

Three-level models (HLM3)

Conventional Representation: Level 1

At level 1, we have

$$Y_{ik} = A_{ik}^R \pi_{ik}^R + A_{ik}^F \pi_{ik}^F + e_{ik} \,. \tag{1}$$

Here

- Y_{jk} is the n_{jk} by 1 outcome vector,
- A_{jk}^R is the n_{jk} by P^R matrix of predictors having random effects at level 2;
- π_{ik}^R is the P^R vector of level-1 coefficients that are random at level 2;
- A_{jk}^F is the n_{jk} by P^F matrix of predictors having fixed effects at level 2; and
- π_{jk}^F is the P^F vector of level-1 coefficients having fixed effects at level 2.

Conventional Representation: Level 2

At level 2 we have

$$\pi_{jk}^{R} = X_{jk}^{RR} \beta_{k}^{RR} + X_{jk}^{RF} \beta_{k}^{RF} + r_{jk}$$

$$\pi_{jk}^{F} = X_{jk}^{FR} \beta_{k}^{FR} + X_{jk}^{FF} \beta_{k}^{FF}$$
(2)

- X_{jk}^{RR} is a P^R by Q^{RR} matrix of predictors of π_{jk}^R having random effects at level 3;
- $eta_k^{\it RR}$ is the $Q^{\it RR}$ by 1 vector of level-2 coefficients associated with $X_{\it jk}^{\it RR}$;
- r_{jk} is a P^R by 1 vector of level-2 random effects;
- X_{jk}^{RF} is the P^R by Q^{RF} matrix of predictors of π_{jk}^R having fixed effects at level 3;
- β_k^{RF} is the Q^{RF} by 1 vector of level-2 coefficients associated with X_{jk}^{RF} ;
- X_{ik}^{FR} is the P^F by Q^{FR} matrix of predictors of π_{ik}^F having fixed effects at level 3;

- β_k^{FR} is the Q^{FR} by 1 vector of level-2 coefficients associated with X_{ik}^{FR} ;
- X_{jk}^{FF} is the P^F by Q^{FF} matrix of predictors of π_{jk}^F having fixed effects at level 3;
- β_k^{FF} is the Q^{FF} by 1 vector of level-2 coefficients associated with X_{jk}^{FF} .

Conventional Representation, Level 3

At level 3 we have

$$\beta_k^{RR} = W_k^{RR} \gamma^{RR} + u_k^{RR}$$

$$\beta_k^{RF} = W_k^{RF} \gamma^{RF}$$

$$\beta_k^{FR} = W_k^{FR} \gamma^{FR} + u_k^{FR}$$

$$\beta_k^{FF} = W_k^{FF} \gamma^{FF}$$

$$\beta_k^{FF} = W_k^{FF} \gamma^{FF}$$
(3)

Here

- W_k^{RR} is a Q^{RR} by S^{RR} matrix of predictors;
- γ^{RR} is a S^{RR} by 1 vector of fixed effects;
- u_k^{RR} is a Q^{RR} by 1 vector of random effects;
- W_k^{RF} is a Q^{RF} by S^{FR} matrix of predictors;
- γ^{RF} is an S^{RF} by 1 vector of fixed effects;
- W_k^{FR} is a Q^{FR} by S^{FR} matrix of predictors;
- γ^{FR} is a S^{FR} by 1 vector of fixed effects;
- u_k^{FR} is a Q^{FR} by 1 vector of random effects;
- W^{FF} is a Q^{FF} by S^{FF} matrix of predictors;
- γ^{FF} is a S^{FF} by 1 vector of fixed effects;

Revised Representation

The logic of allocating degrees of freedom is easy to follow if we represent the model as follows:

$$Y_{jk} = A_{jk}^{R} \left[X_{jk}^{RR} \left(W_{k}^{RR} \gamma^{RR} + u_{k}^{RR} \right) + X_{jk}^{RF} W_{k}^{RF} \gamma^{RF} + r_{jk} \right] + A_{jk}^{F} \left[X_{jk}^{FR} \left(W_{k}^{FR} \gamma^{FR} + u_{k}^{FR} \right) + X_{jk}^{FF} W_{k}^{FF} \gamma^{FF} \right] + e_{jk}$$
(4)

- The elements of π_{jk}^R are $\pi_{p^Rjk}^R$, for $p^R=1,...,P^R$. The elements of π_{jk}^F are $\pi_{p^Fjk}^F$, for $p^F=1,...,P^F$.
- The elements of β_k^{RR} are $\beta_{p^Rq_{p^R}^R}$ for $q_{p^R}^R=1,...,Q_{p^R}^R$. Define $Q^{RR}=\sum_{p^R=1}^{p^R}Q_{p^R}^R$, the number of rows of W_k^{RR}

