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1 Introduction to mixed-effects models 
 
Hierarchical structures are often encountered in numerous research areas. Consider, 
for example, the study of the effect of administering medication, such as an 
antidepressant, over time to a patient diagnosed with depression. For each patient, 
the effect of the drug over time can be modeled in terms of the time since the start of 
treatment, and also in terms of any other information obtained at the time of each 
measurement during the study. Measures of family support at the time of 
measurement can also be incorporated into such a model. The outcome would be 
described as a function of the information collected at the measurement level, and 
could be viewed as a measurement-level model for each individual patient. 
However, the gender of the patient, and other characteristics that may influence the 
outcome but that do not change over time, cannot easily be accommodated in the 
model proposed, as the model is at a measurement, rather than a patient, level. It 
may also be of interest to compare patients in terms of their improvement 
trajectories, which is easier when outcomes are described in terms of patients rather 
than measurements.  

 
To allow us to study all of these areas of interest simultaneously, a model that 
acknowledges the data's inherent hierarchical structure (measurements nested within 
individual patients), and allows the study of both measurement- and patient-level 
models along with the way these models are related to each other, is needed. As 
patients may drop out during the study period, the model should also be suitable for 
the analysis of unbalanced longitudinal data where each individual may be 
measured at a different number of occasions, or even at different time points.  
 
In this chapter, data from a study described in Vonesh & Carter (1992) that focused 
on the assessment of high-flux hemodialyzers' in vivo ultrafiltration are used to 
illustrate the need for and basic characteristics of a mixed-effects regression model. 
While the eventual application of these findings will be in a medical field, the 
testing of the dialyzers discussed here may be of interest to any researcher who 
intends modeling repeated measures data. 
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The ultrafiltration rates of 20 high-flux dialyzers were measured at seven different 
transmembrane pressures. The unit of measurement for transmembrane pressure was 
dmHg, and the filtration rate was recorded in mL/hr. These data, also analyzed in 
Littell, Milliken, Stroup & Wolfinger (1996), are perfectly balanced in that all seven 
measurements are available for each of the hemodialyzers. The hemodialyzers, 
machines for filtering impurities from the blood, are the units within which the 
actual measurements are nested. Data for 10 of the dialyzers are shown in Table 1.1.  

 
Table 1.1: Data for 10 hemodialyzers from Vonesh & Carter data 

 
Device 

ID Supply Pressure Rate Device 
ID Supply Pressure Rate 

11.000 1.000 28.500 1.500 16.000 1.000 23.500 3.600 
11.000 1.000 52.000 15.400 16.000 1.000 48.000 20.490 
11.000 1.000 100.500 32.520 16.000 1.000 101.000 41.880 
11.000 1.000 150.000 42.440 16.000 1.000 149.000 49.990 
11.000 1.000 198.500 48.570 16.000 1.000 199.000 57.670 
11.000 1.000 249.000 53.690 16.000 1.000 248.000 62.480 
11.000 1.000 299.500 53.660 16.000 1.000 300.500 62.150 
12.000 1.000 29.500 6.420 17.000 1.000 23.500 1.170 
12.000 1.000 51.500 20.250 17.000 1.000 48.500 17.680 
12.000 1.000 101.000 43.050 17.000 1.000 102.500 39.700 
12.000 1.000 148.000 58.110 17.000 1.000 151.500 52.680 
12.000 1.000 200.000 61.990 17.000 1.000 199.000 61.800 
12.000 1.000 248.000 60.910 17.000 1.000 251.000 61.480 
12.000 1.000 300.500 63.600 17.000 1.000 302.000 61.420 
13.000 1.000 25.500 3.880 18.000 1.000 26.000 1.890 
13.000 1.000 50.000 19.160 18.000 1.000 51.500 18.510 
13.000 1.000 98.000 37.650 18.000 1.000 97.000 37.220 
13.000 1.000 149.000 47.900 18.000 1.000 150.500 52.350 
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Table 1.1: Data for 10 hemodialyzers from Vonesh & Carter data (continued) 
 

13.000 1.000 201.500 54.490 18.000 1.000 199.000 60.910 
13.000 1.000 251.000 53.170 18.000 1.000 250.000 62.980 
13.000 1.000 298.000 59.350 18.000 1.000 299.500 64.770 
14.000 1.000 40.000 10.940 19.000 1.000 35.500 10.410 
14.000 1.000 47.000 13.470 19.000 1.000 48.000 19.320 
14.000 1.000 101.000 35.350 19.000 1.000 102.500 43.770 
14.000 1.000 151.500 45.340 19.000 1.000 150.000 51.230 
14.000 1.000 198.000 49.440 19.000 1.000 199.000 58.090 
14.000 1.000 251.000 53.630 19.000 1.000 250.000 54.090 
14.000 1.000 300.000 56.430 19.000 1.000 300.500 62.010 
15.000 1.000 29.000 4.050 20.000 1.000 28.000 5.710 
15.000 1.000 49.500 16.590 20.000 1.000 50.500 20.500 
15.000 1.000 101.500 40.520 20.000 1.000 100.000 39.410 
15.000 1.000 152.000 52.840 20.000 1.000 149.000 50.100 
15.000 1.000 202.000 60.440 20.000 1.000 200.000 55.160 
15.000 1.000 250.000 64.830 20.000 1.000 250.500 61.190 
15.000 1.000 297.500 63.830 20.000 1.000 302.000 50.720 
 

Of interest here is the relationship between the ultrafiltration rate, denoted as Rate in 
Table 1.1, and the associated transmembrane pressure, indicated as Pressure in the 
table. The blood flow rate, as represented by the column with header Supply, is also 
of potential interest. 
 
The data as a whole can be viewed as having a hierarchical structure, with 
measurement-related characteristics of the hemodialyzers at seven measurement 
occasions; all measurements for each dialyzer are therefore nested within that 
dialyzer. The dialyzers, in turn, form the next level of the hierarchy, and any 
machine-specific characteristics may be used as potential predictors at this level. 
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Fixed-effects regression ignoring data clustering  

Before proceeding with a mixed-effects analysis of these data, we first look at a 
fixed-effects  analysis that ignores the clustering of measurements within dialyzers. 
Note that SuperMix can be used for this purpose, and that the analysis is essentially 
equivalent to performing a traditional multiple linear regression analysis using 
maximum likelihood, and not least squares, estimation.  
 
Using the information for the second set of 10 dialyzers, for which 70 measurements 
were available, we now explore the relationship between the Rate of filtration, 
which serves as our outcome variable, and the transmembrane Pressure at which the 
measurement was made. Line plots of  this relationship for some of the dialyzers are 
shown in Figure 1.1. These graphs were obtained using SuperMix's exploratory 
graphs option. Detailed information on how to create such graphs are given 
elsewhere in the manual. 
 
It is clear from these graphs that the relationship between the observed Rate and 
Pressure at which the measurement was made will be inadequately described by a 
first-order polynomial. For dialyzer 12 the slope of the line is steep initially, but the 
curve flattens out at a pressure of about 100 dmHg. This trend is not as clearly 
observed for the other dialyzers. Also, there seems to be evidence of differences in 
the rates of dialyzers 18, 19, and 20 towards the higher end of the pressure scale. 
We conclude that a higher-order polynomial will probably offer a better description 
of the relationship, and that it may also be wise to make provision for differences 
between devices (dialyzers).  
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Figure 1.1: Exploratory graphs of rate versus pressure for hemodialyzers 

 
Figure 1.2 represents the same lines for all ten dialyzers simultaneously. While there 
seems to be little difference in their behavior at the lower level of the pressure scale, 
the divergence in the plotted lines at higher pressure levels can be seen clearly. 
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Figure 1.2: Exploratory graphs of rate versus pressure for 10 hemodialyzers 

 
In terms of the variables shown in Table 1.1, we now fit a model of the form 

 ( ) ( )2
0 1 2PRESSURE PRESSUREij ijij ij

y eβ β β= + + +  (1.1) 

where ijy  denotes the Rate measurement at time j (j = 1, 2, 3, …7) for hemodialyzer 

i . (PRESSURE)ij  indicates the associated transmembrane pressure, 2(PRESSURE)ij  
the squared value of the pressure, and ije  measurement error. The coefficients 0β , 

1β , and 2β  are the fixed, but unknown, parameters to be estimated. The ije  are 

assumed to have a normal distribution, with mean 0 and variance 2σ . 
 
For this analysis, we obtain estimates of  0β , 1β , and 2β  of –6.5847, 0.5281 and           
–0.0011 respectively. The estimated Rate is plotted against pressure in Figure 1.3. In 
addition, an estimate of 2σ  of 41.34095 was obtained. The results show that the 

average predicted Rate, 0β
∧

, at a pressure of zero is –6.5847. However, a value of 0 
is outside the range of 23.50 to 303.00 of observed pressure values. As such, the 
interpretation of the estimate of 0β  in this context is difficult, and we would rather 
look at the predicted rate for the lowest observed pressure. Another alternative is to 
transform the values of the variables Pressure and Pressure 2  in such a way that 
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interpretation of the intercept estimate is meaningful. Examples of such 
transformations are given in the chapters to follow. 
 

The coefficient representing the effect of the predictor Pressure, 1β
∧

, indicates a 
predicted increase in Rate with increased pressure: an increase of 0.52807 mL/hr in 
the Rate is expected for each increase of 1 dmHg in transmembrane pressure. The 
coefficient 1β  is commonly referred to as a "slope" coefficient, as it indicates both 
the direction of the relationship between the predictor and the outcome, and the 
magnitude of the expected change in outcome associated with changes in the 
predictor.  
 
Similarly, the relationship between the squared values of transmembrane pressure 
(Pressure 2 ) and the ultrafiltration rate is estimated to be negative: higher values of 
pressure are predicted to lead to lower predicted rates. The statistical significance of 
this estimated coefficient indicates that the relationship between pressure and 
filtration rate is not truly linear, and that the use of a higher-order polynomial may 
provide a better description of the data. However, while the estimates of 1β  and 2β  
are of interest individually, when evaluating the relationship between the 
transmembrane pressure and the ultrafiltration rate, both estimates should be taken 
into account. A increase of 1 dmHg in pressure will lead to a change in expected 
filtration rate of 0.52807(1) –0.0011(1) = 0.52697. From this result, we conclude 
that while the filtration rate and pressure generally shows a positive relationship, 
this relationship is bound to change with increased pressure. The higher the 
pressure, the bigger the impact of the estimate of 2β  in the prediction of the rate 
through use of the formula  

 
( ) ( )2

0 1 2PRESSURE PRESSUREij ij ij
y β β β

∧ ∧ ∧

= + +

 
The lowest observed pressure is 23.50, and the predicted rate of filtration is thus 
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2
0

2

0.52807(PRESSURE) 0.0011(PRESSURE)

-6.5847+0.52807(23.5)-0.0011(23.5)
6.5847 12.4096 0.6075

5.2174.

ij ij ijy β
∧ ∧

= + −

=
= − + −
=

 

 
For the highest observed pressure of  303, the predicted filtration rate follows as 

 

2-6.5847+0.52807(303)-0.0011(303)

6.5847 160.0052 100.9899
52.4306.

ijy
∧

=

= − + −
=  

 
The fixed-effects regression line over all measurements is shown in Figure 1.3 
below. 
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Figure 1.3: Fixed-effects regression line for 10 dialyzers 
 

Fixed-effects regression including data clustering  

As noted by Hedeker, Gibbons & Flay (1994) and others, ignoring the data 
clustering often results in statistical tests which are too liberal, resulting in falsely 
rejecting the null hypothesis too often. In terms of our data, where multiple 
measurements "belong" to each dialyzer, it is reasonable to expect that 
measurements for a given dialyzer may be more similar to each other than to any 
other measurement, regardless of the dialyzer it was obtained for. Thus, it may be 
reasonable to assume that the measurements for a given dialyzer may be correlated. 
In addition, if it is indeed true that the transmembrane pressure applied impacts on 
the transfer rate, ignoring the clustering effect may lead to erroneous conclusions 
concerning the relationship between pressure and transfer rate.  
 
To start addressing these concerns, we modify the previous model to take the 
clustering of measurements within dialyzers into account. We do so by fitting a line 
similar to that given in Equation (1.1) for each individual dialyzer. Table 1.2 shows 
the estimates of 0β  and 1β  for individual dialyzers, and Figure 1.4 a graphical 
representation of the results. 
 

The estimated coefficients for the intercepts and time slopes of the dialyzers ( 0β
∧

 

and 1β
∧

 respectively) in Table 1.2 show that the predicted intercepts of dialyzers 
differ considerably. Device/dialyzer number 15  has a predicted initial transfer rate 
of –10.885, which is considerably lower than the predicted initial rate of –3.645 for 
dialyzer 19. Recall that in the previous analysis, we obtained a value of –6.585 for 

0β
∧

, which does not provide an adequate description of the initial status of any of the 
dialyzers except perhaps dialyzers 13, 14, 16, and 20. A "one size fits all" policy for 
obtaining an estimate of the initial status of patients is clearly inadequate, and does 
not describe the initial status for individual dialyzers satisfactorily. 
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Table 1.2: Regression results for 10 dialyzers: taking clustering into account 

 

 

 

 

Device Intercept Pressure (Pressure)2 

11 –9.206 0.486 –0.001 

12 –9.024 0.629 –0.001 

13 –5.115 0.500 –0.001 

14 –5.008 0.454 –0.001 

15 –10.885 0.602 –0.001 

16 –5.255 0.537 –0.001 

17 –10.614 0.608 –0.001 

18 –10.582 0.590 –0.001 

19 –3.645 0.520 –0.001 

20 –7.911 0.589 –0.001 

overall –6.585 0.528 –0.001 
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 Figure 1.4: Individual fixed-effects regression lines for 10 dialyzers 

 
This conclusion is also apparent from Figure 1.4. While the differences in transfer 
rates at the lower end of the pressure range are not as clear from the graph as they 
are in Table 1.2, the graph indicates even larger differences between the dialyzers at 
high transmembrane pressure. Not only will individual differences in initial transfer 
rate between devices have to be addressed, but differences in their rates of transfer 
over the range of applied transmembrane pressure will have to be accommodated in 
the model.  

Fixed-effects regression with dummy variables  

Up to this point we have considered two approaches for the modeling of the transfer 
rates. In the first, all the data were pooled and a common regression model was 
fitted to the data. In the second approach, a regression line was fitted to each 
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dialyzer's measurements. A summary of the estimated intercepts and slopes showed 
substantial between-dialyzer variation. The disadvantage of the second approach is 
that ten separate regression models are fitted. Ideally, a researcher would want to fit 
a single model that conveys information about between-subject variability.  
 
