
 

 
Two-level probit model 
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3.1 Introduction 
The nominal and ordinal outcome models can be seen as generalizations of the binary 
outcome model. In order to understand these models, an understanding of the binary outcome 
model is required.  
 
A binary random variable is a discrete random variable that has only two possible values, 
such as whether a subject dies (event) or lives (non-event). Such events are often described as 
success versus failure, and coded using the values 0 or 1. Consequently, the assumption that 
this type of outcome variable has a normal distribution does not hold anymore.  
 
The most common distribution used for a binary outcome is the Bernoulli distribution, which 
takes a value 1 with probability of success p  and a value 0 with probability of failure 

1q p= − . The selection of the distribution for the outcome variable is not fixed. For 
example, if the occurrence is very rare, the Poisson distribution can be used. 
 

3.1.1 Link functions 

In the case of a binary variable, observed values are usually assigned as either 0 or 1. When 
such a variable is treated as if it were continuous, predicted values, indicating the probability 
of the event occurring, can fall outside the (0,1) interval. Moreover, the assumption of 
normality at level 1 is not realistic as the random effects can no longer be assumed to have a 
normal distribution or to have homogeneous variance. 



 
The multilevel generalized linear model (MGLM) generalizes the multilevel model for 
continuous outcomes by additionally allowing for error distributions from the exponential 
family (see, for example, McCullagh & Nelder, 1989). Let y  denote the outcome variable, 
and ( )E y  the expected value of y . The key to MGLM models is that a nonlinear relationship 
between ( )E y  and β  is allowed, with the aid of a link function.  
 
Suppose that ( )1 nx x=x   is the vector of all the predictors and that ( )1 nβ β=β   is the 
vector of unknown regression parameters. In the models discussed up to now, it was assumed 
that the outcomes were normally distributed variables and that a model of the form 

 ' ' , 1, 2,...,ij ij ij i ij iy e j n= + + =x β z v  

could be used to describe the relationship between the outcome and predictor variables. The 
vector '

ijz  denotes a design vector for the random effects contained in the vector iv , and '
ijx  

is the design vector for the predictors in the fixed part of the model with corresponding 
vector β  of regression parameters. The covariance matrix of iv  is denoted by (2)Φ  and the 

variance of ije  by 2
eσ .  

 
The link function specifies a nonlinear transformation between the linear predictor η  and the 
assumed distribution function. These link functions transform the observed outcome value to 
a function η ′= x β  and ensure that the predicted probability lies within the (0,1) interval. 
Instead of y, η  is being analyzed. For the binary outcome, the probability of success η  is the 
predictor of interest. 
 
The most commonly used link functions are the log, logit, probit and complementary log-log 
link functions. The log link generally is used for the count variable with Poisson distribution, 
which will be discussed in the next chapter. The link functions available in SuperMix include 
the logit, probit and complementary log-log functions for models with an ordinal dependent 
variable, and the logit link function for models with a nominal dependent variable. Table 4.1 
shows these link functions, along with their distribution functions (CDF), means and 
variances. 
 



Table 4.1: Link functions for the Bernoulli distribution 
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These link functions map the probability η  with an open interval (0,1) to the entire set of real 
numbers  . Figure 4.1 illustrates how a real number w is transformed to the probability η . 

 
As shown below, the logit and probit link functions are both symmetric around a value of 0. 
The logit function has a larger variance. The complementary log-log link function is 
asymmetric. When the probability of a successful outcome ( p ) is extremely small or large, 
the linear relationship does not hold. Understanding the nature of the link function used in an 
analysis is essential to the correct interpretation of the results.  
 

 
Figure 4.1: Cumulative density of link functions 



 

3.1.2 Methods of estimation 

For models with binary, ordinal, count, and nominal outcomes, SuperMix offers two methods 
of estimation: maximization of the posterior distribution (MAP) and numerical integration 
(adaptive and non-adaptive quadrature) to obtain parameter and standard error estimates. 
 
The MAP method of estimation can be used to obtain a point estimate of an unobserved 
quantity on the basis of empirical data. It is closely related to Fisher's method of maximum 
likelihood (ML), but employs an augmented optimization objective which incorporates a prior 
distribution over the quantity one wants to estimate. 
 
