Four-level models (HLM4)

Level-1 Model

$$
\begin{equation*}
Y=A^{R} \pi^{R}+A^{F} \pi^{F}+e \tag{1}
\end{equation*}
$$

Level-2 Model

$$
\begin{align*}
& \pi^{R}=X^{R R} \beta^{R R}+X^{R F} \beta^{R F}+r \\
& \pi^{F}=X^{F R} \beta^{F R}+X^{F F} \beta^{F F} \tag{2}
\end{align*}
$$

Level-3 Model

$$
\begin{align*}
& \beta^{R R}=W^{R R R} \gamma^{R R R}+W^{R R F} \gamma^{R R F}+u^{R R} \\
& \beta^{R F}=W^{R F R} \gamma^{R F R}+W^{R F F} \gamma^{R F F} \\
& \beta^{F R}=W^{F R R} \gamma^{F R R}+W^{F R F} \gamma^{F R F}+u^{F R} \tag{3}\\
& \beta^{F F}=W^{F F R} \gamma^{F F R}+W^{F F F} \gamma^{F F F}
\end{align*}
$$

Level-4 Model

$$
\begin{align*}
& \gamma^{R R R}=G^{R R R} \delta^{R R R}+v^{R R R} \\
& \gamma^{R R F}=G^{R R F} \delta^{R R F} \\
& \gamma^{R F R}=G^{R F R} \delta^{R F R}+v^{R F R} \\
& \gamma^{R F F}=G^{R F F} \delta^{R F F} \tag{4}\\
& \gamma^{R F R}=G^{R F R} \delta^{R F R}+v^{R F R} \\
& \gamma^{R F F}=G^{R F F} \delta^{R F F} \\
& \gamma^{F F R}=G^{F F R} \delta^{F F R}+v^{F F R} \\
& \gamma^{F F F}=G^{F F F} \delta^{F F F}
\end{align*}
$$

Revised representation

$$
\left.\begin{array}{c}
Y=A^{R}\left\{X^{R R}\left[W^{R R R}\left(G^{R R R} \delta^{R R R}+v^{R R R}\right)+W^{R R F}\left(G^{R R F} \delta^{R R F}\right)+u^{R R}\right]\right. \\
 \tag{5}\\
\left.+X^{R F}\left[W^{R F R}\left(G^{R F R} \delta^{R F R}+v^{R F R}\right)+W^{R F F}\left(G^{R F F} \delta^{R F F}\right)\right]+r\right\} \\
A^{F}\left\{X^{F R}\left[W^{F R R}\left(G^{F R R} \delta^{F R R}+v^{F R R}\right)+W^{F R F}\left(G^{F R F} \delta^{F R F}\right)\right]+u^{F R}\right] \\
+
\end{array} X^{F F}\left[W^{F F R}\left(G^{F F R} \delta^{F F R}+v^{F F R}\right)+W^{F F F}\left(G^{F F F} \delta^{F F F}\right)\right]\right\}+e ~ \$
$$

Degrees of Freedom

1. For an element of $\delta^{R R R}, \delta^{R F R}, \delta^{F R R}$, or $\delta^{F F R}$, we have

$$
\begin{align*}
& D F\left(\delta^{R R R}\right)=L S^{R R R}-f\left(\text { specific equation within } \delta^{R R R}\right) \\
& D F\left(\delta^{R F R}\right)=L S^{R F R}-f\left(\text { specific equation within } \delta^{R F R}\right) \\
& D F\left(\delta^{F R R}\right)=L S^{F R R}-f\left(\text { specific equation within } \delta^{F R R}\right) \tag{6}\\
& D F\left(\delta^{F F R}\right)=L S^{F F R}-f\left(\text { specific equation within } \delta^{F F R}\right)
\end{align*}
$$

where L is the number of level-4 units and $S^{R R R}, S^{R F R}, S^{F R R}, S^{F F R}$ are the number of random effects, in $v^{R R R}, v^{R F R}, v^{F R R}, v^{F F R}$ per level-4 unit, respectively and " f (specific equation)" is the number of fixed effects in a specific scalar equation within one of the fixed effects vectors.
2. For an element of $\delta^{R R F}$ or $\delta^{F R F}$, we have

$$
\begin{align*}
& D F\left(\delta^{R R F}\right)=K-L S^{R R R}-f^{R R F} \\
& D F\left(\delta^{F R F}\right)=K-L S^{R R R}-f^{F R F} \tag{7}
\end{align*}
$$

where K is the total number of level-3 units, and $f^{R R F}, f^{F R F}$ are, respectively, the total number of fixed effects in $\delta^{R R F}, \delta^{F R F}$ per level-3 unit.
3. For an element of $\delta^{R F F}$, we have

$$
\begin{equation*}
D F\left(\delta^{R F F}\right)=J-L\left(S^{R R R}+S^{R F R}\right)-K Q^{R R}-f^{R F F}, \tag{8}
\end{equation*}
$$

where J is the total number of level-2 units and $Q^{R R}$ is the number of random effects per level-3 unit.
4. For an element of $\delta^{F F F}$,

$$
\begin{equation*}
D F\left(\delta^{F F F}\right)=N-J P^{R}-L\left(S^{R R R}+S^{R F R}\right)-K Q^{R R}-f^{F F F} \tag{9}
\end{equation*}
$$

where N is the total number of level-1 units and P^{R} is the number of random effects per level-2 unit.