One approach would be to do a regression analysis with dummy variables. Table 1.3 
below shows the data for the first and last dialyzers. We use a dummy variable to 
represent each dialyzer, coded as follows: 

 1 for dialyzer 1,2, ,10
0 otherwise.

jD j= =
=

  

Table 1.3: Results of dummy variable model 
 

device rate D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Pressure 
11 1.50 1 0 0 0 0 0 0 0 0 0 28.5 
11 15.40 1 0 0 0 0 0 0 0 0 0 52.0 
11 32.52 1 0 0 0 0 0 0 0 0 0 100.5 
11 42.44 1 0 0 0 0 0 0 0 0 0 150.0 
11 48.57 1 0 0 0 0 0 0 0 0 0 198.5 
11 53.69 1 0 0 0 0 0 0 0 0 0 249.0 
11 53.66 1 0 0 0 0 0 0 0 0 0 299.5 
20 5.71 0 0 0 0 0 0 0 0 0 1 28.0 
20 20.50 0 0 0 0 0 0 0 0 0 1 50.5 
20 39.41 0 0 0 0 0 0 0 0 0 1 100.0 
20 50.10 0 0 0 0 0 0 0 0 0 1 149.0 
20 55.16 0 0 0 0 0 0 0 0 0 1 200.0 
20 61.19 0 0 0 0 0 0 0 0 0 1 250.5 
20 50.72 0 0 0 0 0 0 0 0 0 1 302.0 

 
The following regression model is fitted to the data: 

 ( ) ( ) ( ) ( )0 1 1 2 9 10 10RATE D D D PRESSURE .ij ijij ij ij ij
e= + + + + +Kα α α α  

This model allows for the estimation of individual intercept coefficients, but a 
common slope parameter 10α . 
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Table 1.4 contains a summary of the results of this analysis. With the exception of 
the first and fourth dialyzers (represented by the dummy variables D1 and D4), the 
estimated coefficients associated with the individual dialyzers are all significantly 
different from zero at a 5% level of significance. From these results, we expect 
transfer rates for the second device to be much higher than for the first device, as 
reflected by the parameter estimates of 14.7153 and 5.2222 respectively. The 
transmembrane pressure also has a significant and positive relationship to the rate of 
transfer: for each increase of 1 dmHg in pressure, the rate of transfer is expected to 
be 0.1959 ml/hr higher. 

 
Table 1.4: Results of regression model with dummy variables 
 

                                          
Variable Parameter estimate Standard error t-Value Pr > |t| 
D1        5.2222 3.9381 1.33 0.1899 
D2        14.7153 3.9385 3.74 0.0004 
D3         9.3364 3.9343 2.37 0.0209 
D4         7.3311 3.9463 1.86 0.0682 
D5         13.0271 3.9408 3.31 0.0016 
D6         12.6855 3.9312 3.23 0.0020 
D7         12.1007 3.9381 3.07 0.0032 
D8         12.6124 3.9347 3.21 0.0022 
D9         12.3179 3.9439 3.12 0.0028 
D10        10.1676 3.9397 2.58 0.0124 
Pressure   0.1959 0.0117 16.68 <.0001 

 
Although this model is a compromise between the models for pooled data and 
separate models for dialyzers' data, the number of parameters to be estimated is 
proportional to the number of dialyzers and does not allow for the estimation of 
individual slopes. These issues have led researchers over time to develop mixed-
effects models. 
 

 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

34 

Random-intercept model  

From the results of the previous models, we concluded that it is not reasonable to 
assume that the initial transfer rates of dialyzers, or their change in transfer rate with 
increased transmembrane pressure, can be described adequately by average intercept 
and slope estimates while the clustering of measurements within individual 
dialyzers was ignored. While the second of these analyses, where fixed-effects 
regression lines were fitted for each dialyzer and thus the clustering of 
measurements was acknowledged, provided better information per dialyzer, neither 
of these models allows us to obtain average intercept or slope coefficients while 
simultaneously incorporating the effect of measurements nested within individual 
devices.  
 
To study differences in the behavior of dialyzers with pressure changes, while 
acknowledging the clustering of measurements and allowing for differences 
between devices in initial transfer rate, a random-effects model is needed. From the 
results obtained thus far, we will have to accommodate not only differences in initial 
status between dialyzers, but also differences in the slopes of the rates over the 
range of applied transmembrane pressure.  

 
We start by specifying a model which takes clustering of measurements within 
dialyzers into account, while allowing the initial transfer rate to vary from device to 
device. This model, a so-called random-intercept model, contains both fixed and 
random effects, and can be expressed as 

 2
0 1 2 0(PRESSURE) (PRESSURE)ij ij ij i ijy v eβ β β= + + + +           (1.2) 

where ijy  denotes the Rate measurement at measurement j (j = 0, 1, 2, 3, 4, 5, 6, or 
7) for dialyzer i , (PRESSURE)ij  the associated transmembrane pressure, 

2(PRESSURE)ij  the squared value of (PRESSURE)ij , and ije  measurement error. 
The coefficients 0β , 1β  and 2β  are the fixed, but unknown, parameters to be 
estimated. The coefficient 0iv , in contrast, denotes a random parameter, and 
represents the amount by which the intercept of dialyzer i  differs from the average 
(fixed) intercept for all devices, as represented by  0β . By including 0iv , we allow 
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intercepts to vary randomly over the dialyzers. We assume that 0iv  is normally 
distributed with mean 0 and variance (2)φ  and that the ije , too, as in the first model, 

have a normal distribution with mean 0 and variance 2σ  for all dialyzers.  
 
In contrast to the model in (1.1), where all unexplained variations in transfer rates 
were captured by ije , the current model assumes that there are two potential sources 
of unexplained variation: variation between measurements as represented by ije , and 
variation between dialyzers in terms of their intercepts, as represented by 0iv . 
Viewing the measurements as the lowest level of a nested structure in our data, with 
measurements nested within devices, we refer to 2σ  as the level-1 (measurement-
level) variance and to (2)φ  as the level-2 (dialyzer-level) variance.  

 
In fitting this model, data from all 20 devices are used. The results of the analysis 
are reported in Table 1.5. All of the estimated coefficients are statistically 
significant at a 5% level of significance. We see that the rate of transfer is expected 
to increase with an increase in pressure. However, as pressure increases, the squared 
value of pressure increases quickly, and the small negative coefficient for this will 
lead to larger decreases in transfer rate at high pressures. At first glance, these 
estimates indicate a somewhat nonlinear curve. 
 

Table 1.5: Results of random-intercept model 
 

Parameter Estimate Standard error 
Intercept –6.56547 1.56214 
Pressure 0.52792 0.01840 

Pressure 2  –0.00114 0.00006 

0var( )iv  16.28786 6.29943 

var( )ije  25.05420 3.23435 

 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

36 

What is really interesting, and something we have not been able to look at 
previously, is the amount of variation within and between devices. While most of 
the variation is at measurement level, i.e. within devices, as indicated by var( )ije  = 
25.0542, there is a sizable amount of variation in the intercepts of the devices 
themselves. As this estimated coefficient is statistically significant, it indicates that 
it is not adequate to try and describe the intercepts of the devices using a single, 
common fixed effect as we have done previously. If we had more characteristics of 
the individual devices, these could have been added to our current model in an 
attempt to explain away the variation in device intercepts. Likewise, we could have 
used any other type of measurement made at the measurement occasions to explain 
more of the residual variation. In Chapter 3, models with a continuous outcome are 
described in which the use of additional characteristics at both levels is illustrated. 
 
In addition to these estimates, which describe the average estimated intercept and 
slope over all devices, we also obtain estimates for the unique deviations from the 
intercept associated with each of the individual devices. The estimates of the 
deviations of the predicted from the observed values are depicted graphically in 
Figure 1.5. The residuals associated with devices 11 and 20 are highlighted: 
residuals for device 11 are shown as square black boxes, and those for device 20 as 
asterisks. We see that almost all the residuals are within a (–10,10) interval. For 
device 11, the residuals are closer to zero in value at lower transfer rates, but vary 
quite a bit more above a transfer rate of 40. The residuals for device 20, however, 
vary more over the entire rate of transfer range.  
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Figure 1.5: Level-1 residuals plotted against level-1 predicted values 

 
Another way to look at these results is to inspect confidence intervals for the 
deviations of the device intercepts from the estimated value of –6.565. These are 
shown in Figure 1.6. The units appear in numerical order, and we can see that the 
95% confidence interval for the intercept of device 20 is approximately centered 
above 0, while that of device 11 is centered below zero. Looking at the confidence 
intervals for devices 1 and 12, our result that there is significant variation in the 
device intercepts makes sense. 
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Figure 1.6: 95% confidence intervals for 20 devices 
 

Intraclass correlation 

The intraclass correlation is a measure of the degree of dependence of the higher-
level units, in this case the devices. It is realistic to assume that measurements from 
the same device are more alike with respect to certain traits than measurements from 
different devices. 

 
For data having a two-level hierarchical structure, the intraclass correlation ρ  is 
defined as the proportion of the variance in the outcome variable that is between the 
second-level units: 

between group variability
between group variability + within group variability

ρ =  

 In the current example, we obtain ρ
∧

 as 
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 16.28786 0.39398.
16.28786 25.05420

ρ
∧

= =
+

 

As pointed out by Kreft and de Leeuw (1998), if intraclass correlation is present, as 
is usually the case when we are dealing with clustered data, the assumption of 
independent observations in the traditional linear model is violated. They also 
pointed out that tests of significance lean heavily on the number of independent 
observations and that the existence of intraclass correlation makes the test of 
significance in traditional linear models too liberal. Barcikowski (1981) shows that 
in most applications of analysis of variance, the standard errors of the parameter 
estimates will be underestimated and that even a small intraclass correlation can 
inflate the alpha level substantially. 

 
While the random-intercept model has allowed us to accommodate some of our 
modeling concerns for an unbalanced data set such as the nesting of measurements 
within devices and allowing intercepts to vary over devices, other concerns remain. 
From the results shown in Table 1.5, we know that there is a sizable amount of 
variation between devices, variation that may be explained by the inclusion of 
additional device characteristics in the model. To address these concerns, extended 
models are required. Examples of such models, based on the Reisby data, are shown 
in detail in Section 3.2.  
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2 Graphical User Interface 
 
The SuperMix graphical user interface (GUI) consists of a main window, a 
spreadsheet window, and a graph window. The main window is used to create or 
open SuperMix data files, whereas the spreadsheet window is used to display 
SuperMix data files and to allows access to the Model Setup window. The graph 
window is used to display SuperMix graph files. SuperMix data files have the default 
extension .ss3 and are known as ss3 or spreadsheet files, while SuperMix model files 
have the default extension .mum. SuperMix graph files have the default extension 
.mug. The main window and its menus and dialog boxes are reviewed in the next 
section, and the menus and dialogs of the spreadsheet and graph windows are 
reviewed in the sections to follow. 
 

2.1 The main window 

 
The SuperMix main window is accessed when you start the program. SuperMix can be 
opened from the Programs option on the Windows Start menu, by double-clicking on 
the SuperMix application or by clicking on a shortcut for SuperMix. Any of these 
actions opens the following main window. 
 

 

 
The SuperMix main window consists of a File menu and a Help menu. These menus 
are reviewed separately in the following two sections. 
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2.1.1 The File menu 

The options on the File menu of the SuperMix main window provide access to a 
sequence of three dialog boxes that can be used to create or to open a SuperMix data 
file in a spreadsheet format.  
 

 

 
The New Spreadsheet option 

Click on the New Spreadsheet option to open an empty SuperMix spreadsheet 
window. 
 

 

 
You can use the window above to enter data manually. Use the Save As option on 
the File menu to save the data to an ss3 file. Alternatively, data can be imported into 
the empty spreadsheet via the File, Import Data File option. 
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The Open Spreadsheet option 
The Open option on the File menu is used to open an existing SuperMix data file. 
Click on the Open Spreadsheet option to load the following Open Spreadsheet 
dialog box. 
 

 

 
Next, browse for the ss3 file, select it, and click on the Open button to open the 
SuperMix spreadsheet window. 
 

The Import Data File option 
Use the Import Data File option on the File menu to convert the data in a Microsoft 
Excel workbook (*.xls), statistical files and databases (SAS, SPSS, etc.) or a comma 
delimited text file to a SuperMix data file. To import an Excel data file, click on the 
Import Data File option to load the following Open a file to import dialog box. 
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Next, browse for the Microsoft Excel workbook or the text file and select it. Click on 
the Open button to load the Save As dialog box. Enter a name for the ss3 file and 
click on the Save button to open the SuperMix data file in a spreadsheet window. 
 

The Exit option 
Close the SuperMix main window by clicking on the Exit option on the File menu. 
 

2.1.2 The Help menu 

The options on the Help menu on the SuperMix main window provide access to the 
contents of the SuperMix online help file, the SuperMix user's guide, the SuperMix 
website, technical support and other information.  

2.2 The spreadsheet window 
 
The SuperMix spreadsheet window is used to display a new or existing SuperMix data 
file. The menus on the spreadsheet window can be used to manipulate the data 
entries in an existing SuperMix data file. It is also used to access the Model Setup 
window, which is used to specify a mixed-effects model and to edit existing 
SuperMix model files. These menus can also be used to create new or open existing 
SuperMix graph files. In Section 2.5 some basic spreadsheet operations are 
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illustrated. In the sections to follow, we review the four menus of the SuperMix 
spreadsheet window. 

2.2.1 The File menu 

The options on the File menu of the spreadsheet window are used to open a new 
SuperMix project, open an existing ss3 file, create a new SuperMix model (.mum) file, 
edit an existing model file, or convert an existing MIX definition file to a SuperMix 
model file. It is also used to create or edit a SuperMix graph file. An example of the 
File menu is shown below. 
 

  

 
When an ss3 file as well as a SuperMix model file are opened, the File menu changes 
as shown in the following window. 
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The New Project option 

The New Project option is used to open an independent SuperMix main window. 
 

The Exit option 
The Exit option is used to close the current open SuperMix main window. 
 

The New Model Setup option 
The New Model Setup option of the spreadsheet window provides access to the 
Configuration, Variables, Starting Values, Patterns, Advanced and Linear Transforms 
screens of the Model Setup window shown below. Each screen is opened by clicking 
on the corresponding tab.  
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These screens are used to specify a mixed-effects model to be fitted to the data in 
the open spreadsheet window. The appearance of the screens depends on the type of 
outcome (dependent) variable (continuous, count, ordered, or nominal) that is 
selected on the Configuration screen shown above. A detailed description of each of 
these screens is given in Section 2.4. Once a model is defined, it can be saved as a 
.mum file. 
 

The Open Existing Model Setup option 
The Open Existing Model Setup option is used to open the Model Setup window of 
an existing SuperMix model file. This is accomplished by clicking on the Open 
Existing Model Setup option, which loads the following Open Mixed Up Model dialog 
box. 
 
