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3.1 Introduction 
 
A count variable counts the number of discrete occurrences  of a characteristic of interest that 
takes place during a time interval. Examples are the occurrence of cancer cases in a hospital 
during a given period of time, the number of cars that pass through a toll station per day, and 
the phone calls at a call center. The most common distribution for a count variable is the 
Poisson distribution. Besides the Poisson distribution, negative binomial distributions may 
also be used to describe the properties of count variables.  
 

3.1.1 Poisson distribution 

The Poisson distribution is a discrete probability distribution. It is appropriate for expressing 
the probability of a number of events occurring in a fixed time period with a known average 
rate, under the assumption that the occurrences are independent of one another.  
 
The probability of k occurrences can be expressed as 
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where k is a non-negative integer and λ  is a positive real number, which equals the expected 
number of occurrences during the given interval. The cumulative probability function is 
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with the single parameter λ . A Poisson distribution has an important property: the mean 
number of occurrences λ  is equal to the variance: ( ) ( )varE f f λ= = . Figure 5.1 shows 
Poisson probabilities ( )f k  and cumulative probabilities ( )g k  for λ = 0.5, 2 and 5.  
 
As shown below, the smaller λ  is, the more skewed to the right the probability distribution 
is. When λ  is large, the Poisson distribution is close to the normal distribution.  

 

Figure 5.1: Poisson probabilities for various values of λ  
 
The log link function is generally used for the Poisson distribution. Assume the response 
measurements for a count variable 1, ..., ny y  are independent and 
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The natural logarithm of the above equation is used to define the link function: 

( ) 1 1log i i p ipx xλ β β= + +L  



As shown in Figure 5.2, using the log link function maps the mean of the count variable λ  
with an open interval (0,+ ) ∞ to the set of real numbers ( ),−∞ +∞ .  

 
Figure 5.2: Log link function 
 

3.1.2 Adaptive versus non-adaptive quadrature 

Ordinary quadrature is a numeric method for evaluating multi-dimensional integrals. For 
mixed-effect models with count and categorical outcomes, the log-likelihood function is 
expressed as the sum of the logarithm of integrals, where the summation is over higher-level 
units, and the dimensionality of the integrals equals the number of random effects. 
 
A problem with ordinary quadrature is that it assumes a common location and scale for each 
level-2 unit. This assumption often requires the use of a large number of quadrature points to 
calculate the log-likelihood and derivatives to an acceptable level of accuracy. To overcome 
this problem with ordinary quadrature, SuperMix also offers a numeric integration procedure 
called adaptive quadrature. The adaptive quadrature procedure uses the empirical Bayes 
means and covariances, updated at each iteration to essentially shift and scale the quadrature 
locations of each higher-level unit in order to place them under the peak of the corresponding 
integral. To distinguish between the two quadrature methods, SuperMix uses the terminology 
non-adaptive quadrature (ordinary quadrature) and adaptive quadrature. To illustrate this, this 
model will be fitted using the default method of adaptive quadrature. 
 

3.1.3 The data 

The data set is from the National Epidemiologic Survey on Alcohol and Related Conditions 
(NESARC), which was designed to be a longitudinal survey with its first wave fielded in 
2001–2002. This data file has been used in some of the examples in Chapter 3, and contains 



information on the occurrences of major depression, family history of major depression and 
dysthymia of 2339 dysthymia respondents. After listwise deletion, the sample size is 1981. 
 

 

 
The variables of interest are: 
 

o PSU denotes the Census 2000/2001 Supplementary Survey (C2SS) primary sampling 
unit. 

o FINWT represents the NESARC weights sample results used to form national level 
estimates. The final weight is the product of the NESARC base weight and other 
individual weighting factors. 

o CONC_DEP contains the information captured in field S4CQ3A6 of the NESARC data. 
It represents the response to the statement "Often had trouble concentrating/keeping 
mind on things," with 1 indicating "Yes," and 0 indicating "No." 

o AGE_DEP is based on field S4CQ7AR of the NESARC data. It represents the age at 
onset of first episode. 

o N_DEP is recoded from field S4CQ6A of the NESARC data, and gives the number of 
depression/dysthymia episodes. This is the count variable we would like to use as 
outcome variable in the examples to follow. 

3.1.3.1 Exploring the data 

Inspecting the distribution of the intended outcome variable, N_DEP, before starting with the 
model is important. In the case of a count variable, this can easily be done by producing a bar 
chart of the observed frequencies of occurrence captured by the count variable. Select the 
File, Data-based Graph, Univariate option from the main SuperMix window and request a bar 
chart before clicking the Plot button. 
 



 
Figure 5.3: Bar chart for count variable N_DEP 

 
The frequency bar chart for the count variable N_DEP shown in Figure 5.3 is obtained. We 
note that the number of depression episode ranges from 1 to 29, with most respondents 
having a small number of reported episodes of depression. 

