Two-level crossed and nested model (HCM2)

Within-Cell Model

$$
\begin{equation*}
Y_{i j k}=\sum_{p=0}^{P-1} a_{p i j k} \pi_{p j k}+e_{i j k} \tag{1}
\end{equation*}
$$

Typically, $a_{0 i j k}=1$ for all i, j, k.
Between-Cell Model

$$
\begin{align*}
\pi_{p j k}=\theta_{p} & +\sum_{q_{p}=1}^{Q_{p}}\left(\gamma_{p q_{p}}+c_{p q_{p} k}\right) W_{p q_{p} j}+\sum_{s_{p}=1}^{S_{p}}\left(\beta_{p s_{p}}+b_{p s_{p} j}\right) X_{p s_{p} k} \\
& +\sum_{p=1}^{P} \sum_{r_{p}=1}^{R_{p}} \delta_{p r_{p}} H_{p r_{p} j k}+b_{p 0 j}+c_{p 0 k} \tag{2}
\end{align*} .
$$

- Note there are P equations in the between-cell model. Any random term $c_{p q_{p} k}, b_{p s_{p} j}$ may be constrained to be zero.
- The number of row-level predictors across all equations having fixed row intercepts is Q^{F}. The number of column-level predictors across all equations having fixed column intercepts is S^{F}.
- The total number of row-by-column predictors in H is $R=\sum_{p=1}^{P} R_{p}$.
- The total number of random row effects (including intercepts) is $J Q^{r}$.
- The total number of random column effects (including intercepts) is $K S^{r}$.

Degrees of Freedom

1. For any $\gamma_{p q_{p}}$ in an equation having a random row intercept $b_{p 0 j}, \mathrm{df}=J-Q_{p}-1$.
2. For any $\beta_{p s_{p}}$ in an equation having a random row intercept $c_{p 0 k}, \mathrm{df}=K-S_{p}-1$.
3. For all other coefficients, $\mathrm{df}=N-J Q^{R}-K S^{r}-Q^{F}-S^{F}-R$.