Browse for the desired SuperMix model file, select it, and click on the Open button to 
load the Model Setup window for the selected SuperMix model file. 
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The Close Model Setup option 

The Close Model Setup option is used to close any SuperMix Model Setup dialog box 
that is currently open. 
 

The New Syntax File option 
The New Syntax File option is used to open a blank syntax window. 
 

The Open Syntax File option 
The Open Syntax File option is used to open an existing syntax file (.inp). This is 
accomplished by clicking on the Open Syntax File option, which leads to the display 
of the Open Syntax File dialog box. 
 
Browse for the desired SuperMix syntax file, select it, and click on the Open button 
to open the syntax window for the selected SuperMix model file. 
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The Open Text File option 
The Open Text File option is used to open any existing text file. 
 

The Data-based Graphs pop-up menu 
The Data-based Graphs pop-up menu is used to create a new SuperMix graph from 
the data displayed in the open ss3 file in a SuperMix graph window. The menus and 
dialogs of the SuperMix graph window for new and existing SuperMix graphs are 
reviewed in Chapter 4 of the SuperMix primer. Various illustrations are given 
throughout Chapters 3 to 8 of this manual. 
 

o The Exploratory option is used to produce single or overlay color-coded Y 
against X plots. Groups of plots are obtained by using a filter variable.  

o The Univariate option on the Data-based Graphs pop-up menu is used to 
create a bar chart, a pie chart or a histogram for the data displayed in the 
spreadsheet window.  

o The Bivariate option on the Data-based Graphs pop-up menu is used to 
create a scatter plot, a line plot, a combination line and scatter plot, a box-
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and-whisker plot, or a 3-dimensional bar chart for the data in the open 
SuperMix data file.  

o The Multivariate option on the Data-based Graphs pop-up menu is used to 
make a matrix scatter plot based on the data in the open ss3 file. This 
provides an organized way of simultaneously looking at a set of bivariate 
plots. 

 

 

 

The Model-based Graphs pop-up menu 
The options on the Model-based Graphs pop-up menu are activated when a model 
setup file is opened. These options are used to create a new SuperMix graph from the 
data displayed in the open spreadsheet window. The menus and dialogs of the 
SuperMix graph window for new and existing SuperMix graphs are reviewed in 
Chapter 4 of the SuperMix primer. Various illustrations are given throughout 
Chapters 3 to 8 of this manual.  
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Available options are: 
 

o The Equations option on the Model-based Graphs pop-up menu loads the 
Plot Equations for dialog box which can be used to plot model equations of 
an outcome variable for given values of the predictors in the model. 

o The Residuals option on the Model-based Graphs pop-up menu provides 
access to the Plot of Residuals dialog box, which is used to create a residual 
plot for the residuals based on the current SuperMix analysis.  

o The Confidence Intervals option is used to open the 95% C.I. for Level-1 
Variables dialog box, which is used to create confidence interval plots.  

 
The Open Graph option 

The Open Graph option is used to open an existing SuperMix graph file with a default 
extension .mug. You first click on the Open Graph option to load the following 
Open Mixed Up Graph dialog box. 
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The next steps are to browse for the desired SuperMix graph file, select it, and click 
on the Open button to open the graph window for the selected SuperMix graph file. 
 

The Save option 
The Save option on the File menu is used to save any changes made to the data or 
the model setup file (mum). Please note that any change to the data will not be 
saved to file unless you use this option or the Save As option.  
 

The Save As option 
The Save As option on the File menu is used to save the opened ss3 file or mum file 
as another SuperMix data file or mum file. To save the spreadsheet data as another 
file, select the Save As option to load the following Save As Spreadsheet Data 
dialog box.  
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Enter the file name in the File name string field and click on the Save button to save 
the SuperMix data file. 
 

2.2.2 The Edit menu 

The options on the Edit menu of the SuperMix spreadsheet window are used to edit 
the data entries of the open SuperMix data file. To use these options, select the data 
to be edited (cell(s), row(s) or columns(s)). Then click on the Edit menu to produce 
the following window. 
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The next step is to select one of the options available, which have the following 
effects on the selected data: 
 

o The Cut option cuts the data selection from the spreadsheet window and 
places it into the Windows clipboard. 

o The Copy option places the data selection in the Windows clipboard. 
o The Paste option pastes data from the Windows clipboard into the selected 

area of the spreadsheet window. 
o The Paste (value only) option pastes only the actual values (ignoring the 

formats) of the data from the Windows clipboard into the selected area of the 
spreadsheet window. 

o The Clear option replaces the selected data with empty cell(s). Choosing this 
option activates the following drop-down menu. 

 

 
 

• The Clear All option deletes the values and the formulas of the selected 
data.  

• The Clear Data option deletes the values of the data selection, but leaves 
the corresponding formulas intact.  

• The Clear Formula option deletes the formulas of the selected data, but 
not the corresponding values. 

o The Create Header from Row creates spreadsheet headers that correspond to 
the labels in the selected row. 

 

2.2.3 The Window menu 

The Window menu is used to toggle between open spreadsheet windows. 
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2.2.4 The Help menu 

The Help menu of the spreadsheet window is identical to that of the main window 
and is reviewed in Section 2.1.2. 
 

2.3 The graph window 
 
The SuperMix graph window is opened by creating a new SuperMix graph or by 
opening an existing SuperMix graph file. We accomplish this by using one of the 
options on the Data-based Graphs pop-up menu or the Open Graph option or one of 
the options on the Model-based Graphs pop-up menu (if a SuperMix model file is 
also open) on the File menu of the spreadsheet window reviewed in Section 2.2.1. 
The menus and dialogs of the SuperMix graph window for new and existing SuperMix 
graphs are reviewed in Chapter 4 of the SuperMix primer. Various illustrations are 
given throughout Chapters 3 to 7 of this manual.  
 

2.4 The Model Setup window 
 
A SuperMix mum file (model setup file) is always associated with an ss3 file (data 
spreadsheet file). This ensures that variable selections are maintained correctly in 
the mum file, regardless of changes to the header text and cut/paste/move operations 
on the columns of the ss3 file. For this reason, the Model Setup window is accessed 
via the File menu of the spreadsheet window. This is done by selecting the New 
Model Setup or Open Existing Model Setup options. The Model Setup window has 
six tabs. By clicking on a tab, the corresponding Configuration, Variables, Starting 
Values, Patterns, Advanced, or Linear Transforms screen is accessed. The 
appearance of a screen depends on the type of outcome variable selected. The 
purpose of a field is displayed at the bottom of the screen when the field is clicked. 
Tables 2.1 to 2.13 are summaries of these descriptions.  
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2.4.1 The Configuration screen 

The Configuration screen is used to provide a title for the analysis, to select the type 
and name of the outcome (dependent) variable, and to indicate identifiers of the 
level-2 and level-3 units. Additionally, it contains options that control the amount of 
information to be saved to file and the parameters of the optimization procedure. 
When the New Model Setup or Open Existing Model Setup options on the File menu 
are used, the Configuration screen is, by default, the first screen displayed. 
 
The same Configuration screen is used for continuous and count outcomes, but its 
contents change when the dependent variable type is ordinal or nominal. The screen 
is the same for ordinal and nominal outcome types. The two cases are discussed 
separately below. 
 

Configuration screen for continuous and count outcomes 
An example of the Configuration screen of the Model Setup window for a 
continuous response variable is shown below. The layout is identical when the 
dependent variable type is changed from continuous to count (see Chapter 5 for 
examples based on a count outcome variable). 
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The 15 possible entries on the Configuration screen of the Model Setup window for 
continuous or count response variables are summarized in Table 2.1. 
 

1 
2 

3 

4 

5 

6 

7 

8 

9 
10 

11 

12 

13 
14 

15 
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Table 2.1: Entries on the Configuration screen of the Model Setup window for 
continuous and count outcomes 
 
Number Caption Purpose Type Action Options 

1 Title 1 
To specify the first line 
of the title to be listed in 
the output file. 

Text box 
Enter a string of not 
more than 60 
characters.  

  

2 Title 2 
To specify the second 
line of the title to be 
listed in the output file. 

Text box 
Enter a string of not 
more than 60 
characters. 

  

3 Dependent 
Variable Type 

To specify the variable 
type for the response 
variable. 

Drop-
down list 
box 

Select an option 
from the drop-down 
list box. 

continuous 
(default) 
ordered 
nominal 
count 

4 Level-2 IDs 

To specify the variable 
that defines the second 
level of the hierarchy in 
the data. 

Drop-
down list 
box 

Select a variable 
from the drop-down 
list box. 

  

5 Dependent 
Variable 

To specify the response 
variable of the model. 

Drop-
down list 
box 

Select a variable 
from the drop-down 
list box. 

  

6 Level-3 IDs 

To specify the variable 
that defines the 3rd level 
of the hierarchy in the 
data. 

Drop-
down list 
box 

Select a variable 
from the drop-down 
list box. 

  

7 Write Bayes 
Estimates 

To request a text file for 
the Bayes estimates. 

Drop-
down list 
box 

Select an option 
from the drop-down 
list box. 

no (default) 
means only 
means & 
(co)variances 

8 Convergence 
Criterion 

To specify the 
convergence criterion 
for the iterative 
algorithm. 

Text box 

Enter a non-zero 
positive real number 
if the default of 
0.0001 is not 
desired. 
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Table 2.1: Entries on the Configuration screen of the Model Setup window for 
continuous and count outcomes (continued) 

 

9 Number of 
Iterations 

To specify the 
maximum number of 
iterations for the 
iterative algorithm. 

Text box 

Enter a positive 
integer if the default 
of 100 is not 
desired. 

  

10 Missing Values 
Present 

To specify the missing 
value status of the data. 

Drop-
down list 
box 

Select an option 
from the drop-down 
list box. 

false (default) 

true 

11 Generate Table 
of Means 

To request the printing 
of a table as part of the 
output. 

Drop-
down list 
box 

Select an option 
from the drop-down 
list box. 

no (default) 

yes 

12 Means Variable 

To specify the variable 
for which the tables 
should be created (see 
8). 

Drop-
down list 
box 

Select a variable 
from the drop-down 
list box. 

  

13 
Missing Value 
for the 
Dependent Var 

To specify the missing 
value code for the 
response variable. 

Text box Enter a real number.   

14 Global Missing 
Value 

To specify the global 
missing value code. Text box Enter a real number.   

15 Output Type To request different 
type of output. 

Drop-
down list 
box 

Select an option 
from drop-down list 
box. 

standard (default) 
iterative details 
simulation 
information 

 
Configuration screen for ordered, nominal and binary outcomes 

The following screen is an example of the Configuration screen of the Model Setup 
window in the case of an ordered response variable. An example of this screen for a 
nominal outcome variable is given in Chapter 7. 
 
As shown in the image below, the 5 entries shown in bold typeface are either new or 
different compared with those on the Configuration screen of the Model Setup 
window for continuous or count outcome variables. These 5 entries are summarized 
in Table 2.2. Please refer to Table 2.1 for the information about all the other entries. 
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Table 2.2: Entries of the configuration screen for ordered and nominal outcomes 
 
Number Caption Purpose Type Action Options 

3 Dependent 
Variable Type 

To specify the variable type 
for the response variable. 

Drop-
down list 
box 

Select an option from 
the drop-down list 
box. 

continuous 
(default) 
ordered 
nominal 
count 

5 Dependent 
Variable 

To specify the response 
variable of the model. 

Drop-
down list 
box 

Select a variable from 
the drop-down list 
box. 

  

16 Categories 

To show the value of each 
category of the ordered 
dependent variable selected 
in 5. 

Grid box     

1 
2 

3 

4 

5 

6 

7 
8 

9 
16 

17 

18 
13 

14 

10 
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Table 2.2: Entries of the configuration screen for ordered and nominal outcomes 
(continued) 
 

17 Perform 
Crosstabulation 

To specify a cross 
tabulation of selected 
variable by the outcome 
variable. 

Drop-
down list 
box 

Select an option from 
the drop-down list 
box. 

no (default) 

yes 

18 Crosstab 
Variable 

To specify the variable to 
be crosstabulated with the 
outcome variable (see 8). 

Drop-
down list 
box 

Select a variable from 
the drop-down list 
box. 

  

 

2.4.2 The Variables screen 

Besides the variables screen for the ordered outcome, which doesn't include the 
option to select an intercept as an explanatory variable, this screen has the same 
appearance for all outcome types and is used to select explanatory variables and 
random effects. The unknown model parameters are the coefficients of the 
explanatory variables and the variances and covariances of the random effects. The 
appearance of the Variables screen depends on the number of levels of the model. 
For a two-level model, the 3 columns in the Available grid and the L-3 grid will be 
hidden. By default, an intercept term is included in the fixed part (explanatory 
variables) and in the random part (random effects) of the model. 
 
The following screen is an example of the Variables screen of the Model Setup 
window that is used for variable selection for continuous, count, or nominal 
response variables. The 9 possible entries of the Variables screen of the Model Setup 
window for continuous, count, or nominal response variables are summarized in 
Table 2.3. 
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Table 2.3: Entries of the Variables screen 
 
Number Caption Purpose Type Action Options 

1 
a E  

To specify the 
explanatory variable(s) 
of the model. 

Column of 
check 
box(es) 

Check the E 
column(s) of the 
variable(s). 

  

b Explanatory 
Variables 

Displays the variable(s) 
selected in 1a. Grid box     

2 
a 2 

To specify the level-2 
random effects of the 
model. 

Column of 
check 
box(es) 

Check the 2 
column(s) of the 
variable(s). 

  

b L-2 Random 
Effects 

Displays the variable(s) 
selected in 2a. Grid box     

1a 
2a 

3a 

2b 

1b 

5 

3b 

6 

4 
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Table 2.3: Entries of the Variables screen (continued) 
 

3 
a 3 

To specify the level-3 
random effects of the 
model. 

Column of 
check 
box(es) 

Check the 3 
column(s) of the 
variable(s). 

  

b L-3 Random 
Effects 

Displays the variable(s) 
selected in 3a. Grid box     

4 Include Intercept 
To specify an intercept 
term for the fixed part 
of the model. 

Check box 
Uncheck the check 
box if an intercept is 
not desired. 

Check 
(default) 
Uncheck 

5 Include Intercept 
To specify a random 
intercept at level-2 of 
the model. 

Check box 

Uncheck the check 
box if a level-2 
random intercept is 
not desired. 

Check 
(default) 

Uncheck 

6 Include Intercept 
To specify a random 
intercept at level-3 of 
the model. 

Check box 

Uncheck the check 
box if a level-3 
random intercept is 
not desired. 