Quadrature is a numeric method for evaluating multi-dimensional integrals. For mixed effect 
models with count and categorical outcomes, the log-likelihood function is expressed as the 
sum of the logarithm of integrals, where the summation is over higher-level units, and the 
dimensionality of the integrals equals the number of random effects. 
 
Typically, MAP estimates are used as starting values for the quadrature procedure. When the 
number of random effects is large, the quadrature procedures can become computationally 
intensive. In such cases, MAP estimation is usually selected as the final method of estimation. 
Numerical quadrature, as implemented in SuperMix, offers users a choice between adaptive 
and non-adaptive quadrature. Quadrature uses a quadrature rule, i.e., an approximation of the 
definite integral of a function, usually stated as a weighted sum of function values at 
specified points within the domain of integration.  
 
Adaptive quadrature generally requires fewer points and weights to yield estimates of the 
model parameters and standard errors that are as accurate as would be obtained with more 
points and weights in non-adaptive quadrature. The reason for that is that the adaptive 
quadrature procedure uses the empirical Bayes means and covariances, updated at each 
iteration to essentially shift and scale the quadrature locations of each higher-level unit in 
order to place them under the peak of the corresponding integral.  
 
A brief description of MAP estimation and quadrature follows below. 
 



MAP estimation 

For level-2 unit i , let 1 2, ,...,i i irv v v  denote the random effects and 1 2, ,...,
ni i iny y y  the 

outcomes. Let ( ),i if v y  denote the joint distribution of ( )1 2, ,...,i i i irv v v=v  and 

( )1 2, ,...,
ii i i iny y y=y .  

 
Using standard results for conditional distributions, it follows that 

 ( ) ( ) ( ) ( )| | / .i i i i i if f f f=v y y v v y  

By taking logarithms on both sides of the equation, the following density function is 
obtained: 

 ( ) ( ) ( )ln | ln | lni i i i if f f K= + −v y y v v  

where K  is a constant. Mode estimates iv
∧

 of the random effects and estimates 
∧

β  of the fixed 
parameters are obtained by iteratively solving the equations 
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where kγ   is a typical element of the unknown parameters 1 2, ,...,i i irv v v  and 1 2, ,..., pβ β β . 

 

As a by-product of the iterative procedure, estimates of cov , 1,2,...,iv i N
∧  = 

 
 are obtained 

and these, in turn, are used to estimate  ( ) ( )2 cov iΦ = v . 

Numerical quadrature 

Since 

 ( ) ( ) ( ), |i i i i if f f=y v y v v  

it follows that the marginal distribution of iy  can be obtained as the solution to the multi-
dimensional integral  

 ( ) ( ) ( )
1

1... | .... .
r

i i i r
v v

f f f dv dv= ∫ ∫y y v v  

Since it is assumed that ( )(2)~ ,i Nv 0 Φ  it follows, for example, that 



 ( ) ( ) / 2 1/ 2 ' 1
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12 | | exp .
2

r
i i if π − − − = −  
v Φ v Φ v  

In general, a closed-form solution to this integral does not exist. To evaluate integrals of the 
type described above, we use a direct implementation of Gauss-Hermite quadrature (see, e.g., 
Krommer & Ueberhuber, 1994, Section 4.2.6 and Stroud & Sechrest, 1966, Section 1).  
 
With this rule, an integral of the form 

 2( ) ( ) expI t f t t dt = − ∫  

is approximated by the sum 

 ( )
1

( ) ,
Q

u u
u

I t w f z
=

≈∑  

where uw  and uz  are weights and nodes of the Hermite polynomial of degree Q. A Q-point 
adaptive quadrature rule is a quadrature rule constructed to yield an exact result for 
polynomials of degree 2 1Q − , by a suitable choice of the n points ix  and n weights iw . 

 

3.2 Models based on the subset of NESARC data 

3.2.1 The data 

The data set is from the National Epidemiologic Survey on Alcohol and Related Conditions 
(NESARC). This data file has been used in some of the examples in Section 3.1. Detailed 
information about the survey is available at the NIAAA website at 
http://niaaa.census.gov/index.html. We focus on information regarding occurrences of major 
depression, family history of major depression and dysthymia. This information was used, in 
combination with the demographic information provided in Section 1 of the study 
description, to produce the nesarc_berc.ss3 data set used in this section. The image below 
shows the first ten records of this data set. There are 2339 dysthymia respondents in the 
survey; after listwise deletion, the sample size is 1981. 
 

