Settings

it wWeighting: I equal j

Optimization Method: [ EeEain=RaiEs =]

Humber of Quadrature Points: |25

— Dependent [Binary] Wariable Settings
Digtibution Model: IEemDulli j Function kodel: | logistic j

Estimate Scale: I nohe j

Select the optimizatiot method.
The default iz non-adaptive quadrature.




Before running the analysis, the model specifications have to be saved. Select the File, Save
option, and provide a name for the model specification file, for example TVBS.mum. Run the
analysis by selecting the Run option from the Analysis menu.

3.2.2.3 Discussion of results

Portions of the output file tvbs.out are shown below.

Syntax

At the top of the file, the syntax saved to the TVBS.mum file is shown. The first part states the
selection of iteration control options, requests for Bayes residuals, and the specifications
necessary to define the model fitted as an binary model with a logistic link function. The
second part of the syntax provides information on the structure of the data, the name and
structure of the outcome variable, and the predictors included in the model. Text to the left of
the equal sign in each line denote keywords recognized by the program; text to the right are
either keywords (for example, in the case of Cov2PatType = Correlated) or variable names as
given in the ss3 file (for example, Level2ID = School).

¥ SuperMix - [T¥BS.out] =]
l‘? File Analysis ‘Window Help ;Iilﬂ
[

The following lines were read from file C:hWSuperMixEn Examplesi\MarnualBinary\TVES. inp

Hodel=Binary; _J

Opticons Output=standard Converge=0_0001 Maxiter=100 Bayes=Cowv_ Means ModelTerms=add Method=ADAD WQuadPTS=ZL;
Link=logistic;

Distribution=Eer;

Scale=none;

Varnames= School Class THESord THESbin PreTHES CC TV 'CC*TW' intercept:
Titlel=Logistic & lewvel random intercept model;

TitleZ=TWSFP data;

DataFile=C:%SuperMixEn ExamplesiManualBinarvy,TVES. dat;

LevelZID= School;

Dependent= THESbin;

Categories= 0 1;

Predictors= intercept PreTHES CC TV 'CC*TIV';

LiRPandom= intercept;

FixPatType=Frees;

CovzPatType=Correlated;

Save fg.. LCloze

Model and data description

The next section of the output file contains a description of the hierarchical structure and
model specifications.



i1 x4

.‘? File Analysis Window Help 18] x|

Model and Data Descriptions

Sampling Distribution = Bernoulli

Link Function = Logistic

PROE iSuccess)= L. 0/[1.0+EXP{-ETL)]

HNunber of Level-Z Units 4=}

Number of Lewvel-l Tnits 1e00

Humber of Lewel-1l Units per Level-Z Unitc =

Z23 25 26 70 21 4z LE EE a9 ek EZ &5
z7 =11] 33 13 =] 38 a7 73 70 T4 82 114

11z 23 04 1z7

=
4| | 3

Save As.. | LCloze

The use of a logistic response function (logit link function) with the assumption of a
Bernoulli distribution is indicated. This is followed by a summary of the number of students
nested within each school. The number of students per school (level-2 unit) ranges between
23 and 137.

Descriptive statistics

The data summary is followed by descriptive statistics for all variables included in the model.
We note that 47% of the students had a value of 0 on the binary knowledge score outcome
variable THKSbin, and 53% a value of 1.
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l‘? File Analysis ‘Window Help _|ﬁ'|ﬂ

[
| Descriptive statistics for all the wariables in the model |
p===========================================================g

Standard

Variable Minimum Maximuam Mean Deviation _I
THEZbinl 0.oo000 1.0000 0.470& 0.4933
THEEbinZ 0. oooo 1.0000 0. 5294 0.43393
intercept 1.0000 1.0000 1.0000 o.oooo
PreTHES 0.oo000 &.0000 Z.06594 L.Ze02
cc 0. oooo 1.0000 0.4769 04395
™ 0. oooo 1.0000 0. 43394 o.E00Z
CC*TY 0.0000 1.0000 0.2394 0.4268