Check 
(default) 

Uncheck 
 

2.4.3 The Starting Values screen 

The unknown parameters in a mixed-effects model cannot, in general, be obtained 
as a closed-form expression. To estimate these parameters, use is made of an 
iterative procedure based on the method of maximum likelihood. For count, ordinal, 
and nominal outcomes, the likelihood function is approximated by numerical 
integration. For more than one random effect, this procedure is computationally 
intensive. All iterative procedures start with initial estimates of the values of the 
unknown parameters and, at each iteration, the algorithm attempts to improve this 
estimate until convergence is obtained. The closer these initial estimates (the 
starting values) are to the maximum likelihood solution, the fewer iterations are 
needed to obtain convergence and reach the final solution.  
 
SuperMix automatically generates starting values for the model parameters and 
typically these values are sufficient to ensure convergence. There may, however, be 
cases where a model with many parameters takes a long time to run, and if small 
modifications are made to such a model, one can use the parameter estimates from 
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the previous analysis as starting values for the next analysis. Alternatively, one may 
want to fix some of the parameter values at specific values, for example, the slope 
coefficient of variable X at 0.1. This can be accomplished by selecting the user-
defined option and entering this value for X. Note that the value of 0.1 will remain 
fixed during the optimization procedure if it is specified as fixed for X on the 
Patterns screen discussed in Section 2.4.4. 
 

Starting Values screen for continuous or count outcomes 
An example of the Starting Values screen of the Model Setup window for a 
continuous or count response variable is shown below.  
 

 

 
An example of the Starting Values screen of the Model Setup window for continuous 
or count outcomes is shown above. The 5 possible entries of the Starting Values 
screen of the Model Setup window for count or nominal response variables are 
summarized in Table 2.4. 

1 

2 

5 

4 

3 
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Table 2.4: Entries of the Starting Values screen for continuous and count 
outcomes 
 
Number Caption Purpose Type Action Options 

1 Starting Values To specify the type of 
starting values to be used. 

Drop-
down list 
box 

Select an option from 
the drop-down list 
box. 

automatic 
(default) 
user-defined 

2 Starting Error 
Variance 

To specify the starting 
error variances. Text box 

Enter a integer if the 
default of 1 is not 
desired. 

  

3 Explanatory 
Variables 

To specify the starting 
value(s) for the 
coefficients of 
explanatory variable(s) of 
the fixed part of the 
model. 

Grid box 

Enter a real number in 
the corresponding 
Value box(es) of the 
variable(s) of interest. 

  

4 
Level 2 
(Co)variances 
Starting Values 

To specify the starting 
value(s) for the 
variance(s) and/or 
covariance(s) of the level-
2 random effects. 

Grid box 

Enter a real number 
(positive for 
variances) in the 
corresponding Value 
box(es) of the 
variable(s) of interest. 

  

5 
Level 3 
(Co)variances 
Starting Values 

To specify the starting 
value(s) for the 
variance(s) or 
covariance(s) of the level-
3 random effects. 

Grid box 

Enter a real number 
(positive for 
variances) in the 
corresponding Value 
box(es) of the 
variable(s) of interest. 
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Starting Values screen for ordered outcomes 

For ordinal outcomes, additional grid boxes appear to allow for user-specified 
starting values of thresholds and threshold-explanatory variable(s) interaction(s). 
The following screen is an example of the Starting Values screen of the Model Setup 
window. 
 
As shown in the image below, the single entry shown in bold typeface is different 
from those of  the Starting Values screen of the Model Setup window for continuous 
or count outcome variables. This entry is described in Table 2.5. Please refer to 
Table 2.4 for the information about all the other entries.  
 

 

 

6 

1 

5 

4 

3 

7 
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Table 2.5: Entry of the Starting Values screen for ordered outcomes 
 

Number Caption Purpose Type Action 

6 Starting Values 
for Thresholds 

Enter the starting values 
for the thresholds. Grid box 

Enter real numbers. 
The values must be 
monotonically 
increasing. 

7 
Starting Values 
for threshold 
interactions 

Enter the starting values 
for the threshold 
interaction terms. 

Grid box 

Enter a real number in 
each of the 
corresponding Value 
box(es) of the 
variable(s) of interest. 

 
Starting Values screen for nominal or binary outcomes 

When the nominal outcome is selected, the grid boxes appear differently with a slide 
bar as shown below.  
 

Table 2.6: Entries of the Starting Values screen for nominal outcomes 
 

Number Caption Purpose Type Action 

3 Explanatory 
Variables 

To specify the starting value(s) for 
the coefficients of explanatory 
variable(s) of the fixed part of the 
model. 

Grid box 
with slide 
bar 

Enter a real number in the 
corresponding Value 
box(es) of the variable(s) 
of interest. 

4 
Level 2 
(Co)variances 
Starting Values 

To specify the starting value(s) for 
the variance(s) and/or 
covariance(s) of the level-2 random 
effects. 

Grid box 
with slide 
bar 

Enter a real number 
(positive for variances) in 
the corresponding Value 
box(es) of the variable(s) 
of interest. 

5 
Level 3 
(Co)variances 
Starting Values 

To specify the starting value(s) for 
the variance(s) or covariance(s) of 
the level-3 random effects. 

Grid box 
with slide 
bar 

Enter a real number 
(positive for variances) in 
the corresponding Value 
box(es) of the variable(s) 
of interest. 
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The 3 different entries shown in bold typeface are either new or different compared 
with those on the Starting Values screen of the Model Setup window for continuous 
or count outcome variables. These 4 entries are summarized in Table 2.6. Please 
refer to Table 2.4 for the information about all the other entries. 
 

 

 

2.4.4 The Patterns screen 

This screen is used to specify patterns or structures for the coefficients of the 
explanatory variables and variances and covariances of the random effects. A 
typical Patterns screen is shown below. Note that the default numbers for these 
patterns (1, 2, 3, …) are dependent on the number of parameters listed in a grid. The 
default numbers indicate that all parameters are set free. On the other hand, if a 
number is replaced by a '0', the corresponding parameter is fixed to the default or 
user-specified value on the Starting Values screen. 
 

1 

5 

4 

3 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

68 

Patterns screen for continuous, ordered, nominal and count  outcomes 
The 6 different entries of the Patterns screen of the Model Setup window for 
continuous, ordered, nominal, or count response variables are summarized in Table 
2.7. For an ordinal outcome variable, provision is also made for entering user-
defined values for threshold parameters. 
 

 

 

1a 

2a 

3b 

2b 

1b 

3a 
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Table 2.7: Entries of the Patterns screen for continuous, count and nominal 
outcomes 
 
Number Caption Purpose Type Action Options 

1 

a 

Explanatory 
Variables 

To specify the pattern type 
for the coefficients in the 
fixed part of the model. 

Drop-down list 
box 

Select an option 
from the drop-
down list box. 

free (default) 

user-defined 

b 
To specify the pattern for 
the covariance matrix of 
the fixed part of the model. 

Text box Enter integer 
values >= 0   

2 

a 
Level-2 
(Co)variance 
Patterns 

To specify the pattern type 
for the covariance matrix 
of the level-2 random 
effects. 

Drop-down list 
box 

Select an option 
from the drop-
down list box. 

correlated 
(default) 
independent 
unidimensional 
user-defined 

b 
To specify the pattern for 
the covariance matrix of 
the level-2 random effects. 

Text box Enter integer 
values >= 0   

3 

a 
Level-3 
(Co)variance 
Patterns 

To specify the pattern type 
for the covariance matrix 
of the level-3 random 
effects. 

Drop-down list 
box 

Select an option 
from the drop-
down list box. 

correlated 
(default) 
independent 
unidimensional 
user-defined 

b 
To specify the pattern for 
the covariance matrix of 
the level-3 random effects. 

Text box Enter integer 
values >= 0   

 
 
Examples of Patterns: 
 

o The pattern below is used to constrain the coefficients of Treatment 1 and 
Treatment 2 to be equal. Likewise, the coefficients of Treatment 3 and 
Treatment 4 are constrained to be equal.  
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Explanatory Variables Pattern 
Treatment 1 1 
Treatment 2  1 
Treatment 3 3 
Treatment 4  3 

 
Note that a number cannot be larger than the row number on the grid. For 
example, the following pattern is not recognized by SuperMix: 
 

Explanatory Variables Pattern 
Treatment 1 2 
Treatment 2  2 
Treatment 3 4 
Treatment 4  4 

 
o The table below shows three possible patterns for the level-2 variances and 

covariances of the random effects Time1, Time2, Time3, and Time4. 
 

Level-3 co(variance) Pattern 1 Pattern 2 Pattern 3 
Variance, Time1 1 1 1 
Time1, Time2 2 2 2 
Variance, Time2 1 3 3 
Time1, Time3 2 0 0 
Time2, Time3 2 2 0 
Variance, Time3 1 6 6 
Time1, Time4 2 0 0 
Time2, Time4 2 0 0 
Time3, Time4 2 2 9 
Variance, Time4 1 10 10 

 
Pattern 1 restricts all the variances to be equal and, likewise, all the covariances to 
be equal. Pattern 2 specifies that all variances should be estimated freely, all 
covariances one time unit apart are set equal, and all covariances more than one 
time unit apart are fixed at the values specified on the Starting Values screen, the 
default for covariances being zero. Pattern 3 specifies that Time1 and Time2 are 
correlated, but uncorrelated with Time3 and Time4, which are correlated with each 
other. 
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2.4.5 The Advanced screen 

The appearance of the Advanced screen depends on the type of outcome variable 
selected on the Configuration screen, and is used to change default settings used in 
SuperMix. Specific examples of the use of this screen are given in Chapters 3 to 8. 
Screens for the various outcome types are given next. 
 

Advanced screen for continuous outcomes – normal distribution 
In repeated measurement studies, the assumption of uncorrelated identically 
distributed level-1 error terms is often unrealistic. The options on the Advanced 
screen shown below allow for correlated level-1 error terms that follow a time series 
process. 
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3b 

4 

5 

6 

7 

8 

9 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

72 

The 9 different entries of the Advanced screen of the Model Setup window for 
continuous response variables are summarized in Table 2.8(a). 
 

Table 2.8(a): Entries of the Advanced screen for continuous outcomes with 
normal distribution 

 
Number Caption Purpose Type Action Options 

1 Autocorrelatio
n 

To specify the type of 
autocorrelation terms. 

Drop-
down 
list box 

Select an option 
from the drop-
down list box. 

no AC terms (default) 
fixed AC terms 
estimate all 

2 Error Form 
To specify a time series 
model for the auto-
correlated errors. 

Drop-
down 
list box 

Select an option 
from the drop-
down list box. 

stationary AR1 (default) 
non-stationary AR1 
stationary MA1 
stationary ARMA(1,1) 
general Auto-correlation 

3 

a Autocorrelation 
Terms 

To specify the number 
of autocorrelation 
terms. 

Text 
box 

Enter an integer 
if the default 1 is 
not desired. 

  

b Autocorrelation 
Starting Values 

To specify the starting 
value(s) for the 
autocorrelation(s). 

Grid 
box 

Enter a real 
number in the 
region of  
[-0.99, 0.99]. 

  

4 Unit Weighting 

To select equal or 
differential weighting 
for the unites for 
continuous dependent 
variable. 

Drop-
down 
list box 

Select an option 
from the drop-
down list box. 

equal (default) 

differential 

5 Level-1 Weight 

To specify the weight 
variable that defines 
the first level of the 
hierarchy in the data. 

Drop-
down 
list box 

Select a variable 
from the drop-
down list box. 
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Table 2.8(a): Entries of the Advanced screen for continuous outcomes with 
normal distribution (continued) 
 

6 Level-2 Weight 

To specify the weight 
variable that defines 
the second level of the 
hierarchy in the data. 

Drop-
down 
list box 

Select a variable 
from the drop-
down list box. 

 

7 Level-3 Weight 

To specify the weight 
variable that defines 
level-3 of the hierarchy 
in the data. 

Drop-
down 
list box 

Select a variable 
from the drop-
down list box. 

 

8 Distribution 
Model 

To select an 
appropriate distribution 
model. 

Drop-
down 
list box 

Select a 
distribution from 
the drop-down 
list. 

normal (default) 
gamma 

inverse Gaussian 

9 'Time' Variable To specify the time 
variable. 

Drop-
down 
list box 

Select a variable 
from the drop-
down list box. 

 

 
 
Advanced screen for continuous outcomes – gamma/inverse Gaussian 
distribution 

When the gamma or inverse Gaussian distribution is selected, the Advanced screen 
is a little different from when the normal distribution is selected as shown below. 
The 4 different entries of the Advanced screen of the Model Setup window for 
continuous response variables are summarized in Table 2.8(b). 
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Table 2.8(b): Entries of the Advanced screen for continuous outcomes with 
gamma/inverse Gaussian distribution 

 
Number Caption Purpose Type Action Options 

8 Distribution 
Model 

To select an appropriate 
distribution model. 

Drop-
down 
list 
box 

Select a distribution from the 
drop-down list. 

normal 
(default) 
gamma 
inverse 
Gaussian 

9 Estimate Scale To specify the method for 
estimating the scale. 

Drop-
down 
list 
box 

Select an estimated scale 
from the drop-down list box. 

none 
(default) 
deviance 
Pearson 

4 

5 

6 

7 

8 

9 

10 

11 
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Table 2.8(b): Entries of the Advanced screen for continuous outcomes with 
gamma/inverse Gaussian distribution (continued) 
 

10 Optimization 
Method 

To select the optimization 
method. 

Drop-
down 
list 
box 

Select an optimization method 
from the drop-down list box. 

maximum 
posterior 
adaptive 
quadrature 
non-
adaptive 
quadrature 
(default) 

11 
Number of 
Quadrature 
Points 

To enter the quadrature points 
(per random-effect 
dimension) to use in the 
numerical integration. 

Text 
box 

Enter an integer if the default 10 
is not desired. It is usually set to 
10 for 1 effect and 5 to 10 for 2 
or 3 effects. 

 

 
Advanced screen for ordered outcomes 

An important feature of mixed-effects models with ordered outcomes is the 
inclusion of threshold parameters in the model. As illustrated in Chapter 6, the 
number of threshold parameters equals 2C − , where C  is the number of distinct 
categories of the outcome variable. If right-censoring (see Chapter 8) is included in 
the model specification, the number of thresholds becomes 1C −  and a Censor 
Variable is selected. The mixed-effects model for ordinal outcomes additionally 
allows for the inclusion of Explanatory Variable-threshold interaction terms. If entry 
number 10 in the screen below is set equal to 2, for example, then interaction terms 
of the first two explanatory variables with each of the thresholds are included in the 
model. One can also select a weight variable, link function (Function model) and the 
number of quadrature points to be used for the approximation of the likelihood 
function by numerical integration. 
 