 

http://niaaa.census.gov/index.html


 
The variables of interest are: 
 

o PSU denotes the Census 2000/2001 Supplementary Survey (C2SS) primary sampling 
unit. 

o FINWT represents the NESARC weights sample results used to form national level 
estimates. The final weight is the product of the NESARC base weight and other 
individual weighting factors. 

o AGE represents the age of the respondent. 
o SEX is the gender of the respondent (1 for male, 0 for female). 
o FULLTIME is recoded from question S1Q7A1. It is the response to the statement 

"present situation includes working full time (35+ hours a week)" with 1 indicating 
yes and 0 indicating no. 

o YR2_DEP is the observed response to the statement that the respondent had a period of 
at least 2 years with low mood, and being sad or depressed most of day (1 = yes, 0 = 
no.) It is recoded from S4CQ1 in the source data. 

o WHITEOTH represents the origin of white and other ethnicities, excluding Black and 
Hispanic. It is recoded from items S1Q1C, S1Q1D2, S1Q1D3 and S1Q1D5 in the 
NESARC source code (1 for white and other, 0 for black and Hispanic). 

o BLACK represents African American respondents in the sample. It is recoded from 
S1Q1C and S1Q1D3 (1 for African American, 0 for others). 

o HISPANIC is an indicator for Hispanic respondents in the sample data. It is recoded 
from S1Q1C, S1Q1D3 and S1Q1D5 (1 for Hispanic, 0 for others). 

o YOUNG is recoded from AGE. Respondents younger than 35 have the value 1; 
otherwise, YOUNG = 0. 

o MIDDLE is recoded from AGE. Respondents with 35 AGE<50≤  have the value 1. 
Otherwise, MIDDLE = 0. 

o OLD is recoded from AGE. Respondents with AGE 50≥  have the value 1. Otherwise, 
OLD = 0. 

 
We recoded the ethnicity variables because of the unbalanced numbers of respondents from 
different ethnicities in the original NESARC data. While weights are supplied with the data 
and should be used to adjust for the disproportionality of the sample, the use of indicator 
variables offers the opportunity to obtain estimated coefficients for individual groups while 
using one of the other ethnic groups as a reference group.  

 
In this section, we discuss the fitting of three Bernoulli models to these data. 
 



3.2.2 A 2-level random intercept probit model 

3.2.2.1 The model 

In previous models the logistic link function was used. We now fit a model by using the 
probit link function.  
 
The outcome variable of interest is YR2_DEP has the values 0 or 1. For this binary outcome 
variable 

( )1Prob(YR2_DEP 1| )ij i ijη−= =β Φ  

where ijη  represents the log of the odds of success, and can be expressed as 

 0 1 2 3 0 0AGE SEX FULLTIMEij ij ij ij i i ijb b b b b v eη = + × + × + × + + +  

for the intended model. This transformation, commonly referred to as the probit link 
function, constrains Prob( 1| )ijy = β  to lie in the interval (0,1).  

 

3.2.2.2 Setting up the analysis 

Open the SuperMix spreadsheet nesarc_berc.ss3. From the main menu bar, select the File, 
New Model Setup option.  
 
The Configuration screen is the first tab on the Model Setup dialog box. It is used to define 
the outcome variable and level-2 and level-3 IDs. Some other settings such as missing values, 
convergence criterion, number of iterations, etc. can also be specified here.  
 



 

 
To obtain the model shown above, proceed as follows. 
 

o Select the binary option from the Dependent Variable Type drop-down list. 
o Select the outcome variable YR2_DEP from the Dependent Variable type drop-down 

list box.  
o Select PSU from the Level-2 ID drop-down list box.  
o Enter a title for the analysis in the Title text boxes if needed (optional). 
o Request a crosstabulation of the outcome variable against AGE by selecting Yes from 

the Perform Crosstabulation drop-down list box, and select AGE as Crosstab Variable.  
o Keep all the other settings on the Configuration screen at their default values. Proceed 

to the Variables screen by clicking on this tab. 
 
The Variables screen is used to specify the fixed and random effects to be included in the 
model. Select the explanatory (fixed) variables using the E check boxes next to the variables 
AGE, SEX and FULLTIME in the Available grid at the left of the screen. After selecting all the 
explanatory variables, the screen shown below is obtained. The Include Intercept check box 
in the Explanatory Variables grid is checked by default, indicating that an intercept term will 
automatically be included in the fixed part of the model.  
 



