
 

 

Multicollinearity 

The term multicollinearity is used to refer to the extent to which independent variables are correlated. 
Multicollinearity exists when one independent variable is correlated with another independent variable, or 
if an independent variable is correlated with a linear combination of two or more independent variables. 

It is always a good idea to check for collinearity in the data prior to analysis. A situation where it is likely 
to occur is, for example, when analyzing data containing respondents age and income, as these are bound 
to be highly correlated: as age goes up, income tends to increase. Another example, as shown below, is the 
relationship between weight and blood pressure: 

Correlations 
 Weight BP 

Weight 

Pearson Correlation 1 .950** 

Sig. (2-tailed)  .000 

N 20 20 

BP 

Pearson Correlation .950** 1 

Sig. (2-tailed) .000  

N 20 20 

**. Correlation is significant at the 0.01 level (2-tailed). 
 

In this example, the correlation between these two variables is 0.950. Using both variables as predictors is 
likely to produce an error message in HLM indicating the presence of multicollinearity.  

If the model 

 Y X= +β ε   

   

is to be fitted, the solution generally would be of the form 
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Obtaining the solution thus depends on obtaining the inverse of the matrix product 'X X . The matrix X  
represents the design matrix. If this product is singular (and do not have a unique inverse) an infinity of 
solutions exists. 

Multicollinearity is a problem because a unique least-squares solution for regression coefficients is used as 
starting values in HLM. When two or more variables are perfectly correlated is present such a solution does 
not exist. In the case of highly correlated variables, it may still be problematical as the marginal contribution 
of that independent variable is influenced by other independent variables. Even when an analysis is possible, 
estimates for the regression coefficients may be unreliable and test of significance for them may be 
misleading. 

In the context of a hierarchical linear model, the existence of high correlations between variables is a well-
known cause of instability in the model. The correlations causing the problem may, however, be between 
two predictors at the same level, or it may be that a cross-level interaction is highly correlated either with 
the second-level variable or with the first-level variable, or both. 

 One way of dealing with this problem is by centering predictors entered into the model. In particular, 
centering of level-1 predictors around the respective group means may lower some of the correlations 
among the variables involved. When group mean centering is used, the correlations between second-level 
variables and both first-level variables and cross-level interactions are equal to zero, so that only the 
correlations between cross-level interactions and level-1 variables remain as a potential source of estimation 
problems. 

The impact of high correlations on the numerical stability is also a function of the total amount of 
information in the actual data set used. Note, however, that centering impacts the interpretation of results 
and should be used with caution. It should be kept in mind that in HLM the intercept is represented in the 
design matrix by a column of 1’s. If a predictor used in the level-1 model shows little or no variation, this 
variable will in effect be a duplicate of the intercept and the result would be a multicollinearity issue. The 
same problem would occur if data from, for example, single gender schools are analyzed in HLM, with the 
schools as the level-2 IDs. Should the gender of the students be introduced as predictor, it would be an exact 
duplicate of the intercept term within each level-2 unit. 

 In HLM, most reports by users concerning error messages noting collinearity/multicollinearity are caused 
by 

• Near collinearity between a predictor with little or no variation and the intercept term, which is 
represented in the design matrix by a column of 1's. 

• Fitting quadratic growth curves to a very short series of points so that a situation similar to that 
described above is the result. 

 The best place to look should HLM print an error message warning about collinearity / multicollinearity in 
the random part of the model is in the τ  matrix/matrices given in the output file. Check all off-diagonal 
elements for correlations close to 1 or -1. Also check the diagonal elements of the τ matrix for any elements 
close to zero, as this may indicate that there is no indication of random variation in this slope. 

  