Table 2.9 gives a summary of the 12 possible entries of the Advanced screen of the 
Model Setup window for an ordered response variable. 
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As shown in the above image, the 6 entries shown in bold typeface are either new or 
different compared with those on the Advanced screen of the Model Setup window 
for continuous outcome variables. These 6 entries are summarized in Table 2.9. 
Please refer to Table 2.8(a) and (b) for the information about all the other entries. 

 

1a 

1b 

1c 

4 
5 
6 

10 

12 

9 

11 

7 

8 

2a 

2b 

3 
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Table 2.9: Entries of the Advanced screen for ordered outcomes 
 
Number Caption Purpose Type Action Options 

1 

a Include 
Interactions 

To indicate if explanatory 
variable interactions should be 
include in the model. 

Drop-
down 
list box 

Select an option from 
the drop-down list 
box. 

no (default) 

yes 

b Number of 
Interactions 

To specify the number of 
interactions. Text box 

Enter an integer if the 
default maximum 
allowable value is not 
desired. 

  

c Type of 
Extension 

To select whether to treat the 
explanatory variables as 
having scaling effects or 
threshold interactions. 

Drop-
down list 
box 

Select an option from 
the drop-down list 
box. 

scaling terms  
threshold 
interactions 
(default) 

2 

a Right-
Censoring 

To specify is right-censoring 
is included. 

Drop-
down 
list box 

Select an option from 
the drop-down list 
box. 

none (default) 

include 

b Censor 
Variable To specify the censor variable. 

Drop-
down list 
box 

Select a variable from 
the drop-down list 
box. 

  

3 Model 
Terms 

To select subtracting or 
adding the model terms to the 
threshold. 

Drop-
down 
list box 

Select an option from 
the drop-down list 
box. 

subtract means 
( ′γ - X β ) 
(default) 
add, means 
( ′+γ X β ) 

8 
Level-2 
Random 
Thresholds 

To specify if there are 
thresholds for the level-2 
random effects. 

Drop-
down 
list box 

Select an option from 
the drop-down list 
box. 

no (default) 

yes 

9 
Level-3 
Random 
Thresholds 

To specify if there are 
thresholds for the level-3 
random effects. 

Drop-
down 
list box 

Select an option from 
the drop-down list 
box. 

no (default) 

yes 

12 Function 
Model To specify the link function. 

Drop-
down 
list box 

Select an option from 
the drop-down list 
box. 

probit (default), 
logistic,  
complementary 
log-log, log-log 
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Advanced screen for nominal outcomes 
The general settings of this screen is similar to the one used for the continuous and 
ordinal variables, but nominal dependent variable settings is different as shown in 
the bold entry number 1 below. 
 

Table 2.10: Entries of the Advanced screen for nominal outcomes 
 
Number Caption Purpose Type Action Options 

1 Reference 
Category 

To select whether the first or 
last category of the outcome 
should be used as the 
reference category. 

Drop-
down 
list box 

Select a reference 
category from the 
drop-down list. 

first (default) 

last 

 
Note that all the information for the other 6 entries are given in Table 2.8(a) and (b). 

 

 

4 

5 

6 

10 

11 

7 

1 
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Advanced screen for count outcomes with Poisson distribution 

The screen below has the same functionality as the screen used for nominal 
outcomes, except that provision is made here for the specification of an Offset 
Variable. In practice, it can occur that the coefficient of some covariate is assumed to 
be unity. This covariate is commonly known as an offset variable. Offsets are 
typically used when the response variable is a rate rather than a number or count. 
 
The 2 entries pertaining to the offset variable on the Advanced screen of the Model 
Setup window for a count outcome are summarized in Table 2.11(a). Note that 
entries in the Advanced screen for the count outcome variable are similar to those 
for the ordered outcome. The information for the other 2 entries are given in Table 
2.9. 
 

 

1a 

1b 

4 
5 
6 

10 

11 

7 

2 

3 
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Table 2.11(a): Entries of the Advanced screen for counts with Poisson 
distribution 
 
Number Caption Purpose Type Action Options 

1 

a Incorporate 
Time Offset 

To select whether or not to 
include an offset variable. 

Drop-
down list 
box 

Select an option from 
the drop-down list 
box. 

no (default) 
yes 

b Offset 
Variable 

To specify the offset 
variable. 

Drop-
down list 
box 

Select a variable from 
the drop-down list 
box. 

  

2 Distribution 
Model 

To select an appropriate 
distribution model. 

Drop-
down list 
box. 

Select a distribution 
from the drop-down 
list box. 

Poisson (default) 
negative 
binomial 

3 Estimate Scale To specify the method for 
estimating the scale. 

Drop-
down list 
box 

Select an estimated 
scale from the drop-
down list box. 

none (default) 
deviance 
Pearson 

 
Advanced screen for count outcomes with negative binomial distribution 

When the negative binomial distribution is selected, the Advanced screen of the 
count variable is slightly different as shown below. 
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As shown above, the bold font entries 1 and 2 are different from the previous 
screen. 
 

Table 2.11(b): Entries of the Advanced screen for count outcomes with negative 
binomial distribution 
 
Number Caption Purpose Type Action Options 

1 Distribution 
Model 

To select an appropriate 
distribution model. 

Drop-
down 
list box. 

Select a distribution from 
the drop-down list box. 

Poisson (default) 
negative 
binomial 

2 Dispersion 
Parameter 

To enter the dispersion 
parameter for the negative 
binomial model. 

Text box 
Enter any numeric value 
greater than 0.0. The 
default value is 1.0. 

 

 

4 

5 

6 

10 

11 

7 

1 

2 
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Advanced screen for binary outcomes 
When the negative binomial distribution is selected, the Advanced screen of the 
count variable is slightly different: the bold font entries 1 and 2 are different from 
the previous screen. 

 

 
Table 2.12: Entries of the Advanced screen for binary outcomes 

 
Number Caption Purpose Type Action Options 

1 

a Distribution 
Model 

To select an 
appropriate distribution 
model. 

Drop-down 
list box. 

Select a distribution 
from the drop-down 
list box. 

Bernoulli (default) 

binomial 

b Number of 
Trials 

To select the column of 
the spreadsheet, which 
contains the no. of 
trials. 

Drop-down 
list box 

Select a variable 
from the drop-down 
list box. 

  

4 

5 

6 

10 

11 

7 

2 

1b 

3 

1a 
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Table 2.12: Entries of the Advanced screen for binary outcomes (continued) 
 

2 Function 
Model 

To select an 
appropriate link 
function. 

Drop-down 
list box. 

Select a link function 
from the drop-down 
list box. 

probit (default) 
logistic 
complementary log-
log 
log-log 

3 Estimate Scale To specify the method 
for estimating the scale. 

Drop-down 
list box 

Select an estimated 
scale from the drop-
down list box. 

none (default) 
deviance 
Pearson 

 

2.4.6  The Linear Transforms screen 

Linear transforms are used to test hypotheses of the type   

0 1 1 2 2 3 3: ... 0k kH c c c cβ β β β+ + + + =

 

where 1 2 3, , ,..., kβ β β β  are model parameters and 1 2 3, , ,..., kc c c c  user-specified real-
valued coefficients. For each linear transform, a Z -statistic and an associated two-
tailed p -value are saved to the output file. The Z -statistic is a function of the 
estimated parameters and the large sample covariance matrix of the estimates. The 
value of the linear transform when the parameters are replaced with their estimates 
is also of interest. This value also appears in the output. 
 
An example of the Linear Transform screen in the case of an ordinal outcome 
variable is given below (see Chapter 6 for an additional example.) For continuous, 
count and nominal variables the Linear Transform screens are identical, but it differ 
from that for an ordinal outcome in that the screen for an ordinal outcome contains 
threshold parameter information. 
 

Linear Transforms screen for continuous and count outcomes 
The buttons and options on the Linear Transforms screen are shown below. 
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A summary of the 3 buttons and 4 different entries of the Linear Transforms screen 
of the Model Setup window for an ordered outcome is given in Table 2.12. 

 
Table 2.13: Entries of the Linear Transforms screen for continuous and count 
outcomes 
 

Number Caption Purpose Type Action 

1 Add Transform To create a new linear transform in 
4. 

Click 
Button 

Click to add a blank 
transform. 

2 Copy Transform 
To create a copy the selected 
transform in 4 with a different 
name. 

Click 
Button 

Click to copy and 
paste the select 
transform. 

2 

4 

7 

6 

5 

1 

3 
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Table 2.13: Entries of the Linear Transforms screen for continuous and count 
outcomes (continued) 
 

3 Remove 
Transform 

To delete the selected transform in 
4. 

Click 
Button 

Click on the button to 
delete the selected 
transform. 

4 Linear 
Transforms 

To select the linear transform and 
edit it's components. Grid box Enter string(s) as 

names for transforms. 

5 Explanatory 
Variables 

To specify the coefficient(s) for 
the linear transformation(s) of the 
fixed part of the model. 

Grid box Enter real number(s). 

6 
Level-2 Random 
Effect 
(Co)variances 

To specify the coefficient(s) for 
the linear transformation(s) of the 
covariance matrix of the level-2 
random effects. 

Grid box Enter real number(s). 

7 
Level-3 Random 
Effect 
(Co)variances 

To specify the coefficient(s) for 
the linear transformation(s) of the 
covariance matrix of the level-3 
random effects. 

Grid box Enter real number(s). 

 
For example, in the Linear Transforms screen shown below we wish to test the 
hypothesis that 

int erceptβ  + 1Thresholdβ  = 0.   
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Linear Transforms screen for ordered outcomes 

Additional grid boxes appear to allow for user-specified starting values of 
thresholds and threshold-explanatory variable(s) interaction (s) for ordinal 
outcomes. The following screen is an example of the Linear Transforms screen of 
the Model Setup window. 
 
Only the 2 entries shown in bold typeface are either new or different compared with 
those on the Linear Transforms screen of the Model Setup window for continuous or 
count outcome variables. These 2 entries are summarized in Table 2.13. Please refer 
to Table 2.12 for the information about all the other entries. 
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Table 2.14: Entries of the Linear Transforms screen for ordered outcomes 

 
Number Caption Purpose Type Action 

8 Thresholds 

To specify the coefficient(s) 
for the linear 
transformation(s) of the 
thresholds. 

Grid box Enter real number(s). 

9 Thresholds 
Interactions 

To enter thresholds for the 
selected transform Grid box Enter real number(s). 

 

2 

4 

7 

6 

8 

1 

3 

9 
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Linear Transforms screen for nominal and binary outcomes 
Additional slide bar appears for as shown in the following screen is an example of 
the Linear Transforms screen of the Model Setup window. 
 

 

 
Only the 2 entries shown in bold typeface are either new or different compared with 
those on the Linear Transforms screen of the Model Setup window for continuous or 
count outcome variables. These 2 entries are summarized in Table 2.14. Please refer 
to Table 2.12 for the information about all the other entries. 
 

2 

4 

7 

6 

5 

1 

3 
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Table 2.15: Entries of the Linear Transforms screen for nominal outcomes 
 
Number Caption Purpose Type Action 

5 Explanatory 
Variables 

To specify the coefficient(s) for 
the linear transformation(s) of 
the fixed part of the model. 

Grid box 
with slide 
bar 

Enter real number(s). 

6 
Level-2 Random 
Effect 
(Co)variances 

To specify the coefficient(s) for 
the linear transformation(s) of 
the covariance matrix of the 
level-2 random effects. 

Grid box 
with slide 
bar 

Enter real number(s). 

7 
Level-3 Random 
Effect 
(Co)variances 

To specify the coefficient(s) for 
the linear transformation(s) of 
the covariance matrix of the 
level-3 random effects. 

Grid box 
with slide 
bar 

Enter real number(s). 

 

2.5 Data manipulation 
The SuperMix spreadsheet can be manipulated in various ways. Rows and columns 
can be changed directly, and simple computations or more complex built-in 
functions can be used in individual cells. Some of these manipulations are discussed 
and illustrated in the following sections, using demo.ss3. There are 15 cases 
(patients) in the data set. 
 
 The spreadsheet window for demo.ss3 is opened as follows: 
 

o Use the Open option on the File menu of the main window to load the Open 
Spreadsheet dialog box.  

o Browse for the file demo.ss3 in the Examples folder.  
o Select the file and click on the Open button to open the following SuperMix 

spreadsheet window. 
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The variables include: 
 

o Group is a variable with 3 categories, indicating the group number of the 
patient (5 patients in each group). 

o Age is the age of the patient. 
o WT_kg denotes the weight of the patient in kg. 
o PFat is a measure of percentage body fat. 

 

2.5.1 Basic data manipulations 

It is important to note that any change of the data file will not be saved unless you 
use the Save option on the File menu. 
 

Cells 

A careful examination of the data shows that the Age entry of the 3rd observation is 
330.00. This is obviously a typing error. Upon further investigation, it turns out that 
the correct age value is 33. To correct this error, select the cell, change the value of 
the formula box from 330.00 to 33.00, and then click on the Apply button. 
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Rows 

To work with a row (or rows) of the data file, click on the row tab(s) to select the 
complete row(s) and then right-click on the selection to display all the options from 
the pop-up menu.  
 

Insert a row 
For example, to insert another row (observation) between the first and the second 
rows, select the second row by clicking on the row 2 tab, right-click on the selected 
row to activate the menu and select the Insert Row option to create the window as 
shown below. 
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An empty row is added to the spreadsheet above the previous second row and the 
total sample size is changed to 16 as shown below. 
 

 
Delete a row 

To delete the empty row that was inserted, select the second row by clicking on the 
row 2 tab. Right click on the selected row and select the Delete Row option to delete 
the second row. 
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Columns 

To work with a column (or columns) of the data file, first click on the column 
header(s) to select the column(s) and then right-click on one of the selected columns 
to see all the options listed on the pop-up menu.  
 

Insert a column 
To insert another variable between (A)_Group and (B)_Age, first click on the header 
of (B)_Age, right-click on the column to activate the menu and select the Insert 
Column option to create the window as shown below. 
 

 

 
A new column (variable) is added to the spreadsheet. Change the variable name by 
selecting the column header, right-click and select Column Properties to load the 
dialog box as shown below. 
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Input a variable name, such as NewVar, and then click on the OK button to return to 
the spreadsheet window as shown below. 
 

 

 
Delete a column 

To delete the NewVar column that was inserted, select the variable NewVar by 
clicking on the column header. Right-click and select the Delete Column option to 
delete column B. 
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2.5.2 Simple computations 

 
Assigning values to a new variable 

In demo.ss3, the variable WT_kg is a variable denoting weight in kilograms. We 
would like to use the variable WT_lb, that is, the corresponding weight in pounds. To 
create this variable, first insert a column and change the column header to WT_lb as 
illustrated earlier in Section 2.5.1 to generate the following spreadsheet window. 
 