 

 
The Advanced tab enables the user to define the weight variable. Weights are often used in 
complex sampling to adjust the existing sample for known biases. In SuperMix, the weight is 
normalized by default. To include a weight variable, proceed as follows: 
 

o Select differential from the Unit Weight drop-down list to activate the Assigned Weight. 
o Select FINWT from the drop-down list of the Level-1 Weight field. 

 

 

 
Save the model specifications to the file nesarc_ber1.mum and run the analysis. 



 

3.2.2.3 Discussion of results 

Portions of the output file nesarc_ber1.out are shown below.  

Model and data description 

As shown in the model and data description section, the Bernoulli sampling distribution and 
probit link function are specified. The weight variable FINWT is used to include sampling 
weight. There are 41,849 observations from 435 PSUs included in the data we are analyzing.  
 

 

 

Descriptive statistics 

The data summary is followed by descriptive statistics for all the variables included in the 
model. As shown below, about 94.41% of the respondents did not have a 2+ year period of 
low moods or being sad or depressed most of day.  
 

 



 

 

Results for the model without any random effects 

Descriptive statistics are followed by the results for the model without any random effects. 
These results are used as the starting values for the model with random effects. 
 

 

 

Results for the model with random effects 

The total number of iterations, the goodness of fit statistics and the estimated regression 
weights are shown below.  
 

  



 

 
The estimated intercept coefficient is – 1.5544. The estimated coefficient associated with 
AGE is – 0.0015, which implies that for every year increase in age of a typical respondent, the 
estimated probit ˆijη  is expected to decrease by 0.0015. The coefficient seems small, but keep 
in mind that age has a wide range, and consequently this estimate may have a big effect on 
the overall probability. The estimated coefficient associated with gender is 0.2121, which 
indicates that the male respondents (SEX = 1) have a larger ˆijη . The estimate for the indicator 
of FULLTIME shows that respondents with full-time jobs were expected to have a lower ˆijη  
value than respondents with a similar profile in terms of age and gender but without full-time 
employment.  
 

3.2.2.4 Interpreting the adaptive quadrature results 

The probit link function is now used to transform these estimates into probabilities. First, we 
substitute the regression weights and obtain an expression for ˆijη  : 

( ) ( ) ( )
( ) ( ) ( )

0 1 2 3
ˆ ˆ ˆ ˆˆ AGE SEX FULLTIME

1.5546 0.0015 AGE 0.2121 SEX 0.23 FULLTIME .
ij i i i iij ij ij

ij ij ij

b b b bη = + × + × + ×

= − − × + × − ×
 

For a typical 30-year-old male with a full-time job, SEX = 1, FULLTIME = 1 and AGE = 30, 
and thus  

ˆ 1.5546 0.0015 30 0.2121 0.23

1.6025.
ijη = − − × + −

= −
.  

Transform the ˆijη  into the corresponding probability by using the probit link function:  



( )1Prob YR2_DEP 1 1.60937 0.0545.ij

∧
− = = − = 

 
Φ  

In terms of percentages, 5.45% of males with this profile would be expected to suffer from 
long-term depression episodes. Similarly, the probability of having a depression episode of 
2+ years' duration for different gender and age combinations can be calculated. These 
probabilities, expressed as percentages, are reported in Table 4.9 below.  

Table 4.9: % probabilities of having a depression episode 
 

Age 20 30 40 50 60 70 
not fulltime, female 5.66% 5.49% 5.32% 5.16% 5.00% 4.85% 
not fulltime, male 8.50% 8.27% 8.04% 7.82% 7.60% 7.39% 
fulltime, female 3.48% 3.37% 3.26% 3.15% 3.04% 2.94% 
fulltime, male 5.45% 5.29% 5.13% 4.97% 4.82% 4.67% 

 
In general, males without full-time employment were more likely to have depression 
episodes than their female counterparts. Surprisingly, this is also true of males with full-time 
employment. 
 

 
Figure 4.4: Expected probabilities for subgroups 
 

These probabilities can also be depicted in Figure 4.4. The line associated with males without 
full-time jobs is considerably higher than for any other groups, again illustrating that this 
group has the highest probability of having 2+ years' period with low mood regardless of 
their age. For all the correspondents, as they grow older, the probability of having lengthy 
depression episodes decreased.  

