Scientific Software International

Cross-classified random effects model (HLMHCM)

Within-Cell Model: Level-1

$$
\begin{equation*}
Y_{m i j k}=\sum_{g=0}^{G-1} f_{g m i j k} \psi_{g i j k}+e_{m i j k} \tag{1}
\end{equation*}
$$

Typically, $\psi_{0 i j k}=1$ for all i, j, k.

Within-Cell Model: Level-2

$$
\begin{equation*}
\psi_{g i j k}=\sum_{p_{g}=0}^{P_{g}-1} a_{p_{g} i j k} \pi_{p_{g} j k}+e_{g i j k} \tag{2}
\end{equation*}
$$

Between-Cell Model

$$
\begin{align*}
\pi_{p_{g} j k}= & \theta_{p_{g}}+\sum_{q_{p_{g}}=1}^{Q_{p_{g}}}\left(\gamma_{p_{g} q_{p_{g}}}+c_{p_{g} q_{p_{g}} k}\right) W_{p_{p_{g}} j}+\sum_{s_{p_{g}}=1}^{S_{p_{g}}}\left(\beta_{p_{g} s_{p_{g}}}+b_{p_{g} s_{p_{g}} j}\right) X_{p_{g} s_{p_{g}} k} \\
& +\sum_{p_{g}=1 r_{p_{g}}=1}^{P_{g}} \delta_{p_{p_{g}}}^{R_{p_{p g}}} H_{p_{g} r_{p_{g}} j k}+b_{p_{g} 0 j}+c_{p_{g} 0 k} . \tag{3}
\end{align*}
$$

Note there are $P=\sum_{g=1}^{G} P_{g}$ equations in the between-cell model. Any random term $c_{p_{g} q_{p_{g}}{ }^{k}}, b_{p_{g} s_{p_{g}} j}$ may be constrained to be zero.

- The number of row-level predictors across all equations having fixed row intercepts in the case where $e_{g i j k}$ is not constrained to zero is $Q^{R F}$. The number of row-level predictors across all equations having fixed row intercepts in the case where $e_{g i j k}$ is constrained to zero is $Q^{F F}$.
- The number of column-level predictors across all equations having fixed column intercepts in the case where $e_{g i j k}$ is not constrained to zero is $S^{R F}$. The number of column-level predictors across all equations having fixed row intercepts in the case where $e_{g i j k}$ is constrained to zero is $S^{F F}$.
- The total number of row-by-column predictors in H is $R=\sum_{p=1}^{P} \sum_{R_{p_{g}}=1}^{R_{p}} R_{p_{g}}$.
- The total number of random row effects (including intercepts) is $J Q^{r}$.
- The total number of random column effects (including intercepts) is $K S^{r}$.
- The total number of level-2 random effects (within cells) is $N P^{r}$.

Degrees of Freedom

1. For any $\gamma_{p_{g} q_{p_{g}}}$ in an equation having a random row intercept $b_{p_{g} 0 j}, \mathrm{df}=J-Q_{p_{g}}-1$.
2. For any $\beta_{p_{g} s_{p_{g}}}$ in an equation having a random row intercept $c_{p_{g} 0 k}, \mathrm{df}=K-S_{p_{g}}-1$.
3. For any $\gamma_{p_{g} q_{p_{g}}}$ in an equation for which the row level intercept $b_{p_{g} 0 j}$ is constrained to be zero, but where the level-2 random effect $e_{g i j k}$ is not constrained to be zero, $\mathrm{df}=$ $N-J Q^{r}-K S^{r}-Q^{R F}-S^{R F}-R$.
4. For any $\beta_{p_{g} q_{p_{g}}}$ in an equation for which the column-level level intercept $c_{p_{g} 0 k}$ is constrained to be zero, but where the level-2 random effect $e_{g i j k}$ is not constrained to be zero, the same result holds as in (4): $\mathrm{df}=N-J Q^{r}-K S^{r}-Q^{R F}-S^{R F}-R$.
5. For all other fixed coefficients $\mathrm{df}=M-N P^{r}-J Q^{r}-K S^{r}-F^{*}$, where F^{*} is the total number of fixed effects not covered by cases 1-4 and M is the grand total number of level-1 observations.