-

« I ;IJ

Save fg.. | LCloze




Results for the model without any random effects

Descriptive statistics are followed by parameter estimates obtained under the assumption that
all random effects are zero. The parameter values for the predictors CC, TV, CC*TV and
PreTHKS are given in the first column, followed by the standard errors and z- and p-values.
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Statistic Value LF Ratio
Likelihood Ratio Chi-scuare EO073.3163 1835 1.2393
Pearzon Chi-sgquare le0z_ 7321 1595 1.0085

Ezstimated regression weights

Standard

Darameter Estimate Error z Walue I Value

intercept -1.2171 0.1412 -2.61397 o.oooo

PreTHES n.3537 0.0441 .0&78 o.oooo

cc 0.37Z8 0. 1800 64842 00000

v 0.321E88 0.1434 £.19939 o.0z78

CC*TW -0.41z27 0.z095 =1.9a70 0.04392

-

4| | 3
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This is followed by the odds ratios and associated confidence intervals. The odds ratios are

the exponents (e”) of the estimated regression coefficients.

¥ superMix - [T¥BS.out] -|of x|
f? File Analysis Window Help 18] x|
Odds Ratioc and 25% 0dds Ratio Confidence Intervals d
Eounds=
Parameter Eztimate 0dd=s PRatio Lower Tpper
intercept -1.2171 0.2361 0.ZZ48 0.3308 1
PraTHES 0.z29397 1.4914 1.3879 1.62Z59
cC 0.9725 Z.6445 1.3710 3. 54584
v 0.2L1E6 L1.32710 1.03E0 1.21&62
CC*TW =0.4127 0.661%8 0.4387 0.3933%
-
1 I _>l_I
Save Az | LCloze

Results for the model fitted with adaptive quadrature

The output describing the estimated parameters after convergence is shown next. Three
iterations were required to obtain convergence. The number of quadrature points used per



dimension was 25. The likelihood function value at convergence as well as the deviance are
also given, and may be used to compare a set of nested models.
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g==========================================q
Nuwber of cuadrature points = E5
Humber of free parameters = &
Number of iterations used = 2

=
—Zlnl (deviance statistie) = Z0E3. 19947
Akaike Information Criterion Z075.19347

Schwarz Criterion 2107 45537
-
J1 |_>|_I

Save Az | LCloze

The estimates are shown in the column with heading Estimate, and correspond to the
coefficients £, f,,..., B, in the model specification. Significant effects of PreTHKS and CC

are observed. The variation in the intercept over the schools is estimated as 0.1065, and from
the associated p -value we conclude that there is significant variation, at a 10% level of

significance, in the intercept between the schools included in this analysis.

¥ SuperMix - [T¥BS.out] =] 3]
l‘? File Analysis ‘Window Help _|ﬁ'|ﬂ
&l
Eztimated regression weights
Standard
Parameter Estimate Error z Value I Value
intercept —-1.ZE80 0.1343 —-&. 2237 0. o000
PreTHES 0.3870 0.0451 g.5844 00000
cC 1.0892 0.Z24E5% 44377 0. o000
v 0.3741 0.z2350 1.5318 0.1114
CC*TYW -0_5573 0.3404 -1.6387 0.1013
Odds Ratioc and 25% 0dds Ratio Confidence Intervals
Eounds=
Parameter Eztimate 0dd=s Ratio Lower Tpper
intercept =1.ZE80 0.z23z3 0.1333 0.4Z231
PreTHES 0.3870 1.4726 1.3481 1.6087
cC 1.0892 Z2.9720 1.23270 4. 2082
v 0.3741 1.4537 0.3171 Z.3043
CC*TYW -0_5573 05728 0.2338 1.1186
Estimated lewel Z variances and covariances
Standard
Parameter Estimate Error z Value P Value
intercept /intercept 0. 10g& 0.057s8 1.2436 0.0&8Z
-
4| | >
Save As.. | LCloze




In the case of the fixed effects, a 2-tailed p-value is used, as the alternative hypothesis
considered here is of the form H,: # 0. As variances are constrained to be elements of the
interval [0,+o), the p -values used for these effects are 1-tailed.

