

Two-level models (HLM2)

Conventional Representation

At level 1, we have

$$Y_j = X_j^R \beta_j^R + X_j^F \beta_j^F + r_j.$$
⁽¹⁾

Here

- Y_i is the n_i by 1 outcome vector,
- X_i^R is the n_i by P^R matrix of predictors having random coefficients,
- β_j^R is the P^R by 1 vector of level-1 coefficients that will be random,
- X_i^F is the n_i by P^F matrix of predictors having fixed coefficients,
- β_i^F is the P^F by 1 vector of level-1 coefficients that will be fixed, and
- r_i is the n_i by 1 vector of level-1 random errors.

At level-2, the model is

$$\beta_j^R = W_j^R \gamma^R + u_j$$

$$\beta_j^F = W_j^F \gamma^F$$
(2)

where

- W_j^R is the P^R by Q^R matrix of level-2 predictors of the level-1 coefficients having random effects;
- γ^{R} is the Q^{R} by 1 vector of fixed effects in the model for the level-1 coefficients having random effects;
- u_i is the P^R by 1 vector of level-2 random effects;
- W_j^F is the P^F by Q^F matrix of level-2 predictors of the level-1 coefficients having fixed effects; and

• γ^F is the Q^F by 1 vector of fixed effects in the model for the level-1 coefficients having fixed effects.

Revised Representation

The logic of allocating degrees of freedom is easier to follow if we represent the model as follows:

$$Y_j = X_j^R (W_j^R \gamma^R + u_j) + X_j^F W_j^F \gamma^F + r_j$$
(3)

The elements of $\beta_j^R \operatorname{are} \beta_{p^R j}^R$, for $p^R = 1, ..., P^R$. The elements of $\gamma^R \operatorname{are} \gamma_{p^R q_{p^R}}$ for $q_{p^R} = 1, ..., Q_{p^R}$ where Q_{p^R} is the number of level-2 coefficients in the model for $\beta_{p^R j}^R$ and $\sum_{p^R=1}^{p^R} Q_{p^R} = Q^R$ is the dimension of γ^R . The elements of β_j^F are $\beta_{p^F j}^F$, for $p^F = 1, ..., P^F$. The elements of γ^F are $\gamma_{p^F q_{p^F}}$ for $q_{p^F} = 1, ..., Q_{p^F}$ where Q_{p^F} is the number of level-2 coefficients in the model for $\beta_{p^F j}^F$ and $\sum_{p^F} Q_{p^F} = Q^F$ is the dimension of γ^F .

Degrees of Freedom

- 1. For any element $\gamma_{p^R q_R}$ of γ^R , the degrees of freedom are $J Q_{p^R}$.
- 2. For any element $\gamma_{p^Fq_{n^F}}$ of γ^F , the degrees of freedom are $N JP^R Q^F$.