 



3.2.3 A 2-level random intercept model with additional predictors 

3.2.3.1 The model 

In the previous section, we modeled the outcome variable YR2_DEP in terms of its 
relationship with the predictors AGE, SEX and FULLTIME. The model discussed in this section 
takes the ethnicity of patients into consideration by including two dummy variables, BLACK 
and HISP. Since the group of WHITEOTH is not included, it is automatically regarded as the 
reference category. 
 
For the current model, the log of the odds of success ( ijη ) can be expressed as 

 0 1 2 3 4 5

0

AGE SEX FULLTIME BLACK HISP

.
ij ij ij ij ij ij

i ij

b b b b b b
v e

η = + × + × + × + × + ×

+ +
 

 

3.2.3.2 Setting up the analysis 

We can modify the model setup file nesarc_ber1.mum by opening it and then saving it under 
a different name, such as nesarc_ber2.mum.  
 
Click on the Variables tab of the Model Setup window. Add the predictors BLACK and HISP to 
the model by checking the boxes next to these variables in the E column, as shown below. 
 

 

 



Save the modified model specification file, and select the Run option from the Analysis menu 
to perform the analysis. 
 

3.2.3.3 Discussion of results  

Portions of the output file nesarc_berc2.out are shown below.  

Results for the model fitted with adaptive quadrature 

The goodness of fit statistics are shown below. Since the previous model can be considered 
as a submodel of the current model, the deviances of these two models can be used to 
perform a 2χ  test to evaluate possible improvement in model fit.  

 

  

 
The output describing the estimated fixed effects after convergence is shown next. As shown 
above the estimated logit for the intercept is –1.5069, the estimated logit associated with AGE 
is –0.002, etc. It is interesting to note that the only positive estimate is for gender. Males are 
thus more likely to show long-term depression, while it will be less likely in those who are 
older or fully employed. The ethnicity indicators' coefficients also indicate that white 
respondents are most likely to have depression, with the Hispanic population the least likely.  
 



3.2.3.4 Interpreting the adaptive quadrature results 

Estimated outcomes for different groups: unit-specific results 

To evaluate the simultaneous impact of these estimates on the expected probabilities for 
respondents from the subgroups formed by the categories of age, gender, and ethnicity, we 
may use the estimated regression weights and the link function to calculate probabilities of 
having depression in the same way as for the previous model.  
 

For the current model, ijη
∧

 can be expressed as: 

1.5069 0.0020 AGE 0.2121 SEX 0.2335 FULLTIME

0.0891 BLACK 0.1814 HISP .
ij ij ij ij

ij ij

η
∧

= − − × + × − ×

− × − ×
 

Table 4.10 contains a subset of these estimated probabilities. Only typical respondents 30 or 
50 years old are considered here, and probabilities are expressed as percentages. 
 
Younger white males without full-time employment have the highest risk of having long-
term depression, while female Hispanic respondents with full-time employment were least at 
risk. 
 



Table 4.10: % probabilities of having depression episodes for selected age groups 
 

Age 30 50 
Ethnicity White Black Hispanic White Black Hispanic 

not fulltime, female 5.86% 4.89% 4.02% 5.40% 4.49% 3.69% 
not fulltime, male 8.77% 7.44% 6.22% 8.15% 6.89% 5.75% 
fulltime, female 3.59% 2.94% 2.38% 3.29% 2.68% 2.16% 
fulltime, male 5.61% 4.67% 3.84% 5.17% 4.30% 3.52% 

 
The results in Table 4.10 can also be depicted as a bar chart. Figure 4.5 shows that white 
respondents are more likely to get depressed for a long period than African American or 
Hispanic respondents. 
 

 
Figure 4.5: Estimated probabilities for subgroups 



Model comparison 

Since the two models in this section are nested models, the 2χ  difference test can be used. 
The deviances, AIC, and SBC statistics for these models are summarized in Table 4.11. These 
statistics suggest that the second model fits the data better. 
 

Table 4.11: Model comparison 
 

Statistic Model 1 Model 2 difference Difference 
in d.f. 

2ln L−  (deviance statistic) 17203.107 17176.677 26.430 2 
Akaike Information Criterion 17213.107 17190.677 22.430 2 
Schwarz Criterion 17256.316 17251.169 5.147 2 
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