If the model is true, it is assumed that the level-1 error variance is equal to 7°/3 = 3.29895
for the logistic link function (see, e.g., Hedeker & Gibbons (2006), p. 157), where 7
represents the constant 3.141592654.

Thus the estimated ratio between level-2 variation and the total variation is calculated as

0.1065
=— 5 =0.031
0.1065+ 7" /3
=
l'? File Analysis  Window Help ;Iﬂil
[

Calculation of the imtracluster correlation

resiqual variance = pivpi / 3 (sssumed)

cluster wariance = 0.106&

intracluster correlation = 0.1066 /1§ 0.1066 + {pi*pi/f3)) = 0.021 TI

o o

Save As.. | LClose |

This indicates that almost all variation is attributable to students, rather than to the schools.

3.2.24 Interpreting the adaptive quadrature results

The expected log-odds of having a high post-intervention knowledge score (THKSbin score of
1) for a student with a zero value on all the predictors (that is, no social-resistance
curriculum, no media intervention, and a pre-intervention knowledge score of 0) is
represented by the estimated intercept of —1.2281. When a social-resistance curriculum was
in place (CC = 1), or a mass-media intervention was performed (TV = 1), the log-odds of a
typical student is expected to increase, as indicated by the positive estimated coefficients for
CC and TV. Similarly, a higher score on the pre-intervention knowledge test is associated
with higher log-odds of a higher post-intervention knowledge score. It can be concluded from
the results that the implementation of a classroom curriculum was more likely to lead to a
higher post-intervention knowledge score than was the case when mass-media intervention
was used. In contrast, the log-odds of a high post-intervention knowledge score was expected
to be lower for a typical student from a school where both social resistance classroom
curriculum and mass-media intervention defined the study condition for that school, as the
estimated coefficient for the interaction term CC*TV was negative.



Estimated outcomes for different groups: unit-specific results

To evaluate the expected effect of CC, TV, CC*TV, and PreTHKS on the predicted probability
that the post-intervention score is equal to 1, we use the following expression for the
predicted log odds of success

Ny = B+ BxCC, + Bx TV, + Bx CC, x TV, + f3,x PreTHKS,
for the four groups defined by the categories of CC and TV. Note the similarity of this

equation with that given for 7, earlier: random coefficients are not included, as their

expected value is 0.

For a typical student with a PreTHKS score of 0 from any school where no media television
intervention and no social-resistance classroom curriculum was implemented, CC = TV = 0,
and thus

AN A

n; = :Bo

In the case of a typical student with a PreTHKS score of 0 from any school where only media
television intervention was implemented (TV = 1),

)7[] = ,Bo+ﬂ2XT\/i'

The equations for similar students from a school with only a social-resistance classroom
curriculum implemented (CC = 1, TV = 0), and from a school with both interventions
implemented (TV =1, CC=1)are

N

Ny = B+ BxCC, + B,x PreTHKS,

and

AN AN

n; =Byt BxCC,+ B,xTV, + BixCC, xTV, + 5,x PreTHKS,

respectively.

For a student with an average PreTHKS score (2.152, see exploratory analysis) from any
school with similar values of CC and TV we find that

A A

1; = PBy+ f,* PreTHKS,

= B+ B,#2.152.



Using the ,BAO and ,BA4 estimates of —1.2280 and 0.3870 respectively as obtained for the

current analysis, we can calculate the estimated probability of a THKSbin score of 1 for
typical students with PreTHKS scores of 2.152 and 0 respectively as

~1.2280+0.3870(2.152)

Prob(THKSbin,, =1|CC=TV =0;PreTHKS =2.152) =
Y 1

—1.2280+0.3870(2.152
—0.39518
e

1+ e0.39518

=0.40247

and

—-1.2280

Prob(THKSbin, =1|CC=TV =PreTHKS =0) = 0

L o 12280
=0.22653.

A student with an average observed score of PreTHKS is almost twice as likely to have a
THKSbin score of 1 as a student with the lowest observed score on the same variable. Note
that we opted to use the mean pre-intervention score for this specific subgroup.