3.1.4 A 2-level Poisson model with 2 predictors 

3.1.4.1 The model 

The first model fitted to the data explores the relationship between N_DEP and the variables 
indicating concentration (or lack thereof) and age, as represented by the variables CONC_DEP 
and AGE_DEP.  
 
The level-1 model is 

( ) 0 1 2log CONC_DEP AGE_DEPij ij ijλ β β β= + × + ×  

where the expected number of depression episodes is ( )= N_DEPij ijEλ .  

 
The level-2 model is 

0 00 0ib vβ = + , 1 10bβ =  and 2 20bβ = . 

Another way of writing the combined model is 

( ) 00 10 20 0log CONC_DEP AGE_DEPij ij ij ib b b vλ = + × + × + . 

In this model, 00be  denotes the average expected count of depression episodes, and 10b  
represents the estimated coefficient for the respondent's level of concentration.  
 



Taking exponents on both sides, we also have 
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For a person who had problems concentrating (CONC_DEP = 1), the expected average 
number of episodes 00be  is multiplied by 1eβ , compared to an expected count of 00be  for a 
person for whom  CONC_DEP = 0. Similarly, an increase of one year in age increases the 
estimated number of episodes by a factor of  20be . For example, a respondent with 
concentration problems who is two years older than another respondent who had no 
concentration problems is expected to have 00 10 202b b be e e  episodes compared to only 00be  
episodes for the younger person without concentration problems.  
 
The random part of the model is represented by 0ive , which denotes the variation in average 
count of depression episodes over PSU and between respondents (or, in other words, over 
respondents nested within PSU). For a Poisson distribution, the assumption of normality at 
level 1 is not realistic, as the level-1 random effect can only assume a number of distinct 
values. Thus, this random effect cannot have homogeneous variance.  
 

3.1.4.2 Setting up the analysis 

Open the SuperMix spreadsheet nesarc_poi.ss3 used during the exploratory analysis. From the 
main menu bar, select the File, New Model Setup option. The Model Setup window that 
appears has six tabs. In this example, only three tabs are used: the Configuration, Variables, 
and Advanced tabs. 
 
The Configuration screen is the first tab on the Model Setup window. It enables the user to 
define the outcome variable and the level-2 and level-3 IDs. Some other settings such as 
missing values, convergence criterion, number of iterations, etc. can be specified here. For all 
the available settings, please refer to Section 2.4. To obtain the model we discussed, start by 
selecting the outcome variable N_DEP from the Dependent Variable drop-down list box. 
Indicate that it is a count variable by selecting the count option from the Dependent Variable 
Type drop-down list box. Next, describe the hierarchical structure of the data by selecting the 
level-2 ID, PSU, from the Level-2 IDs drop-down list box. Enter a title in the Title text boxes, 
and proceed to the Variables screen by clicking on this tab. 
 



 

 
The Variables screen is used to specify the fixed and random effects to be included in the 
model. To include the variables CONC_DEP and AGE_DEP as  predictor variables, check the 
E check boxes next to the variables' names. Note that, as the variables are selected, the 
selected variables are listed in the Explanatory Variables grid. After selection, the screen 
below is obtained. Note that the Include Intercept check boxes in the Explanatory Variables 
grid and L-2 Random Effects are checked by default, indicating that an intercept term will 
automatically be included in the fixed and random parts of the model.  
 

 

 



Before running the analysis, the model specifications have to be saved. Select the File, Save 
As option, and provide a name (nesarc_poi1.mum) for the model specification file. Run the 
analysis by selecting the Run option from the Analysis menu. 
 

3.1.4.3 Discussion of results 

Portions of the output file nesarc_poi.out are shown below.  
 

Program information and syntax 

As shown below, the syntax for the model setup is printed in the output file. The first line of 
the syntax shows the option Model = Count, which indicates the outcome variable is a count 
variable. The Options syntax line corresponds to the settings on the Configuration screen. The 
Link = log and Distribution = Poi options specify the use of a Poisson distribution with a log link 
function for the fitted model. 
 

 

 

Model and data description 

A description of the hierarchical structure follows the syntax: data from a total of 395 PSU 
and 1981 respondents were included at levels 2 and 1 of the model. In addition, an 
enumeration of the number of respondents nested within each of the 395 PSUs is provided.  

 



 

 

Descriptive statistics 

The data summary is followed by descriptive statistics for all the variables included in the 
model. The mean of 1.8970 and standard deviation of 2.3304 are reported for the outcome 
N_DEP indicating that, on average, 1.8970 episodes of depression were recorded. 
 

 

 
Descriptive statistics are followed by the results for a fixed-effects-only model, i.e. a model 
without random coefficients.  
 