- The elements of β_k^{RF} are $\beta_{p^Rq_{p^R}^F}$ for $q_{p^R}^F=1,...,Q_{p^R}^F$. Define $Q^{RF}=\sum_{p^R=1}^{p^R}Q_{p^R}^F$, the number of rows of W_k^{RF} .
- The elements of β_k^{FR} are $\beta_{p^Fq_{p^F}^R}$ for $q_{p^F}^R=1,...,Q_{p^F}^R$. Define $Q^{FR}=\sum_{p^F=1}^{p^F}Q_{p^F}^R$, the number of rows of W_k^{FR} .
- The elements of β_k^{FF} are $\beta_{p^Fq_{p^F}^F}$ for $q_{p^F}^F=1,...,Q_{p^F}^F$. Define $Q^{FF}=\sum_{p^F=1}^{p^F}Q_{p^F}^F$, the number of rows of W_k^{FF} .
- The elements of γ^{RR} are $\gamma^{RR}_{p^Rq^R_{p^R}s_{p^Rq^R_{p^R}}}$ for $s_{p^Rq^R_{p^R}}=1,...,S_{p^Rq^R_{p^R}}$ where $\sum_{q^R_{p^R}=1}^{Q^R_p}S_{p^Rq^R_{p^R}}=S^R_p$ and $\sum_{p^R=1}^{P^R}S^R_{p^R}=S^{RR}$ is the dimension of γ^{RR} .
- The elements of γ^{RF} are $\gamma^{RF}_{p^Rq^F_{p^R}s_{p^Rq^F_{p^R}}}$ for $s_{p^Rq^R_{p^R}}=1,...,S_{p^Rq^F_{p^R}}$ where $\sum_{q^F_{p^R}=1}^{Q^F_{p^R}}S_{p^Rq^F_{p^R}}=S^F_{p^R}$ and $\sum_{p^R=1}^{P^R}S^F_{p^R}=S^{RF}$ is the dimension of γ^{RF} .
- $$\begin{split} \bullet \quad \text{The elements of } \gamma^{FR} \text{ are } \gamma^{FR}_{p^Fq_{p^F}^{R}s_{p^Fq_{p^F}^{R}}} \text{ for } s_{p^Fq_{p^F}^{R}} = 1, \dots, S_{p^Fq_{p^F}^{R}} \text{ where } \sum_{q_{p^F}^{R}=1}^{Q_{p^F}^{R}} S_{p^Fq_{p^F}^{R}} = S_{p^F}^{R} \text{ and } \\ \sum_{p^F=1}^{P^F} S_{p^F}^{R} = S^{FR} \text{ is the dimension of } \gamma^{FR} \,. \end{split}$$
- $\bullet \quad \text{The elements of } \gamma^{FF} \text{ are } \gamma^{FF}_{p^Fq_{p^F}^Fs_{p^Fq_{p^F}^F}} \text{ for } s_{p^Fq_{p^F}^R} = 1, \dots, S_{p^Fq_{p^F}^F} \text{ where } \sum_{q_{p^F}^F=1}^{\mathcal{Q}_{p^F}^F} S_{p^Fq_{p^F}^F} = S_{p^F}^F \text{ and }$ $\sum_{p^F=1}^{P^F} S_{p^F}^F = S^{FF} \text{ is the dimension of } \gamma^{FF} \, .$

Degrees of Freedom

- 1. For any element $\gamma_{p^Rq_{p^R}^{R}^s_{p^Rq_{p^R}^R}}^{RR}$ of γ^{RR} , the degrees of freedom are $K-S_{p^Rq_{p^R}^R}$.
- 2. For any element $\gamma_{p^Rq_{p^R}^Fs_{p^Rq_R}^F}^{RF}$ of γ^{RF} , the degrees of freedom are $J-KQ^{RR}-S^{RF}$.
- 3. For any element $\gamma_{p^Fq_{p^F}^Rs_{p^Fq_p^R}}^{FR}$ of γ^{FR} , the degrees of freedom are $K-S_{p^Fq_{p^F}^R}$.

4. For any element $\gamma_{p^Fq_{p^F}^Fs_{p^Fq_{p^F}^F}}^{FF}$ of γ^{FF} , the degrees of freedom are

$$N - K(Q^{RR} + Q^{FR}) - JP^R - S^{FF}.$$