On the other end of the scale in terms of intervention, we have schools where both a social-
resistance classroom curriculum and a mass-media intervention were implemented (CC = TV
= 1). For two typical students from these schools, an observed PreTHKS score of 0 or the
mean score of 1.979 will imply a predicted probability of a THKSbin score of 1 of 0.4201 for
the first and 0.6091 for the second. Again, the higher the pre-intervention score, the higher
the predicted probability of a high post-intervention score.

In Table 4.4, the estimated probabilities of high post-intervention scores on the tobacco and
health questionnaire are given for typical students with high or low pre-intervention scores
for each of the subpopulations formed by mass-media intervention and implementation of
social-resistance classroom curriculum.

Table 4.4: Estimated unit-specific probability of a high post-intervention knowledge score

Group prescore | prob. | prescore | prob.
CC=0,Tv=0 0 22.65% 2.152 40.25%
cC=1,Tv=0 0 46.54% 2.05 65.81%
cC=0,Tv=1 0 29.86% 2.87 48.85%
cc=1,Tv=1 0 42.01% 1.979 60.91%

These estimated probabilities can also be presented graphically, as shown in the bar chart
below.
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Figure 4.3: Bar chart of estimated unit-specific probabilities

Students with a high pre-intervention score were predicted to have a high post-intervention
score too, regardless of the study conditions. Similarly, students with a low pre-intervention
score were generally likely to have a low post-intervention score too. If only curriculum
intervention (CC = 1) was used, scores for students were likely to be higher regardless of their
pre-intervention scores. On both ends of the pre-intervention knowledge score scale, in
groups where mass-media intervention was used (TV = 1), scores were predicted to be higher
than where media intervention was not used, except when both mass-media and curriculum
intervention were used. For these groups, with CC = TV = 1, the estimated probabilities of a
high post-intervention score were actually lower than for the group where only a classroom
curriculum was used (42.01% vs. 46.54%, and 60.91% vs. 65.80%).

We conclude that for most students, the implementation of a social-resistance classroom
curriculum is more likely to be effective in increasing their knowledge (predicted
probabilities of a high score being 46.54% and 65.80% respectively) than mass-media
intervention (predicted probabilities of a high score being 29.86% and 48.85% respectively).
The control group, where neither method was implemented, had the lowest predicted
knowledge scores (22.65% and 40.25% respectively). While the implementation of both
procedures was associated with higher probabilities than either the control group or the group
where only mass-media intervention was used, its predicted gain was disappointing when
compared to the use of only social-resistance curriculum implementation. Generally
speaking, the implementation of a curriculum only seems to be most effective in increasing
the predicted knowledge of students on the tobacco and health questionnaire.

Estimated outcomes for different groups: population-average results
In the introduction to this section, we defined the latent response variable model as
Yy = x;./.[i + Z;jVi te, Jj= L2,..,n,

where z, denotes a design vector for the random effects contained in the vector v,, and xU

the design vector for the predictors in the fixed part of the model with corresponding vector



B of regression parameters. The covariance matrix of v, is denoted by @, and the variance

2
of ¢, by o,.

For a probit link function o’ =1, and for a logistic link function it is assumed to be
o, =n"/3. Under the assumption that v, and e, are independently distributed, it follows

that

2 2
c, —qu)v,.zy +0,.

v

The design effect d; is defined in terms of o7 and cs;j :

This design effect may be used to obtain the estimated population-average probabilities in a

similar fashion as the unit-specific probabilities, but with replacing 77: with 17:] = 77:1./ \/dj
(Hedeker & Gibbons, 2006).

We can compare these estimated population-average probabilities with the observed data for
the four groups formed by the categories of TV and CC as shown in Table 4.5. To illustrate,
we calculate the estimated population-average probabilities for a few of the subgroups.

From the output, we have var(v,)=0.1065, where v, denotes the random intercept

coefficient. In this case, z, =1 and hence, with 67 =7*/3 for the logistic link,
Gi‘j =1x0.1065x1+3.2899 =3.3964.

Therefore

~3.3964
Y 3.2899

=1.0324.