Fixed effects results 

At the top of the final results, the number of iterations required for convergence of the 
iterative procedure is given.  
 
Next, the number of quadrature points per dimension is reported which, in this case, is the 
default number of points. The log likelihood and the deviance, which is defined as 2 ln L− , 
are listed next. For a pair of nested models, the difference in 2 ln L−  values has a 2χ  
distribution, with degrees of freedom equal to the difference in number of parameters 
estimated in the models compared. 



 

 

 

 
The estimated intercept is 0.7982, which means that the average number of depression 
episodes is 0.7982e =2.2215, implying that on average the number of episodes is about two. 
The estimated coefficient for CONC_DEP is 0.2922, which indicates that respondents who 
had trouble concentrating on things tended to have 0.29222.2215e  
( )( )= 2.2215 1.3394 =2.9754 episodes at the same age as respondents without concentration 

problems. The estimate of the effect of age at the onset of the first episode (AGE_DEP) shows 
that the onset age does not affect the number of episodes much, since -0.0165e = 0.98. A slight 
reduction in the expected number of episodes is expected with increasing age. If one 
compares two typical respondents with reported concentration problems, but with one 
respondent ten years older than the other, one would expect the older respondent to have 
( )( ) 10(-0.0165)e2.2215 1.3394 =2.5229 episodes, compared to 2.9268 expected episodes for the 
younger respondent. In other words, the longer it takes for the first episode to occur, the 
fewer episodes a respondent is expected to have. Of course, it has to be kept in mind that the 
younger a respondent is at the first episode, the longer that person must live with the 
condition and thus the more time there is for subsequent episodes to occur. 



 

Random effects results  

The output for the level-2 random effect variance term follows next. The estimated variation 
in the average estimated N_DEP at level 2 is 0.1347, which is highly significant. Respondents 
are different in terms of their average expected number of episodes, holding all other 
variables constant. 
 

 

Level-1 variation for Poisson distribution 

The variance-to-mean ratio is a measure of the dispersion of a probability distribution:  
2

variance-to-mean ratioR σ
µ

= =
 

For the Poisson distribution, where the variance equals the mean, this implies 1R = . Thus, 
we use a value of one as our level-1 variation. In the cases when over-dispersion ( 1R > ) or 
under-dispersion ( 1R < ) is assumed, different level-1 variation values will apply. The details 
of these scenarios are not discussed in this guide. 
  

3.1.4.4 Interpreting the results 

Estimated outcomes for groups: unit-specific results 

First, we substitute the regression weights and obtain the following function for 
·( )log N_DEPij :  

00 10 20log N_DEP CONC_DEP AGE_DEP

0.7982 0.2922 CONC_DEP 0.0165 AGE_DEP .

ij ijij

ij ij

b b b
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 
= + × − ×

 

For example, at age 40, the estimated ·( )log N_DEPij  for a typical respondent who does not 

often have trouble concentrating (CONC_DEP = 0), we find that  



0 1 2log N_DEP CONC_DEP AGE_DEP

0.7982 0.2922 CONC_DEP 0.0165 AGE_DEP

0.7982 0.2922 0 0.0165 40
0.1382.
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Keeping in mind that we defined the relationship between λ  and the predictors as 

( ) 1 1log ij i p ipx xλ β β= + + , 

it follows that 

 0.1382ˆ 1.1482.ij eλ = =  

We can estimate the count of the occurrence of depression episodes for typical individuals of 
different ages in the same way. Results are summarized in Table 5.1. The results show a 
decrease in the expected number of episodes with increasing age, regardless of whether they 
had concentration problems or not.  
 

Table 5.1: Estimated number of episodes under the Poisson log model 
 

AGE_DEP 10 20 30 40 50 60 70 

CONC_DEP = 1 2.5229 2.1391 1.8138 1.5379 1.3040 1.1056 0.9374 
CONC_DEP = 0 1.8836 1.5971 1.3542 1.1482 0.9736 0.8255 0.6999 

 

 
Figure 5.4: Expected number of episodes for two groups 

 



The results in Table 5.1 can also be presented graphically, as shown in Figure 5.4. We clearly 
see that the correspondents who often had trouble concentrating (CONC_DEP = 1) have a 
higher estimated number of depression episodes. It also shows that the number of episodes is 
expected to decrease as people get older. 

 

Level 2 ICC 

The percentage of variance explained over level-2 units, or intraclass correlation coefficient 
(ICC),  is calculated as  

level-2 variation
level-1 variation + level-2 variation 

ICC =  

In this example, under the assumption that the level-1 variation is fixed at a value of one, we 
have 

0.1347 100% 11.8%
1 + 0.1347 

ICC = × =  

We can conclude that most of the unexplained variation in the outcome (approximately 78%) 
is between measurements at the lowest level of the hierarchy.  
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