
 

 
Survival analysis for an ordinal outcome 
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3.1 The ordinal case 

3.1.1 The data for an ordinal approach 

The ordinal analysis illustrated in this chapter is again based on the TVSFP data.One can also 
fit grouped-time survival models using dichotomous indicators of event/censoring across the 
study time points. To do so, requires additional data manipulation. The data set used for the 
ordinal approach differs from that previously discussed, and is represented by the SuperMix 
spreadsheet file SMKCCLC.ss3. The first 10 records of this data set are shown below. 
 

 

 
 



The variables of interest are: 
 

o School indicates the school a student is from. 
o Class identifies the classroom to which a student belongs. 
o Student represents the student identification number.  
o SmkOnset indicates the time at which an event occurred. It assumes a value of 1 for a 

WaveA measurement (i.e., the event occurred at Wave A), 2 for a WaveB 
measurement, 3 for a WaveC measurement, and 4 for a WaveD measurement. 

o Event is an indicator variable indicating whether the subject experienced the event or 
was censored. A value of 1 indicates that the student did experience the event (i.e., 
onset of cigarette experimentation) at one of the time points, while a value of 0 
indicates that the subject was censored and never experienced the event (i.e., no onset 
of cigarette experimentation) at any time point that they were assessed at.   

o SexM is an indicator variable for gender, with "1" indicating male respondents, and 
"0" female respondents. 

o CC is a binary variable indicating whether a social-resistance classroom curriculum 
was introduced, with 0 indicating "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with a "1" 
indicating the use of media intervention, and "0" the absence thereof.  

o CC*TV was constructed by multiplying the variables TV and CC, and represents the CC 
by TV interaction. 

 

Survival data as ordinal outcomes 

Assume 4 time points with no intermittent censoring and let y  denote the ordinal outcome 
variable. Let us first consider subjects who initiated smoking at some point in the study. For 
these subjects, the variable Event will be coded as 1 and the coding of the SmkOnset variable 
will be as follows. 
 
SmkOnset: 

o 1:ijy =  Student first started to smoke at t = 1. 

o 2 :ijy =  Student did not smoke at t = 1, but first smoked at t = 2. 

o 3:ijy =  Student did not smoke at t = 1 or 2, but first smoked at t = 3. 

o 4 :ijy =  Student did not smoke at t = 1, 2, or 3, but first smoked at t = 4. 

 
Similarly, subjects who were censored would have the variable Event coded as 0, and the 
following codes for the SmkOnset variable. 
 
 



SmkOnset: 
o 1:ijy =  Student did not smoke at  t = 1 and no data beyond t = 1. 

o 2 :ijy =  Student did not smoke at t = 1 or 2, and no data beyond t = 2. 

o 3:ijy =  Student did not smoke at t = 1, 2, or 3, and no data beyond  t = 3 (i.e., no data 
at t = 4). 

o 4 :ijy =  Student did not smoke at t = 1, 2, 3, or 4. 

 
Here, the phrase "did not smoke" is more precisely "did not answer yes to the question have 
you ever smoked a cigarette." 
 

Table 8.4: Three time points with censoring 
 

Outcome Ordinal dep. Variable Event indicator 

Censor at 1T  1 0 
Event at 1T  1 1 
Censor at 2T  2 0 
Event at 2T  2 1 
Censor at 3T  3 0 
Event at 3T  3 1 
Censor at 4T  4 0 
Event at 4T  4 1 

 
Table 8.4 shows how values are assigned to ijy , and the relationship between the ijy  
outcomes and the event indicator.  

 

3.1.2 Ordinal case: 2-level model 

Let ijy  denote an ordinal outcome variable that takes on discrete positive values 
1, 2, ,t m=  . In previous examples we assumed that ijy  has C  categories or distinct values, 

however here to be consistent with the survival analysis notation we will use m to represent 
the number of ordinal categories. The subscript ( , )i j  denotes subject j , 1, 2, ij n=   nested 
within level-2 unit i , 1, 2, ,i N=  . In the present context the level-1 units j  indicates 
students and the level-2 unit i  indicates schools. Note, that as another example of this type of 
model, one could have multiple failure times nested within individuals. 
 



Let ijδ  denote the censor/event indicator, then 1ijδ =  if the event occurs and 0ijδ =  if an 
observation is censored. In survival analysis each ij  is observed until time ijt  and if an event 
occurs ijt t=  and 1ijδ = . If the observation is censored at ijt t=  then 0ijδ = .  