To obtain the population-average probability estimates, we now replace the 7, values

calculated for the unit-specific case with , =1,/ \/dj :

For the subgroup where TV = CC = 0 and the mean PreTHKS value is equal to 2.152, for
example, we find that



7, =—1.2281+0.3871(2.152)

- =-0.39506
so that
77; =-0.39506/+/1.0324
=-0.38881
and
e
P(THKSbin, =1|CC=TV =0,PreTHKS = 2.152) = 7
1+e"
= Q07780 _ 40,.40%.
1.67786

Similarly, for the group where TV =CC =0 and PreTHKS = 0, we find that

N

7, =—1.2281

*
A

n. =-1.2281/1.01606

y

=-1.2087.

Table 4.5: Estimated population-average probabilities

Group prescore | prob. | prescore | prob.
cc=0,Tv=0 0 22.99% 2.15 40.40%
cc=1,Tv=0 0 46.59% 2.05 65.57%
cc=0,Tv=1 0 30.14% 2.87 48.87%
cc=1,Tv=1 0 42.13% 1.98 60.74%

A comparison of these probabilities with the observed ratios given in Table 4.6 for the
control group at the end of the study indicates that the population-average results are slightly
closer to the observed ratios than is the case for the unit-specific results. Recall that

\/dT] =1.0161. The extent of differences between unit-specific and population-average results

is highly dependent on the "scaling" induced by dividing the 77: s by \/Z .



Table 4.6: Observed and predicted proportions of high post-intervention scores

. Unit-specific Population-average
Group Proportion observed predicted prob. predicted prob.
CC=0,Tv=0 41.57% 40.25% 40.40%
cC=1,Tv=0 63.16% 65.80% 65.57%
cC=0,Tv=1 48.32% 48.84% 48.86%
cc=1,Tv=1 60.31% 60.91% 60.74%
3.2.2.5 Interpreting the contents of the level-2 residual file

In addition to the standard output file, the Write Bayes Estimates ficld on the Configuration
tab of the Model Setup dialog was used to request Bayes estimates for the individual random
terms. These estimates are written to the file TVBS.ba2. The first few lines of this file are

shown below.
Four pieces of information per school are given:

all 1s for the level-2 model,

the school's 1D,

the value of random intercept,

the empirical Bayes estimate,

the associated posterior variance for the school estimate, and

O O O O O O

the name of the associated random coefficient.
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40%.00 1 0.2832868 0.074702ZE intercept
404.00 1 0.1160913 0.0660764 intercept
122,00 1 0.0894222 0.05E1422 dintercept
194.00 1 0.0983612 0.0393094 intercept
196.00 1 0.2471524 0.066196E intercept
127._00 1 0.0137577 0.05Z3062 dintercept
122,00 1 -0, 2770740 0.04&5E2E4  dntercept
195.00 1 -0.1273E500 0.0453624 intercept
401.00 1 0.3180534 0.0581188 intercept
40Z._00 1 -0.083512& 0.0532211 dintercept
405.00 1 -0.0528117¢ 0.046381E intercept
407.00 1 0.4108713 0.0408447 intercept
408.00 1 -0.1503098 0.0664666 intercept
40900 1 0.2302421 0.0354570 dntercept
410.00 1 -0.4zzl3zs 0.0525741 intercept
411.00 1 0.2723730 0.0756187 intercept
417_00 1 0.0151462 0.058724F dintercept
41400 1 -0.10324&321 0.0EESE0E  dntercept
41E5.00 1 0.36E3302 0.044042E intercept
505.00 1 -0.2043965 0.0377875 intercept
S0&_0o0 1 —0. 4734872 0.041120Z dntercept
507.00 1 -0.2l24398 0.0321874 intercept
E08.00 1 0.Z534393 0.0358827 intercept
505.00 1 -0.1449230 0.0281350 intercept
Llo.0o0 1 -0, 1EZETEE 0.02917€2 dntercept
E12.00 1 -0.3508720 0.06Z1859 intercept
514.00 1 0.104Z555 0.0329034 intercept
S515_00 1 0.0021403 0.0244141 dintercept

Save Az Cloze

The mean of the empirical Bayes estimates is — 0.0002. The estimates ranged from
—0.473614 for school 506 to 0.4110043 for school 407. In both cases a mass-media
intervention procedure was applied, and thus TV = 1, but CC = CC*TV = 0. For students with a
PreTHKS score of 3 from each of these schools, this implies

Prob(THKSbin, =1| CC =0, PreTHKS =3,1D = 506) =~ ¢
+

- 1.061486

1.061486

=0.7430

1+e

and

Prob(THKSbin, = 1| CC =0, PreTHKS =3,1D =407) = ¢
+

- 1.9461043

1.9461043

=0.8750

1+e

—0.473614+0.3741+0.3870(3)

e—0.473614+0.3741+0.3870(3)

0.4110043+0.3741+0.3870(3)

60.41 10043+0.3741+0.3870(3)

respectively. The fact that the intercept for school 407 lies higher than the average is
reflected in the higher probability (87.5%) that a student with average pre-intervention
knowledge score will obtain a high post-intervention score. School 506, on the other hand,
has an intercept far below the average, and a student from this school has, in effect, a 74.30%
chance of obtaining a high post-intervention score.



3.2.3 A 2-level random intercept logistic regression model

Using the same data (tvsfpors.ss3) and model setup file TVBS.mum from the previous
example, we now consider the situation where students are nested within classrooms and fit a
two-level model of the form described earlier, again with the binary variable THKSbin as
outcome.

3.2.31 Setting up the analysis

Use the File, Open Spreadsheet option to re-open the previously used spreadsheet
tvsfpors.ss3 from the Examples\Binary folder. Next, use the File, Open Existing Model Setup
option to browse and open the syntax file TVBS.mum.

The biggest change to be made to the syntax file is in terms of the ID variable. Change the
Level-2 IDs field on the Configuration tab of the Model Setup dialog box from School to Class,
as shown below. Also, turn of the writing out of Bayes estimates by setting the Write Bayes
Estimates field to no.

= Model Setup: TYBC.mum [l |

| Eariablesl Starting Valuesl Eattemsl Advanced | Linear Transforms

Title 1: |Logistic 2 level random intercept model

Tifle 2 |TWSFP data

Cependent ¥ ariable Type: Ibinaly j Level-2 [Ds: ICIass j
Diependent Y ariable: ITHKSbin j Level3 D I j
Cateqories: Walue Wirite Bapes Estimates: Imeans anly j

12 1D Convergence Criterian; |D.DDD1

Mumber of lterations: |1UU

FMizsing ¥ alues Present: |false j Perform Crozstabulation: Ino 'I
Output Type: Istandard j

Save the revised syntax file under a new name such as TVBC.mum and run the analysis.

3.2.3.2 Discussion of results

Partial output for this run is provided below. The summary of units now reflects the number
of students nested within each classroom. The number of students per class (level-2 unit)



ranges between 2 and 28. In this analysis, there were 135 level-2 units, compared to 28 in the
previous analysis.

—Ioix
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Model and Data Descriptions

Sanpling Distribution = Bernoulli

Link Function = Logistic

PROE iSuccessi= 1.0/[1_0+EXP(-ETA)]

Humber of Level-Z Units 135

Munbher of Lewel-1 Units 1e00

Nuwber of Lewel-1 Units per Lewel-2Z Unit =

20 2 11 El E 26 11 10 1Lt 1z 1z 10

2l 10 17 13 z 4 ozl 16 15 1z z 14 “
l | _’|_I

Save As... | LCloze

Estimated coefficients with adaptive quadrature and the estimated level-2 variances are given
below.

