

Four-level models (HLM4)

Level-1 Model

$$Y = A^R \pi^R + A^F \pi^F + e \tag{1}$$

Level-2 Model

$$\pi^{R} = X^{RR} \beta^{RR} + X^{RF} \beta^{RF} + r$$

$$\pi^{F} = X^{FR} \beta^{FR} + X^{FF} \beta^{FF}$$
(2)

Level-3 Model

$$\beta^{RR} = W^{RRR} \gamma^{RRR} + W^{RRF} \gamma^{RRF} + u^{RR}$$

$$\beta^{RF} = W^{RFR} \gamma^{RFR} + W^{RFF} \gamma^{RFF}$$

$$\beta^{FR} = W^{FRR} \gamma^{FRR} + W^{FRF} \gamma^{FRF} + u^{FR}$$

$$\beta^{FF} = W^{FFR} \gamma^{FFR} + W^{FFF} \gamma^{FFF}$$
(3)

Level-4 Model

$$\gamma^{RRR} = G^{RRR} \delta^{RRR} + v^{RRR}$$

$$\gamma^{RRF} = G^{RRF} \delta^{RRF}$$

$$\gamma^{RFR} = G^{RFR} \delta^{RFR} + v^{RFR}$$

$$\gamma^{RFF} = G^{RFF} \delta^{RFF}$$

$$\gamma^{RFR} = G^{RFR} \delta^{RFR} + v^{RFR}$$

$$\gamma^{RFF} = G^{RFF} \delta^{RFF}$$

$$\gamma^{FFR} = G^{FFR} \delta^{FFR} + v^{FFR}$$

$$\gamma^{FFF} = G^{FFF} \delta^{FFF}$$

$$\gamma^{FFF} = G^{FFF} \delta^{FFF}$$

$$\gamma^{FFF} = G^{FFF} \delta^{FFF}$$

Revised representation

$$Y = A^{R} \{ X^{RR} [W^{RRR} (G^{RRR} \delta^{RRR} + v^{RRR}) + W^{RRF} (G^{RRF} \delta^{RRF}) + u^{RR}]$$

$$+ X^{RF} [W^{RFR} (G^{RFR} \delta^{RFR} + v^{RFR}) + W^{RFF} (G^{RFF} \delta^{RFF})] + r \}$$

$$A^{F} \{ X^{FR} [W^{FRR} (G^{FRR} \delta^{FRR} + v^{FRR}) + W^{FRF} (G^{FRF} \delta^{FRF})] + u^{FR}]$$

$$+ X^{FF} [W^{FFR} (G^{FFR} \delta^{FFR} + v^{FFR}) + W^{FFF} (G^{FFF} \delta^{FFF})] \} + e$$

$$(5)$$

Degrees of Freedom

1. For an element of δ^{RRR} , δ^{RRR} , δ^{FRR} , or δ^{FFR} , we have

$$DF(\delta^{RRR}) = LS^{RRR} - f(specific equation within \ \delta^{RRR})$$

$$DF(\delta^{RFR}) = LS^{RFR} - f(specific equation within \ \delta^{RFR})$$

$$DF(\delta^{FRR}) = LS^{FRR} - f(specific equation within \ \delta^{FRR})$$

$$DF(\delta^{FFR}) = LS^{FFR} - f(specific equation within \ \delta^{FFR})$$
(6)

where *L* is the number of level-4 units and S^{RRR} , S^{RFR} , S^{FRR} , S^{FFR} are the number of random effects, in v^{RRR} , v^{RFR} , v^{FRR} , v^{FFR} per level-4 unit, respectively and "*f(specific equation)*" is the number of fixed effects in a specific scalar equation within one of the fixed effects vectors.

2. For an element of δ^{RRF} or δ^{FRF} , we have

$$DF(\delta^{RRF}) = K - LS^{RRR} - f^{RRF}$$

$$DF(\delta^{FRF}) = K - LS^{RRR} - f^{FRF}$$
(7)

where *K* is the total number of level-3 units, and f^{RRF} , f^{FRF} are, respectively, the total number of fixed effects in δ^{RRF} , δ^{FRF} per level-3 unit.

3. For an element of δ^{RFF} , we have

$$DF(\delta^{RFF}) = J - L(S^{RRR} + S^{RFR}) - KQ^{RR} - f^{RFF}, \qquad (8)$$

where J is the total number of level-2 units and Q^{RR} is the number of random effects per level-3 unit.

4. For an element of δ^{FFF} ,

$$DF(\delta^{FFF}) = N - JP^{R} - L(S^{RRR} + S^{RFR}) - KQ^{RR} - f^{FFF}$$
(9)

where N is the total number of level-1 units and P^{R} is the number of random effects per level-2 unit.