 
In the case of censoring it is assumed that a unit is observed at ijt  but not at 1ijt + . As 
described in Hedeker, Siddiqui & Hu (2000), if events occur within continuous time intervals 
(i.e., grouped-time), for example, a student initiates smoking experimentation in the past 
year, use of the complementary log-log link for an ordinal outcome is equivalent to a 
proportional hazards model in continuous time. Therefore, the grouped-time proportional 
hazards mixed model can be written as: 

( ) ' 'log log 1 γ − − = + + ijt t ij ij iP x β z v  

where ijx  is a vector of explanatory variables and ijz  a vector of random effects. Typically, 
the elements of ijz  are a subset of ijx . For example, the elements of ijz  might correspond to 
the intercept and age, whereas ijx  would include these two terms plus any additional model 
covariates. It is assumed that the random effects iv  are from a normal distribution with mean 
zero and covariance matrix (2)Φ . 

 

ij tP  denotes the probability that an event takes place up to and including the interval 
designated at time ijt .  Thus, ij tP  represents a cumulative probability of failure, whereas ij tp  
is the interval-specific failure probability. Also, tγ  represent threshold values, and in the 
present context these reflect the baseline hazard (i.e., the hazard when all covariates equal 0). 
These threshold parameters are akin to the intercept parameters 0tα  in the dichotomous 
version of the model. The plus sign following tγ  means that a positive regression coefficient 
for a covariate indicates an increased hazard (i.e., the event occurs sooner) as values of the 
covariate increase. 

 

3.2 Survival analysis model for an ordinal outcome 

In this section, the re-formatted form of the data, as captured in smkcclc.ss3 is used to fit a 
model to the data with the ordinal variable SmkOnset as outcome.  
The model fitted to the data is of the form 

1 2 3 0log log(1 ) ( ) ( ) ( ) .γ β β β − − = + + + + ijt t ij j j iP SexM CC TV v  

 



3.2.1 Setting up the analysis 

Using the data in the SuperMix spreadsheet SMKCCLC.ss3, we start by selecting the New 
Model Setup option on the File menu to open the Model Setup window. Enter (optional) titles 
in the Title 1 and Title 2 text boxes. Select the ordinal outcome variable SmkOnset from the 
Dependent Variable drop-down list box. Note that when the variable is selected, the 
Categories field is populated with values 1 through 4. In these data, the value "1" represents 
missing data because this value indicates failure or censoring at Wave A (i.e., the pre-
intervention time point). As previously noted, the intent was to focus on the post-intervention 
time points only (i.e., Waves B, C, and D). Indicate this by setting the Missing Values Present 
field to true, and entering the value "1" in the Missing value for the Dependent Var field. The 
Categories field now shows the remaining three categories only. The variable School, which 
defines the units within which students are nested, is selected as the Level-2 ID from the Level-
2 IDs drop-down list box. The completed dialog box is shown below. 
 

 

 
Click on the Variables tab of the Model Setup window. SexM, CC, and TV are specified as the 
predictors (explanatory variables) of the fixed part of the model by checking the 
corresponding boxes in the E column of the Available grid on the Variables screen. By 
default, it is assumed that the intercept is allowed to vary randomly over the level-2 units, as 
indicated by the checked box in the Include Intercept field. 
 



 

 
To specify the number of quadrature points, link function (Function Model), and right 
censoring, we proceed to the Advanced screen by clicking on the Advanced tab. Change 
Model Terms from subtract to add (so that the model terms are added to the thresholds as 
specified in the ordinal version of the survival analysis model) and select complementary log-
log as the Function Model (to yield a proportional hazards model). Note that the default 
Number of Quadrature Points of 10 is replaced by 8. Only 8 quadrature points were used here 
since the values of the estimated parameters and 2 ln L−  statistic remain unchanged, up to 5 
decimal places, for this or a larger number of quadrature points. Finally, we indicate that 
Right Censoring is to be included and that the variable for this is Event (which is coded 0 = 
censor and 1 = event).   

 



 
Use the File, Save option to save the model setup to a file named smkccd1.mum. Next, use 
the Analysis, Run option on the main menu bar to run the analysis. 
 

3.2.2 Discussion of results 

Selected portions of the output file smkccd1.out are shown below. 
 