 

 
Select the column containing the variable WT_lb, input the function 2.20462*(C1) in 
the formula box and click on the Apply button to get the new variable WT_lb as 
shown below. The formula applies to each row of (D)_WT_lb provided that 
 

o this column is selected (highlighted) 
o the first cell of the variable(s) in the formula, in this case C1, is referenced. 
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Save the changes to demo.ss3 by clicking on the Save option on the File menu. 
 

2.5.3 Built-in functions 

 
LN function 

In mixed-effects models, we often consider the natural log of a variable. For 
example, the natural log of Age in demo.ss3 may be a more appropriate explanatory 
variable than the original age given in years. The variable LnAge can easily be 
created by using the options available in the SuperMix spreadsheet. 
 
First, create a new column with the header LnAge. Next, select the column 
containing the variable LnAge, input the function LN(B1) in the formula box, and 
click on the Apply button. Each value of the new variable LnAge is the natural log of 
the corresponding values of the variable Age as shown below. 
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SQRT function 

To add another variable, SqrtAge, which is the square root of Age, we proceed as 
follows. As above, first create a new column with the header SqrtAge. 

 
Select the column containing the variable SqrtAge, input the function SQRT(B1) in 
the formula box, and click on the Apply button. Each value of the new variable 
SqrtAge is the square root value of the corresponding value of the variable Age as 
shown below. 
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Save the changes to demo.ss3 by clicking on the Save option on the File menu. 
 
Table 2.16 contains a selection of the built-in functions in SuperMix. A list of values 
can be any of the following types: 
 

o (B1, B2, B3) is the selection of the first three values of the variable in 
column B. 

o (A1:A15) selects all the values of the variable in column A. Starting with the 
first and ending with the one in row 15. 

o (A1:A5, A7, A11:A15)  selects the values of row 1 to row 5, row 7, and row 
11 to row 15 of column A. 

o (A3:A6, B7, D12:D15) contains a list of values from more than one column. 
This selection includes the values of row 3 to row 6 of column A, row 7 of 
column B and row 12 to row 15 of column D. 

 
Table 2.16: Selection of SuperMix functions 

 
Function Definition 

ABS(value) Absolute value 
AVERAGE (list of values) Average 
EXP(value) Exponent base e 
LN(value) Natural log 
LOG(value) Logarithm 
MAX(list of values) Maximum value 
MEDIAN(list of values) Median 
MIN(list of values) Minimum value 
MODE(list of values) Mode 
SQRT(value) Square root 
SQUARE(value) Square 
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2.5.4 Other useful data manipulations 

The data manipulation capabilities of the SuperMix spreadsheet window can be used 
to create interaction terms, essentially a product of variables, for use in modeling. It 
can also be used to perform grand mean centering of variables. 
 

Absolute references 
If you do not want SuperMix to adjust references when you copy a formula to a 
different cell, use an absolute reference. For example, if your formula multiplies 
cell A5 with cell C1 (=A5*C1) and you copy the formula to another cell, SuperMix will 
adjust both references. You can create an absolute reference to cell C1 by placing a 
dollar sign ($) before the parts of the reference that do not change. To create an 
absolute reference to cell C1, for example, add dollar signs to the formula as 
follows: = A5*$C$1. 

 
Creating an interaction term 

Suppose that we want to study the possible interaction between a subject's age and 
weight (in pounds). This product of Age and WT_lb, is created in the SuperMix 
spreadsheet window as follows. 
 
First, create a new column with header Age_WT. Then, select this column, and input 
the function (B1)*(E1) in the formula box. Click on the Apply button. Each value of 
the new variable Age_WT is equal to the product of the corresponding values of Age 
and WT_lb as shown below. 
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Grand mean centering 

It is often useful to center a predictor variable around its grand mean. To illustrate, 
we grand mean center the variable PFat. 
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To do so, first create a new column with the header of PFat_Mea. Then, select the 
PFat_Mea column, input the function (H1)–AVERAGE(H$1:H$15) in the formula box 
and click on the Apply button. Each value of the new variable of PFat_Mea now 
contains the difference between the corresponding original PFat value and the grand 
mean of all the PFat values. As illustrated above, the spreadsheet functions are not 
case sensitive. 
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3 Models for continuous outcomes 
 

3.1 Models based on a subset of the NESARC data 

3.1.1 The data 

The data set is from the National Epidemiologic Survey on Alcohol and Related 
Conditions (NESARC), a longitudinal survey with its first wave fielded in 2001–2002. 
The NESARC is a representative sample of the United States population, and 43,093 
Americans participated in the first wave of the survey. The NESARC survey was 
conducted and sponsored by the National Institute on Alcohol Abuse and Alcoholism 
(NIAAA). Detailed information is available at http://niaaa.census.gov/index.html.  
 
Section 4 of the NESARC data documentation describes data regarding major 
depression, family history of major depression and dysthymia. Together with the 
demographic information in Section 1, we produced the nesarc_ll2.xls data set as 
shown below. There are 2,339 dysthymia respondents in the survey. After listwise 
deletion, the sample size is 1,698. 
 

 

 
 

http://niaaa.census.gov/index.html
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The variables of interest are: 
 

o PSU is the Census 2000/2001 Supplementary Survey (C2SS) primary 
sampling unit (PSU). 

o WEIGHT is the final weight, calculated as the product of the NESARC base 
weight and other individual weighting factors. 

o WHITEOTH represents the white and other ethnicities, excluding African 
American and Hispanic. It is recoded from items S1Q1C, S1Q1D2, S1Q1D3 
and S1Q1D5 in the NESARC source code (1 for white and other, 0 for African 
American and Hispanic). 

o BLACK represents African Americans. It is recoded from items S1Q1C and 
S1Q1D3 in the NESARC source code (1 for African American, 0 for others). 

o HISPANIC is an indicator for Hispanic. It is recoded from items S1Q1C, 
S1Q1D3 and S1Q1D5 (1 for Hispanic, 0 for others). 

o M_S_DEP is recoded from item S4BQ10C. It is the response to the statement 
"Any of natural mother's full sisters ever depressed," with 1 for "Yes," and 0 
for "No." 

o ARG_DEP is recoded from item S4CQ43. It represents the response to the 
statement "Had arguments/friction with family, friends, people at work, or 
anyone else," with 1 for "Yes," 0 for "No." 

o AGE_DEP is a renamed version of item S4CQ7AR. It represents the age at 
onset of first episode of dysthymia. 

 
Inspection of the data shows that only about 2% of 43,093 respondents are of Asian 
and Pacific origin. Due to the skewness of the distribution of ethnicity, we recoded 
the variables representing ethnic origin. The resulting variable WHITEOTH represents 
this recoding of respondents as being either white or from other ethnic groups 
(blacks and Hispanics excluded).   
 

3.1.1.1 Importing the data and defining variable types 

The data set shown previously is available in the form of a spreadsheet file, named 
nesarc_ll2.xls. This file contains a subset of the original NESARC data, i.e. data for 
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the 1,698 respondents who reported some form of depression and for whom 
complete information on variables of interest was available.  
 
The first step is to create the SuperMix spreadsheet file (*.ss3) from the Excel file:  

o  Use the Import Data File option on the File menu to load the Open dialog 
box.  

o Browse for the file nesarc_ll2.xls in the examples folder of the SuperMix 
installation folder.  

o Select the file and click on the Open button to open the following SuperMix 
spreadsheet window nesarc_ll2.ss3. 

 

 

 
Next, we define the variable types. Highlight WHITEOTH by clicking on the variable 
name, and then right click to open the following pop-up menu. Select the Column 
Properties option  
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to open the Column Properties dialog box. Checking the Nominal radio button 
enables the user to define the labels. Input correct labels for the different categories 
as shown below. 
 

 

 
Similarly define BLACK, HISPANIC, M_S_DEP and ARG_DEP as nominal variables 
and define AGE_DEP as continuous.  
 
To save the nesarc_ll2.ss3 spreadsheet, select the Save As option from the File menu 
to load the Save As Spreadsheet Data dialog box, and then enter the desired file 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

106 

name in the File name string field as shown below. Click on the Save button when 
done.  
 

 

 

3.1.1.2 Exploring the data 

Graphics are often a useful data-exploring technique through which the researcher 
may familiarize her- or himself with the data. Relationships and trends may be 
conveyed in an informal and simplified visual form via graphical displays. SuperMix 
offers both data-based and model-based graphs. Data-based graphing options are 
accessed via the File, Data-based Graphs option once a SuperMix data file (.ss3) is 
opened, and include Exploratory, Univariate, Bivariate and Multivariate graphs as 
shown on the pop-up menu below. Model-based graphs are available after the 
analysis has been performed, and will be discussed later in this section. 

 
In the case of data-based graphs, we distinguish between three categories: 
univariate, bivariate, and multivariate graphs. Univariate graphs are particularly 
useful to obtain an overview of the characteristics of a variable. However, they do 
not necessarily offer the tools needed to explore longitudinal data as completely as 
one would wish. For that purpose, bivariate and multivariate data-based graphs are 
more appropriate. 
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Univariate graphs 

The pop-up menu below shows the data-based graphing options currently available 
in SuperMix. As a first step, we take a look at the distribution of age at onset of first 
depression episode (AGE_DEP), which is the potential dependent variable in this 
study.  
 

Histograms 
A histogram represents the frequency of cases per unit interval. It gives a good 
picture of the distribution of a variable. To create a histogram for AGE_DEP, select 
the Univariate option from the Data-based Graphs menu as shown below. 
 

 

The Univariate plot dialog box appears. Select the variable AGE_DEP and indicate 
that a Histogram is to be graphed. The desired number of intervals shown on the 
histogram is controlled by the Number of class intervals field. It is specified as 18 in 
this case. Click the Plot button to display the histogram. 
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The histogram, as seen below, shows that the distribution of AGE_DEP is nearly 
symmetrical, and should satisfy the normality assumptions implicit in a multilevel 
model.  

 
Figure 3.1: Histogram of the variable AGE_DEP 
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3.1.2 2-level random intercept model with 2 predictors 

3.1.2.1 The model 

A two-level multilevel model consists of two submodels, one at each level of the 
hierarchy. A general two-level model for a continuous response variable y  
depending on a set of p  predictors 1 2 rx , x , ,x  can be written in the form 

 ' '
ij ij ij i ijy e= + +x β z v  

where 1 2i , , , N=   denotes the level-2 units, and 1 2 ij , , , n=   the level-1 units. In 
this context, ijy  represents the response of individual j , nested within level-2 unit 
i . The model shown here consists of a fixed and a random part. The fixed part of 
the model is represented by the vector product '

ijx β , where '
ijx  is a typical row of the 

design matrix of the fixed part of the model with, as elements, a subset of the p  
predictors. The vector β  contains the fixed, but unknown parameters to be 
estimated. '

ij iz v  and ije  denote the random part of the model at levels 2 and 1 

respectively. For example, '
ijz  represents a typical row of the design matrix of the 

random part at level 2, and iv  the vector of random level-2 effects to be estimated. 
It is assumed that 01 02 0Nv ,v , ,v  are independently and identically distributed (i.i.d.) 
with mean vector 0  and covariance matrix (v)Φ . Similarly, the ije  are assumed 

i.i.d., with mean 0 and variance 2σ . 
 
The first model fitted to the NESARC data explores the relationship between 
AGE_DEP and the maternal-side depression and argument involvement, as 
represented by the variables M_S_DEP and ARG_DEP. The level-1 model is at a 
patient level, while the level-2 model is at a PSU level. The model can be expressed 
as 
 
Level-1 model:  

( ) ( )0 1 2AGE_DEP MS_DEP ARG_DEPij i i i ijij ij
b b b e= + × + × +  
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Level-2 model: 

0 0 0

1 1

2 2

i i

i

i

b v
b
b

β
β
β

= +
=
=

 

where  

( )
( )

20,

0,
i i

i i

e N

N

σ I

v Σ

:

:
 

0β  denotes the average expected age at onset of the first episode and 1β  denotes the 
coefficient of the predictor variable M_S_DEP (slope) in the fixed part of the model. 
Given that the variable M_S_DEP is an indicator variable, 1β  is in effect the 
expected change in age at onset for patients who reported maternal-side depression. 
Likewise, 2β  is in effect the expected change in age at onset for patients who 
reported arguments and stress. The random coefficients 0iv  and ije  denote the 
variation in the average expected AGE_DEP value between PSUs and between 
patients respectively.  
 
The model can also be written in so-called mixed model notation, as shown below. 

0 1 2 0AGE_DEP M_S_DEP ARG_DEPij ij ij i ijv eβ β β= + ∗ + ∗ + +  

 

3.1.2.2 Setting up the analysis 

Open the SuperMix spreadsheet nesarc_ll2.ss3 used during the exploratory analysis 
discussed previously. The next step is to describe the model to be fitted. We use the 
SuperMix interface to provide the model specifications. From the main menu bar, 
select the File, New Model Setup option.  
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The Model Setup window that appears has six tabs. In this example, only the screens 
associated with the first two tabs are used. Information entered on these tabs are 
subsequently saved to a syntax file (*.mum) that can be retrieved later as needed. 
 

 
 
The Configuration screen is the first tab on the Model Setup window. It enables the 
user to define the outcome variable, level-2 and level-3 IDs. Some other settings 
such as missing values, the convergence criterion, the number of iterations, etc. can 
be specified here. For all the available settings, please refer to Section 2.4. To obtain 
the model we discussed, proceed as follows: 
 

o Select the continuous outcome variable AGE_DEP from the Dependent 
Variable drop-down list box.  

o Select PSU from Level-2 ID drop-down list box.  
o Enter a title for the analysis in the Title text boxes (optional).  
o Keep all the other settings on the Configuration screen at their default values. 

Proceed to the Variables screen by clicking on that tab. 
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The Variables screen is used to specify the fixed and random effects to be included 
in the model. This screen shows the list of variables available for analysis and next 
to it two columns, with headings E (for explanatory variables) and 2 (for level-2 
random effects). Select the explanatory (fixed) variables by checking the E check 
boxes next to the variables M_S_DEP and ARG_DEP in the Available grid at the left 
of the screen. Note that, as the variables are selected, they are listed in the 
Explanatory Variables grid. After selecting all the explanatory variables, the screen 
shown below is obtained. 
 
Note that the Include Intercept check boxes in the Explanatory Variables grid and L-2 
Random Effects grid are checked by default, indicating that an intercept term will 
automatically be included in the fixed and random parts of the model.  
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Before running the analysis, the model specifications have to be saved. Select the 
File, Save As option, provide a name (nesarc_ll2.mum) for the model specification 
file, and save. 
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Run the analysis by selecting the Run option from the Analysis menu. The standard 
output file opens. It can also be viewed by selecting the View Output option from the 
same menu.  
 

