


## Over- or under-dispersion

In some situations, the actual level-1 variance may be larger than that assumed (over-dispersion) or smaller than that assumed (under-dispersion). For example, if undetected clustering exists within level-1 units or if the level-1 model is under-specified, extra-binomial or extra-Poisson dispersion may arise. HGLM allows estimation of a scalar variance so that the level-1 variance will be  $\sigma^2 w_{ii}$ .

For binomial models with  $m_{ij} > 1$  and for all Poisson models, there is an option to estimate a level-1 dispersion parameter  $\sigma^2$ . If the assumption of no dispersion holds,  $\sigma^2 = 1$ . If the data are over-dispersed,  $\sigma^2 > 1$ ; if the data are under-dispersed,  $\sigma^2 < 1$ .

If the data follow the assumed level-1 sampling model, the level-1 variance of the  $Y_{ij}$  will be  $w_{ij}$  where  $w_{ij} = m_{ij}\phi_{ij}\left(1-\phi_{ij}\right)$  in the binomial case, and  $w_{ij} = m_{ij}\lambda_{ij}$  for the Poisson.

To check for over-dispersion, check the radio button next to the **Over dispersion** option on the **Basic Model Specifications** dialog box, which is accessed by clicking the **Basic Settings** option from the main WHLM window. The **Over dispersion** option is not available for multinomial or ordinal models.