—Ioix

.‘? Eile Analysis Window Help o =] |
Estimated regression weights d
Standard
Darameter Estimate Error z Walue I Walue
intercept -1.2534 0.1895 -7.3937 0.0000
PreTHES 0.4010 0. 0461 8.6372 0.0000
cC 0.9883 n.1972 E.009% 0.0000 == |
v 0.z870 0.1%z0 1.43E50 0.13493
CC*TVW -0.3631 02774 -l.3306 0.l833
-
1| | »
Save As... | LCloze |

—Ioix

=
ff File  Analysis ‘Window Help ==l %]
Estimated level Z variances and covariances d
Standard
Darameter Estimate Error z Value I Value

=
intercept/intercept 0.2121 0.0s803 Z.7304 O.00&3

-

1 | _>I_I

Save As... | LCloze

The estimates for the classroom analysis are very similar to those of the school analysis. All
estimated fixed coefficients are slightly lower than was the case in the previous analysis.



There seems to be more variation between classrooms than between schools, as indicated by
the estimated variation in the random intercept of 0.2193, compared to the similar estimate of

0.1065 in the school analysis.

*

The estimates can again be used to obtain predicted probabilities by first calculating the 7, s,

using the formulae

7A7,.j =-1.2535+0.9883xCC, +0.2870x TV, —0.369><(CC>< TV)
+0.401x PreTHKSij

i

and rAyij :7A7U/\/d7. where

G, 0.2193+7/3
dz/: 2 2
c, n /3

~ 0.2193+3.289865
3.289865

=1.0666.

A comparison of unit-specific and population-average predicted probabilities for the current
model are given in Table 4.7. For comparison purposes, similar results for the previous
model can be found in Table 4.7.

Table 4.7: Observed and predicted proportions of high post-intervention scores

. Unit-specific Population-average
Group Proportion observed predicted prob. predicted prob.
CC=0,Tv=0 41.57% 40.36% 40.66%
CC=1,Tv=0 63.16% 63.57% 63.16%
CC=0,Tv=1 48.32% 46.76% 46.87%
cc=1,Tv=1 60.31% 60.98% 60.64%
3.24 A 3-level random intercept logistic regression model

Having fitted 2-level models where students were nested within either classrooms or schools
thus far, we now consider a 3-level model with both classroom and school defining levels of

the hierarchy.



3.241 The model

The level-1 and level-2 models are the same as for the previous two models, as shown below.

Level 1 model (k=1,...,n,):

THKSbin, = b,, + b,,PRETHKS,

Iij ik T Ei

Level-2 model (j=1,...,n,):

b

03

b

1ij

= by, + bm,.CC[j + boz,-TV,-j + b03,.(CCl.j X TVl.j) + vy
=p

10i

With classrooms nested within schools, however, a third level of the hierarchy is defined. At
this level, the level-2 coefficients become outcomes again, and can potentially vary over the
schools (level-3 units). In the current model, we allow only the intercept to vary randomly
over the schools.

Level-3 model (i=1,...,N)

S@‘ o
Il

8@‘
I

S

X
2R > ™
+
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3.24.2 Setting up the analysis

We modify our model setup saved to the syntax file TVBS.mum by first using the Open
Existing Model Setup option on the File menu to retrieve the syntax file. Then click on File,
Save as to save the model setup in a new file, such as TVBCS.mum. Next, select CLASS as the
Level-2 ID and SCHOOL as the Level-3 IDs as shown below. We now have both level-2 and
level-3 IDs selected.



&% Model Setup: TYBCS.mum I [

Wariablesz | Starting Values' Eattemsl Advanced | Linear Tranzforms

Title 1: |Logistic 3 level random intercept model

Title 2: |TVSFF data

Dependent ¥ anable Type: Ibinar_l,l j Level-2 D= ICIass j
Dependent Yariable: ITHKS bir j Level-31D= ISchool j
Categories: Walue write Bayes Estimates: Ino j

12 ‘ID Convergence Criterion: ID.Dum

Mumber of lterations: |100

Migsing Yalues Present: | falze j Perform Crosstabulation: |no h

Output Tepe: I standard j

Keep all the other settings unchanged. Save the changes to the file TVBCS.mum and select the
Run option on the Analysis menu to run the analysis.