 
 

3.1.2.3 Discussion of results 

Portions of the output file nesarc_ll2.out are shown below.  
 

Program information and syntax 

At the top of the output file, program information is given. It states the type, date 
and time of analysis, and provides contact information for technical support.  
 
Program information is followed by model specifications. This section echoes the 
contents of the syntax file nesarc_ll2.mum. For more information on syntax and 
keywords, please see Section 9.7. 
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Model and data description 

 
 
In the next section of the output file as shown above, a description of the 
hierarchical structure of the data is provided. Data from a total of 371 PSUs and 
1,698 respondents were included at levels 2 and 1 of the model. In addition, a 
summary of the number of respondents nested within each PSU is provided. For 
example, the PSU with N2:14 had 15 respondents. Note that N2:2 had only 1 
observation, which means that the estimation for this PSU might not be reliable. 
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Descriptive statistics and starting values 

The data summary is followed by descriptive statistics for all the variables included 
in the model. We note that the observed average age at the onset of depression is 
approximately 31 years. 
 

  
 
Descriptive statistics are followed by the starting values of the parameters that were 
used in the initial step of the iterative algorithm. These starting values are obtained 
by ordinary least squares (OLS) regression, which calculates the estimates by 
minimizing the sum of the squares of the residuals. 
 
The  starting values for the fixed regressor(s) are shown below. The log likelihood 
value and number of free parameters of the OLS regression are given in this part 
of the output. 
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The  starting values for the random effects are given next. 
 

 
 

Fixed effects results 

The output describing the estimated fixed effects after convergence is shown next. 
The estimates are shown in the column with heading Estimate, and correspond to the 
coefficients 0 1,β β  and 2β  in the model specification. From the z-values and 
associated exceedance probabilities, we see that all three estimates are highly 
significant.  
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The estimated intercept is 37.472, which means that the average age of the first 
episode onset of the dysthymia respondents who do not have mother-side depression 
history and don't argue with others is around 37.4. The estimated coefficients 
associated with the mother-side history of depression (M_S_DEP) is – 4.898, which 
indicates that the respondents who have maternal-side depression history tend to get 
the first episode about five years earlier than those who do not (given the same 
response on ARG_DEP). The estimate for the indicator of argument involvement 
(ARG_DEP) shows that a respondent who has argument(s) with others is likely to 
have a first episode of depression about eight years earlier than a respondent who 
did not report arguing.  
 

Fit statistics  

In addition to the likelihood function value at convergence, a number of related 
statistical measures for assessing model adequacy are available. The most common 
of these are the likelihood ratio test and Akaike's and Schwarz's criteria. Both the 
Akaike information criterion (AIC) and the Schwarz Bayesian criterion (SBC) are 
functions of the number of estimated parameters, and therefore "penalize" models 
with large numbers of parameters. In the SuperMix output file, all three of these are 
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reported. A 2χ  scale factor, with which a 2χ -value obtained from the difference 
between two deviance statistics should be multiplied to yield a corrected 2χ  statistic 
in the case of a weighted analysis, may also be found in this section. 
 

  
 

o The deviance is defined as 2 ln L− . For a pair of nested models, the 
difference in 2 ln L−  values has a 2χ  distribution, with degrees of freedom 
equal to the difference in number of parameters estimated in the models 
compared.  

o The AIC was originally proposed for time-series models, but is also used in 
regression. It is defined as 2 ln 2L r− + , where r  denotes the number of 
parameters estimated in the model. The model with minimum AIC, in a set of 
nested models, will be the most parsimonious according to this criterion. 

o The SBC is defined as 2 ln logL r n− + , where n  denotes the number of units 
at the highest level of the hierarchy. A smaller value of this criterion would 
indicate the most parsimonious of the models being compared.  
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Random effects results 

The output for the random part of the model follows, and is shown in the image 
below. In the case of a model with only a random intercept, there are two variances 
of interest: the variation in the random intercept over the patients, and the residual 
variation at level 1 over the measurements. There is no significant variation in the 
average estimated AGE_DEP at level 2 ( p  = 0.33). This indicates that the expected 
average age at onset of depression does not differ significantly from PSU to PSU 
(the level-2 units). Significant differences between the patients (the level-1 units) 
are reported ( p  = 0.00). 
 

 
 

3.1.2.4 Interpreting the results 

Model-based graphs 

Activate the Model Setup window by clicking on it. Using the Plot Equations for: 
AGE_DEP dialog box that appears when the File, Model-based Graphs, Equations 
option is selected, we can graphically depict the trend in expected age at onset of 
depression, taking the values of the predictors M_S_DEP and ARG_DEP into account. 
The dialog box below shows the selection of the predictor M_S_DEP. Marking of the 
plots by ARG_DEP is also requested. Two graphs will thus be displayed on the same 
set of axes: one for each value of the indicator variable ARG_DEP. By default, all 
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variables present in the model, but not selected for inclusion in the graph, will be 
assumed to have a value of 0.  
 
The graph below shows the result obtained when the Plot button is clicked after 
completion of the Plot Equations for: AGE_DEP dialog box as shown above. We note 
that patients who did not report arguing are expected to experience onset 
approximately 8 years later than patients reporting involvement in arguments. 
 

 

   
Figure 3.2: Plot of AGE_DEP versus M_S_DEP for 2 groups 
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A similar plot for the predictor ARG_DEP is given next. This graph was obtained by 
swapping the positions of the M_S_DEP and ARG_DEP variables on the Plot 
Equations for: AGE_DEP dialog box. Note that patients with maternal-side 
depression had their first episode approximately 5 years earlier than patients with no 
history of maternal-side depression. The two graphs shown represent the graphic 
interpretation of the fixed effect estimates shown previously. 
 

 
Figure 3.3: Plot of AGE_DEP versus M_S_DEP for 2 groups 
 

ICCs and % variance explained 

By calculating the total variation in the age at onset as explained by the current 
model, we can obtain an estimate of the intracluster correlation coefficient. We first 
need to calculate the total variation in the outcome variable, which for this model is 

defined as 0var( ) var( )ij ie v
∧ ∧

+ . 
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The intracluster coefficient is then defined as 

 0

0

var( )

var( ) var( )
i

ij i

vICC
e v

∧

∧ ∧=
+

 

and represents the proportion of variation in age at onset that is between the groups 
(PSUs). An estimate of the percentage of variation in the outcome at a PSU level is 
obtained as 

 2.78918 100% 1.29%
2.78918 213.07164 

× =
+

 

indicating that only 1.29% of the total variance is explained at PSU level; the rest of  
the variance remains at the respondent level.  
 

3.1.3 A 2-level random intercept model with 4 predictors  

3.1.3.1 The model 

In the previous section, we modeled the outcome variable AGE_DEP as a function of 
M_S_DEP and ARG_DEP. The extended model discussed in this section takes the 
ethnicity of a respondent into consideration. The model fitted is expressed as 
follows: 

0 1 2

3 4 0

AGE_DEP BLACK HISPANIC

M_S_DEP ARG_DEP .
ij ij ij

ij ij i ijv e
β β β

β β

= + ∗ + ∗

+ ∗ + ∗ + +
 

As before, 0β  denotes the average expected age at the onset of first episode, 

1 2 4, , ,β β β  indicate the estimated coefficients associated with the fixed part of the 
model, and 0iv  and ije  represent the random part of the model.  

 
Recall from Section 3.1  that ethnicity was represented by 3 indicator variables, 
namely WHITEOTH, BLACK and HISPANIC. In the model formulated above, only two 
of these variables have been included. This was done since the inclusion of all three 
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indicators and the intercept term in the model would cause collinearity between the 
fixed effects. Any of the respondents will have a value of "1" on one of the three 
ethnicity indicators. If the values of the indicators are added together in a column-
wise fashion, a column of 1s will result. The intercept variable is represented by just 
such a column of 1s in the program. If a linear combination of a subset of the 
columns of the design matrix is a constant multiple of another column, a condition 
referred to as multicollinearity is present and the model cannot be estimated 
properly. 
 
Consider an example where three respondents, one from each of the three ethnic 
groups, are considered: 
 

 Patient WHITEOTH     BLACK   HISPANIC Sum of Ethnicity var.       Intercept 
  1 1  0  0  1   1 
 2 0  1  0  1   1 
 3 0  0  1  1   1 

 
There are two ways in which the model can be formulated to avoid running into this 
problem. The first is to exclude the intercept and use only the three ethnicity 
indicators. Such a model, as shown below, 

0 1 2

3 4 0

AGE_DEP WHITEOTH BLACK HISPANIC

M_S_DEP ARG_DEP
ij ij ij ij

ij ij i ijv e
β β β

β β

= ∗ + ∗ + ∗

+ ∗ + ∗ + +
 

would not offer an estimated coefficient of the average age at onset. Instead, the 
expected average age at onset for each of the three ethnic groups may be deduced 
from the estimated coefficients for WHITEOTH, BLACK and HISPANIC. 
 
Alternatively, one can drop one of the ethnicity indicators from the model while 
retaining the intercept coefficient. This is what we have opted to do in the current 
example: 

0 1 2

3 4 0

AGE_DEP BLACK HISPANIC

M_S_DEP ARG_DEP
ij ij ij

ij ij i ijv e
β β β

β β

= + ∗ + ∗

+ ∗ + ∗ + +
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In the case of this formulation, the intercept coefficient represents the expected 
average age at onset for a patient with a value of zero on all the predictors. But if the 
indicators BLACK and HISPANIC assume a value of 0, it implies that the remaining 
ethnicity variable WHITEOTH must have a value of 1. As a result, the interpretation 
of the intercept coefficient would be the expected average onset age for a patient 
who is white or from some other ethnic origin (excluding African American and 
Hispanic). This ethnic group thus becomes the reference group in the current 
analysis. Any of the ethnic groups can be used as the reference group by simply 
adjusting the coding of the indicator variables; the only proviso being that the group 
of interest have sufficient data to serve as stable reference group. 
 

3.1.3.2 Setting up the analysis 

The SuperMix spreadsheet nesarc_ll2.ss3 and the model specification file 
nesarc_ll2.mum discussed in the previous example are used a point of departure.  
 
With the model specification file open, click on the Variables tab of the Model Setup 
window. Add the predictors BLACK and HISPANIC to the model by checking the 
boxes next to these variables in the E column, as shown below. 
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Save the modified model as nesarc_ll22.mum specification file, and select the Run 
option from the Analysis menu to perform the analysis. 
 

3.1.3.3 Discussion of results  

Fixed effects results 

The maximum likelihood estimates of the coefficients in the fixed part of the model 
are shown below. Statistically the estimate for HISPANIC is not significant 
( p =0.61). Both estimates for BLACK and HISPANIC are negative, which indicates 
that African American and Hispanic respondents tend to have an earlier onset of the 
first episode when compare with patients from white and other ethnic groups. 
 

 
 

Fit statistics  

Fit statistics for the current model are reported as shown below. 
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Random effects results 

The output for the random part of the model is given next.  
 

 
 
The random intercept effect at level 2 is not significant. As before, most of the 
variation in scores is found at a respondent level, with only about 2% of the 
variation remaining at the PSU level. 

 

3.1.3.4 Interpreting the results 

Estimated outcomes for different groups 

The estimated outcome for any patient can be obtained using the formula 
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0 1 2 3

4

AGE_DEP BLACK HISPANIC M_S_DEP

ARG_DEP

ij ij ij ij

ij

β β β β

β

∧ ∧ ∧ ∧ ∧

∧

= + ∗ + ∗ + ∗

+ ∗
 

For a white respondent, the expected AGE_DEP can be calculated as 

0 3 4AGE_DEP M_S_DEP ARG_DEP

38.04388 4.90955 M_S_DEP 8.15043 ARG_DEP .
ij ij ij

ij ij

β β β
∧ ∧ ∧ ∧

= + ∗ + ∗

= − × − ×
 

For African American respondents BLACK = 1, and thus the formula used to predict 
their AGE_DEP scores reduces to 

0 1 3 4AGE_DEP BLACK M_S_DEP ARG_DEP

38.04388 2.50738 1 4.90955 M_S_DEP 8.15043 ARG_DEP .
ij ij ij ij

ij ij

β β β β
∧ ∧ ∧ ∧ ∧

= + ∗ + ∗ + ∗

= − × − × − ×
 

The formula for a patient of Hispanic origin can be derived in a similar way. In 3.1, 
the same expected ages of the first episode onset for different groups are calculated 
based on the formulas above. 
  

Table 3.1: Expected AGE_DEP for various groups of patients 
 

Origin M_S_DEP = No 
ARG_DEP = No 

M_S_DEP = Yes 
ARG_DEP = No 

M_S_DEP = No 
ARG_DEP = Yes 

M_S_DEP = Yes 
ARG_DEP = Yes 

White & Other 38.04 33.13 29.89 24.98 
African American 35.54 30.63 27.39 22.48 

Hispanic 37.50 32.59 29.35 24.44 
 

The results show that the respondent who has a history of maternal-side depression 
or gets involved into arguments generally has an earlier onset age for the first 
episode. For the respondents with the same M_S_DEP and ARG_DEP values, the 
average first episode onset ages of African American respondents are the lowest. 
We also conclude that a patient involved in arguments (ARG_DEP = 1) is likely to 
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have an earlier onset age of depression than a patient with maternal-side depression 
only (M_S_DEP = 1). 
 

Fit statistics and % variation explained 

Table 3.2 shows the fit indices for the previous and current models. 
 

TABLE 3.2: Comparison of random intercept models for NESARC data 
 

Fit indices Model with 2 
indicators 

Model with 4 
indicators Difference 

Log Likelihood –6971.8161 –6968.6728  
–2 Log Likelihood (Deviance) 13943.6321 13937.3456 6.2865 
Akaike's Information Criterion 13953.6321 13951.3456 2.2865 
Schwarz's Bayesian Criterion 13973.2131 13978.7591 –5.5460 
Number of free parameters 5 7  

 
The difference in deviances can be used to assess the model fit. This method is valid 
for nested models. A nested model may be defined as any submodel of a given 
model that is based on the same number of observations. Given the difference in 
structure between the 2-level models these models cannot, however, be compared to 
each other.  
 
The difference in the deviances follows a 2χ distribution, where the degree of 
freedom is the difference of numbers of free parameters.  

