

Two-level crossed and nested model (HCM2)

Within-Cell Model

$$Y_{ijk} = \sum_{p=0}^{P-1} a_{pijk} \pi_{pjk} + e_{ijk}$$
(1)

Typically, $a_{0ijk} = 1$ for all i, j, k.

Between-Cell Model

$$\pi_{pjk} = \theta_p + \sum_{q_p=1}^{Q_p} (\gamma_{pq_p} + c_{pq_pk}) W_{pq_pj} + \sum_{s_p=1}^{S_p} (\beta_{ps_p} + b_{ps_pj}) X_{ps_pk} + \sum_{p=1}^{P} \sum_{r_p=1}^{R_p} \delta_{pr_p} H_{pr_pjk} + b_{p0j} + c_{p0k}$$
(2)

- Note there are *P* equations in the between-cell model. Any random term c_{pq_pk} , b_{ps_pj} may be constrained to be zero.
- The number of row-level predictors across all equations having fixed row intercepts is Q^F . The number of column-level predictors across all equations having fixed column intercepts is S^F .
- The total number of row-by-column predictors in *H* is $R = \sum_{p=1}^{r} R_p$.
- The total number of random row effects (including intercepts) is JQ^r .
- The total number of random column effects (including intercepts) is KS^r .

Degrees of Freedom

- 1. For any γ_{pq_p} in an equation having a random row intercept b_{p0j} , df= $J Q_p 1$.
- 2. For any β_{ps_p} in an equation having a random row intercept c_{p0k} , df= $K S_p 1$.
- 3. For all other coefficients, $df = N JQ^R KS^r Q^F S^F R$.