3.243 Discussion of results

The portions of the output file TVBCS.out containing the estimates of the fixed and random
coefficients in the current model are shown below.

il

ga File Analysis  Window Help _|5’|i|

p— [
Mumber of guadrature points = Z5
MNumber of free parameters = 7
Mumber of jiterations used = 4
-Zlnl {deviance statistic) = Z0EE. 70207
Akaike Information Criterion Z0E9_T70E07
Schwarz Criterion Z107.34638
Estimated regression weights
Standard J
Parameter Estimate Error = Walue P Value
intercept -1.2464 0.1356 -5.37Z1 o.oooo
Pr=THES 0.3954 0.0463 2.5321 o.oooo
ccC 1.03381 0.z2446 4. 24354 o.oooo
v 0.33E24 0.2358 l.4107 o.lge3
CC*TVW -0.4841 0.32428 =1.3EE0 0.17&54
-
1 | ;l_l
Save As... | LClose




% superMix - [TYBCS.out] Y =] 3
& Fle Analysis Window Help o =] |
=
Estcimated lewel Z wariances and covariances
Standard
Darameter Estimate Error z Value I Value
_______________________________________ i
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Table 4.8: Comparison of results for three models with binary variable THKSbin as
outcome

Coefficient Zlevel: Zlevel: 3-level
CLASS as IDSCHOOL as ID
Fixed effects:

estimate -1.2535 -1.228 -1.2465

Intercept standard error| 0.1695 0.1949 0.1957

estimate 0.401 0.3871 0.3954

PRETHKS standard error| 0.0461 0.0451 0.0463

estimate 0.9883 1.0893 1.0383

CC standard error| 0.1973 0.2454 0.2448
estimate 0.287* 0.3741* |0.3325%*

TV standard error| 0.192 0.235 0.2358
estimate -0.369* —0.5578* 1-0.4644*

CCxTV standard error| 0.2774 0.3403 0.3427

Random effects:

estimate 0.2193 0.1649

Var(between classrooms)|standard error| 0.0802 0.0813

estimate 0.1065 0.063*

Var(between schools) |standard error 0.0578 0.0616

*: Not significant at 5% level of significance.



Results for this model are compared to those obtained using the two 2-level models in Table
4.8. Generally, there is close agreement between the models in terms of both the sign and
size of the effects. Note that the only intervention method that consistently has an estimated
coefficient significantly different from zero is CC. While use of the media intervention (TV)
can positively influence the post-intervention score, it seems clear that using both methods
simultaneously does not have any real benefits.

3.24.4 Interpreting the adaptive quadrature results

3-level ICCs

Intraclass correlation coefficients can be obtained for the three-level dichotomous outcome

model. As mentioned earlier, it is assumed that the level-1 error variance is equal to 7°/3
for the logistic link function if the model is true (see, e.g., Hedeker & Gibbons (2006), p.
157). Using this approximation, the formulae for the standard ICCs can be adjusted.

From the output for the random effects, we have

Level-1: estimated (error var) = 7°/3=3.2899
Level-2: estimated ( class var) = 0.1649
Level-3: estimated (school var) = 0.0630.

Based on this information, we can calculate the ICC as shown below.

Similarity of students within the same school:

2

ol ~ 0.063

0l + 00, +07 0.063+0.1649 +3.28986

ICC =

=0.0179.

Similarity of students within the same classrooms (and schools):

2

0,2 0.1649
ICC =—; > - =
O, 10,0 0, 0.063+0.1649+3.28986

=0.04688.



Similarity of classes within the same school:

2

O
jcca— T 0.1649
o2y +02,  0.063+0.1649
=0.7236.

Estimated unit-specific and population-average probabilities

Under the assumption that v,, v and ¢, are independently distributed, it follows that for
the three-level model the design effect is defined as

2 2 2
_ (Gv(3) TG0, t c,)

ik 2
(e)

e

=1.0692.

The estimated unit-specific probabilities are calculated using

AN

M =—1.2465+1.0383x CC, +0.3325x TV, - 0.4.644x CC, x TV,
+0.3954x PreTHKS

and

1

Prob(THKSbin =1|p) =
I+e

~Mijk

The estimated population-average probabilities (Hedeker & Gibbons, 2006) are obtained in a
similar fashion as the unit-specific probabilities after replacing n;k with nijk* = ry;k/ d; in

the second of the equations shown above.
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