( ) ( ) ( ) ( )( )22 ln 2ln ~ . . 2 ln 2lnmodel1 model2 model2 model1d fχ− − − − − −  

When the deviances of the two models are compared, a 2χ -statistic of 13943.6321 
– 13937.3456 = 6.2865 with 7 – 5 = 2 degrees of freedom is obtained. This indicates 
that the current model fits the data better. The AIC decreased from 13953.6321 to 
13951.3456, and also favors the use of the 4-predictor model. The SBC, however, 
increased slightly, from 13973.2131 to 13978.7591, and thus favors the model 
previously fitted as the more parsimonious. The definitions of these indices are 
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given in the discussion of the output of the previous model. Note, however, that the 
changes in all three criteria are rather small. 
 
The estimated percentages of variation in outcome at respondent level can be 
calculated using the variance components reported in the random effects part of the 
output file:  

 211.80901 100% 98.46%
211.80901  3.31353 

× =
+

. 

Once the additional level-1 predictors are taken into account, there does not seem to 
be significant random variation in the outcome over the intercepts of the level-2 
units. The estimated average onset age of the first episode does not vary 
significantly from PSU to PSU.  
 

3.2 Models based on the Reisby data 

3.2.1 The data 

The data set is from a study described in Reisby et. al. (1977) that focused on the 
longitudinal relationship between imipramine (IMI) and desipramine (DMI) plasma 
levels and clinical response in 66 depressed inpatients (37 endogenous and 29 non-
endogenous). Following a placebo period of 1 week, patients received 225 mg/day 
doses of imipramine for four weeks. In this study, subjects were rated with the 
Hamilton depression rating scale (HDRS) twice during the baseline placebo week (at 
the start and end of this week) as well as at the end of each of the four treatment 
weeks of the study. Plasma level measurements of both IMI and its metabolite DMI 
were made at the end of each week. The sex and age of each patient were recorded 
and a diagnosis of endogenous or non-endogenous depression was made for each 
patient.  
 
Although the total number of subjects in this study was 66, the number of subjects 
with all measures at each of the weeks fluctuated: 61 at week 0 (start of placebo 
week), 63 at week 1 (end of placebo week), 65 at week 2 (end of first drug treatment 
week), 65 at week 3 (end of second drug treatment week), 63 at week 4 (end of third 
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drug treatment week), and 58 at week 5 (end of fourth drug treatment week). The 
sample size is 375. Data for the first 10 observations of all the variables used in this 
section are shown below in the form of a SuperMix spreadsheet file, named 
reisby.ss3. 
 

 
 
The variables of interest are: 
 

o Patient is the patient ID (66 patients in total). 
o HDRS is the Hamilton depression rating scale. 
o WEEK represents the week (0, 1, 2, 3, 4 or 5) at which a measurement was 

made. 
o WEEKSQ represents the squared values of WEEK. The creation of this 

variable is illustrated in Section 3.2.1.1. 
o ENDOG is a dummy variable for the type of depression a patient was 

diagnosed with (1 for endogenous depression and 0 for non-endogenous 
depression). 

o WxENDOG represents the interaction between WEEK and ENDOG, and is the 
product of WEEK and ENDOG. 
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3.2.1.1 Exploring the data 

Graphing the observed data 

In the previous example, we have shown a number of data-based graphs. Here, we 
use the Exploratory option of the Data-Based Graphs menu to explore the data in the 
reisby.ss3 spreadsheet, stored in the Continuous subfolder.  
 
Start by opening the data file in the SuperMix spreadsheet. Then select the Data-
based Graphs, Exploratory option on the File menu as shown below to activate the 
New Graph dialog box. 
 

 
 
Specify HDRS as the dependent (vertical axis) variable by selecting it from the Y 
drop-down list box and WEEK as the independent (horizontal axis) variable by 
selecting it from the X drop-down list box. A graph on the same axis system is 
created for each patient by selecting the variable Patient from the Overlay drop-down 
list box. Furthermore, each graph is assigned a color by selecting ENDOG from the 
Color drop-down list box to produce the following New Graph dialog box.  
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Click on the OK button to produce the following graph of the reaction trajectories 
over time for the 66 inpatients. 
 

 
Figure 3.4: Reaction trajectories over time for 66 patients 

 
To modify the existing graphic display, select the Edit Graph option from the 
Settings menu to load the Edit Graph dialog box. To obtain different graphs for the 
two categories of the covariate ENDOG, select it from the Filter drop-down list box 
to produce the following Edit Graph dialog box. 
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Click on the OK button to open the following graphics window. 
 

 
Figure 3.5: Reaction trajectories over time for patients with ENDOG=0 

 
At the bottom of the graphics window is a "slider" with left and right arrows. By 
clicking on the right arrow, one can obtain the next graphic shown below and by 
clicking on the left arrow, the graphic above. 
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Figure 3.6: Reaction trajectories over time for patients with ENDOG=1 

 
The above graphs show a general, approximately linear decline over time and an 
increase in the variability of the HDRS scores across time for both types of 
depression.  
 

3.2.2  A 2-level random intercept-and-slope model 

From the graphical display obtained in the previous section, it seems as if the HDRS 
scores follow an approximately linear trend over time, decreasing over the course of 
the study. It is also apparent, however, that patients not only start out at different 
levels but also have differences in the slopes of the HDRS against WEEK lines. In 
this section, we explore a model that allows patients not only to have unique 
intercepts, but also unique slopes across time. In other words, we allow both 
intercept and WEEK (slope) to vary randomly over patients. The image below 
demonstrates the meaning of the random slope and random intercept in a 
hypothetical 2-level model.  
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Figure 3.7: Score trends for individual patients 
 

3.2.2.1 The model 

The random intercept-and-slope model for the response variable HDRS may be 
expressed as 

 ( ) ( )0 1 0 1HDRS WEEK WEEKij i i ijij ij
v v eβ β= + × + + +  

We can rewrite the model in the following way.  
 
Level-1 model:  

( )0 1HDRS WEEKij i i ijij
b b e= + × +  

Level-2 model:  

0 0 0

1 1 1

i i

i i

b v
b v

β
β

= +
= +  

where  

( )
( )

2

( )

0,

,

i i

i v

e N

N

σ

Φ

I

v 0

:

:
 

Trend of patient 1 

Average trend of all patients 

Trend of patient 2 
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0β  denotes the average expected depression rating scale value, 1β  denotes the 
coefficient of the predictor variable WEEK (slope) in the fixed part of the model, 1iv  
denotes the variation in the slopes over patients, and 0iv  and ije  denote the variation 
in the average expected HDRS value over patients and between patients respectively. 
Furthermore, i = 1,2,…,66 refers to the 66 patients; j = 1, 2, …, in  refers to the thj  
observation for patient i. The maximum value for in  is 6. 

 

3.2.2.2 Setting up the analysis 

Start by opening the reisby.ss3 file as a SuperMix spreadsheet. Next, select the New 
Model Setup option on the File menu as shown below to load the Model Setup 
window.  
 

 
 
Starting with the Configuration screen, enter the (optional) title in the Title 1 and 
Title 2 text boxes respectively. The continuous outcome variable HDRS is selected 
from the Dependent Variable drop-down list box. The variable Patient, which defines 
the levels of the hierarchy, is selected as the Level-2 ID from the Level-2 IDs drop-
down list box to produce the following Configuration screen.  
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

138 

 
 
Click the Variables tab to proceed to the Variables screen of the Model Setup 
window. The variable Week is specified as the covariate of the fixed part of the 
model by checking the E check box for WEEK in the Available grid. Mark the 2 
check box for Week in the Available grid to specify the random slope at level 2 of the 
model. After completion, the Variables screen should look as shown below. 
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Before the analysis can be run, save the model specifications to reisby1.mum. Run 
the model to produce the output file reisby1.out.  
 

3.2.2.3 Discussion of results 

Descriptive statistics 

The section of the output file shown below contains the descriptive statistics for all 
variables in the current model specification. If all patients' data were complete, the 
average for the time variable WEEK would have been exactly 2.5; the value of 2.48 
indicates that the number of patients with information at each time point fluctuates 
somewhat. 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

140 

 
 

3.2.2.4 Interpreting the results 

 

 
 

The summary of the hierarchical structure of the data shows how the 375 
measurements are nested within the 66 patients. It also indicates that the number of 
repeated measurements per patient varies from 4 to 6 observations. The convergence 
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is attained in 5 iterations. The output file contains the final estimates of the fixed 
and random coefficients included in the model, along with some goodness of fit 
measures as shown . 

 

 
 

Fixed effects results 

The results show a highly significant coefficient (p < 0.00001) for the time effect, as 
represented by the variable WEEK. At the beginning of the study, when WEEK = 0, 
the average expected HDRS score is 23.57695. For each subsequent week, a 
decrease of 2.37707 in average HDRS score is expected. At the end of the study 
period, the average expected HDRS score is 23.57695 – 5(2.37707) = 11.6916. 
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Random effects results 

With the exception of the WEEK-intcept covariance, all variance components are 
highly significant, as shown in the p-value column. From the output above we have 

0var( )iv
∧

 = 12.62930, 1var( )iv
∧

 = 2.07899, 0 1cov( , )i iv v
∧

 = –1.42093, and var( )ije
∧

 = 
12.21663. Typically, one would expect most of the variation in HDRS scores at the 

measurement level, and thus would expect var( )ije
∧

 to be larger than any of the other 
variances/covariances. With these data, however, there is more variation in the 
random intercepts over patients than in the measurements nested within patients. 
Due to this, it may be of interest to take a closer look at the variation in HDRS scores 
at the two levels of the hierarchy. 
 

Fit statistics and ICC 

In the case of a model with only a random intercept, there are two variances of 
interest: the variation in the random intercept over the patients (the level-2 units), 
and the residual variation at level 1, over the measurements. By calculating the total 
variation in the HDRS score explained by such a model, obtained as 

0var( ) var( )ij ie v
∧ ∧

+ , we can obtain an estimate of the intracluster correlation 
coefficient. 
 
The intracluster coefficient is defined as 

 0

0

var( )

var( ) var( )
i

ij i

vICC
e v

∧

∧ ∧=
+

 

and would, for a random intercept model for this data, represent the proportion of 
variation in HDRS scores between patients. The term intracluster correlation 
coefficient applies to random intercept models only; in more complicated models 
the focus is on explanation of variation in various coefficients. 
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In the current model, the situation is somewhat more complicated due to the 
inclusion of both random intercept and random slope. This implies a possible 
correlation between the level-2 random effects. When calculating an estimate of the 
total variation, the covariance(s) between random effects have to be taken into 
account in any attempt to estimate the proportion of variation in outcome at any 
level or for any random coefficient. In addition, the inclusion of a covariate such as 
ENDOG can affect the variance estimates.  
 
The total variation in HDRS scores over patients is defined as 

 [ ]2
0 1 0 1Var(level 2) var( ) var( )(WEEK) 2 cov( , ) (WEEK)i i ij i i ijv v v v= + +  

The total variation is a function of the value assumed by the predictor WEEK, which 
has a random slope. As such, the total variation at the beginning of the study is 

 [ ]2
0 1 0 1

0

Var(level 2) var( ) var( )(0) 2 cov( , ) (0)
var( )

i i i i

i

v v v v
v

= + +

=
 

while at the end of the study we have 

 [ ]2
0 1 0 1

0 1 0 1

Var(level 2) var( ) var( )(5) 2 cov( , ) (5)
var( ) 25var( ) 10cov( , )

i i i i

i i i i

v v v v
v v v v

= + +

= + +
 

An estimate of the total variation at this level can be obtained by using the estimates 

of the variances and covariance obtained under this model. By substituting 0var( )iv
∧

, 

1var( )iv
∧

, and 0 1cov( , )i iv v
∧

 into the equations above, we obtain the estimated 
variation in HDRS scores over patients at different points during the study period. 
 
At the beginning of the study, the estimated total variation in HDRS scores over 

patients is simply the estimated variation in the random intercept, i.e., 0var( )iv
∧

 = 
12.62930. At the end of the study, the total variation at level-2 is estimated as 
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0 1 0 1var( 2) var( ) 25var( ) 10cov( , )
12.62930 25(2.07899) 10( 1.42093)
50.39475.

i i i ilevel v v v v
∧ ∧ ∧ ∧

= + +
= + + −
=

 

At the beginning of the study we obtain  

 
var(level 2) 12.62930

12.62930 12.21663var(level 2) var(level1)
0.5083

∧

∧ ∧ =
++

=

 

and thus conclude that 50.8% of the variation in HDRS scores at this time is over 
patients. At the end of the study, we find that  

var(level 2) 50.39475
50.39475 12.21663var(level 2) var(level1)
0.8049,

∧

∧ ∧ =
++

=

 

so that only 20% of the variation in HDRS scores are estimated to be at the 
measurement level, with 80% at the patient level. As mentioned before, the total 
variation in HDRS scores is a function of the time of measurement, as represented by 
the variable WEEK. The very different estimates of variation at a patient level show 
how the introduction of an important predictor, in this case at the measurement 
level, can have an impact on variance estimates at a different level of the hierarchy. 
By the end of the study period, the residual variation over measurements has been 
dramatically reduced, this being explained to a large extent by the inclusion of the 
time effect. Most of the remaining unexplained variation is at the patient level.  
 
As a result of this finding and in the light of our original research question, whether 
the initial depression classification of a patient is also related to the HDRS scores 
over the time in which medication is administered, the model will be extended to 
include the covariate ENDOG. This dichotomous variable assumes a value of 1 when 
endogenous depression was diagnosed, and 0 if not. In addition, we will provide for 
a possible interaction between depression classification and measurement occasion 
by including the interaction term WxENDOG in the model. While WxENDOG can be 
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viewed as a cross-level interaction, as WEEK is a measurement-level variable and 
ENDOG a patient-level variable, the inclusion of the patient-level variable ENDOG 
may enable us to explain more of the remaining variation in the random intercepts 
and slopes at the patient level. 
 

3.2.3 A 2-level random intercept-and-slope model with centered 
predictor 

In the previous example, the time variable WEEK is coded from 0 to 5 and indicates 
the number of weekly follow-ups. The estimated average intercept of 23.577 
obtained for this model represented the expected average HDRS score at the 
beginning of the study, i.e. WEEK = 0. An alternative formulation of the model that 
can be considered is one in which the estimated average intercept represents the 
expected average HDRS score midway through the study period. This linear 
transformation of the predictor variable WEEK, in which the grand mean of the 
variable is subtracted from each observed WEEK value, is referred to as grand mean 
centering. While the model based on the "raw" data and the model utilizing grand 
mean centered variables can be shown to be mathematically equivalent, the 
coefficients in these models have very different meanings.  
 

3.2.3.1 Preparing the data 

Recall that the descriptive statistics in the previous model indicated a mean value 
over all level-1 observations of WEEK equal to 2.48. This is the true observed mean, 
compared to the value of 2.5 that would have been obtained if all patients had 
complete data over the course of the study. Here, we opt to use the value of 2.5 to 
center the WEEK variable.  
 
To grand mean center the predictor WEEK, proceed as follows. