

Three-level crossed and nested models (HCM3)

Within-Cell Model

$$Y_{ijkl} = \sum_{p=0}^{P-1} a_{pijkl} \pi_{pjkl} + e_{ijkl}$$
(1)

Typically $a_{0ijkl} = 1$ for all i, j, k, l.

Between-Cell Model (Within Clusters)

$$\pi_{pjkl} = \theta_{p0l} + \sum_{q_p=1}^{Q_p} (\theta_{pq_pl} + c_{pq_pkl}) W_{pq_pj} + \sum_{s_p=1}^{S_p} (\theta_{ps_pl} + b_{ps_pj}) X_{ps_pkl} + \sum_{p=1}^{P} \sum_{r_p=1}^{R_p} \theta_{pr_pl} H_{ps_pjkl} + b_{p0j} + c_{p0kl} H_{ps_pjkl} + b_{p0kl} H_{ps_pjkl} + b_{p0j} + c_{p0kl} H_{ps_pjkl} + b_{p0j} + b_$$

Between Clusters

$$\theta_{pv_pl} = \delta_{pv_p0} + \sum_{g_{pv_p}=1}^{G_{pv_p}-1} (\delta_{pv_pg_{pv_p}} + b_{pv_pj}) D_{pv_pgl} + d_{pv_p0l}, \qquad (2)$$

for v = q, s, or r.

Define G^r as the number of random effects per cluster.

Degrees of Freedom

1. Consider first an equation pv_p in (2) in which there is random intercept, that is, d_{pv_p0l} is not constrained to be zero. The degrees of freedom for a fixed effect $\delta_{pv_pg_{pv_p}}$ in that equation will be $L - G_{pv_p} - 1$, assuming the model intercept δ_{pv_p0} is retained in the model. If the model intercept is not retained, df= $L - G_{pv_p}$.

- 2. Now consider an equation pv_p in (2) in which there is no random intercept, that is, d_{pv_p0l} is constrained to be zero. Suppose that pv=pq and b_{p0j} is not constrained to be zero. Then df= $J-LG^r-Q_p-1$.
- 3. Again consider an equation pv_p in (2) in which there is no random intercept, that is, d_{pv_p0l} is constrained to be zero. Suppose that pv=ps and c_{p0kl} is not constrained to be zero. Then df= $K LG^r S_p 1$.
- 1. All other cases: $df = N LG^r JQ^r KS^r F^*$, where G^r is the number random cluster effects, Q^r is the number of random row effects, S^r is the number of random column effects, and F^* is the total number of fixed effects not covered by cases 1-3.