Data summary and descriptive statistics 

The portion of the output file shown below indicates that there are 28 schools, with 1556 
students nested within these. This is followed by descriptive statistics for all the variables. 
Note that all three predictor variables are dichotomous in nature. 

 

 

 

 

 



Fixed effects estimates 

This is followed by the results for the model specified, but without any random effects. In 
this format, none of the included predictors are significant. It will be interesting to compare 
these results with those obtained once the hierarchical structure of the data has been taken 
into account.  
 

 

 

Parameter estimates are given in the next part of the output. Taking the hierarchical structure 
into account and allowing for the intercept to vary randomly over the schools had little effect 
on the significance level of the 3 covariates: all are still non-significant. We note that the 
three thresholds, which represent the cumulative baseline hazard, are estimated as –1.6564, –
0.9431, and –0.4313 respectively. An alternative parameterization is also given. Here, the 
first threshold has been set to zero and as a result, the intercept and second and third 
threshold estimates are calculated as –1.6564, 0.7133, and 1.2251 respectively. 

 

 



 

Random effects estimates and intraclass correlation (ICC) 

 

 

 



The last part of the output shows the estimates of the random effects and an estimate of the 
intracluster correlation. There is no evidence of significant random variation in the intercept 
over the schools ( p = 0.8120). The intracluster correlation coefficient shown is based on the 
use of the complementary log-log link function for these data, which results in a residual 
variance of  2 / 6π  (see Agresti, 2002). 
 

3.2.3 Interpreting the output 

Comparing binary and ordinal models 

When the number of measurement occasions is not too large, the binary outcome model 
utilizing dummy variables to represent the measurement occasions can be useful in fitting 
survival analysis models. Additionally, the binary model easily allows relaxation of the 
proportional hazards assumption for model covariates through inclusion of interaction terms 
with the time point indicators. Finally, though not illustrated here, the binary model can also 
handle time-dependent covariates in the same manner as the covariate by time interactions. 
When the number of occasions is very large, however, the number of time point indicators 
that must be created for the binary model, and the resulting size of the data set, can get very 
large and unwieldy. In this case, the ordinal outcome model such as the model discussed in 
this section is perhaps the better analysis option (though covariates must follow the 
proportional hazards assumptions and time-dependent covariates are not allowed). If the 
complementary log-log link function is selected (i.e., the model is specified as a proportional 
hazards model), the binary and ordinal outcome models yield identical estimates for 
parameters that do not depend on time (Laara & Matthews, 1985). This is shown in Table 
8.12. The regression coefficients are exactly the same for Male, CC, and TV. This is also true 
of their standard errors and so the p -values for both sets are identical. However, the 
intercept and threshold parameters, which do represent time-related information, are not the 
same with the exception of the first intercept. The reason for this is that the intercepts in the 
binary model represent the interval-specific baseline hazard, whereas their corresponding 
threshold parameters in the ordinal model represent the cumulative baseline hazard across the 
time intervals. These are only equivalent only for the first time interval and thereafter diverge 
in value and meaning. Finally, it should be mentioned that if one uses the logit link, in place 
of the complementary log-log link, the estimates (of the parameters not involving time) from 
the binary and ordinal models are not equivalent, though similar.  
 
Notice also that the likelihood values for the two representations are identical, as are the AIC 
values. The Schwarz values are not the same because the numbers of observations in the two 
representations are different. That is, because the binary-case data set consists of multiple 
person-time indicators for each outcome, the numbers of observations in the binary-case data 
set is inflated, relative to the ordinal case. 
 
 



Table 8.12: Comparison of results of binary and ordinal outcome models 
 

Term Binary outcome 
(EVENT) 

Ordinal outcome 
(SmkOnset) 

 
Wave B baseline hazard 
binary 01α   or ordinal 1γ  

–1.6564 –1.6564 

Wave C baseline hazard 
binary 01 02α α+  or ordinal 2γ  

–1.65654+0.0399 = –
1.6165 –0.9431 

Wave D baseline hazard 
binary 01 03α α+  or ordinal 3γ  

–1.6564 +0.3103 = –1.3461 –0.4313 

Male 1β  0.0574 0.0574 

CC 2β  0.0449 0.0449 

TV 3β  0.0213 0.0213 

2ln L−  3187.38817 3187.38817 

AIC 3201.38817 3201.38817 

Schwarz 3243.94116 3238.83729 

No. of parameters 7 7 
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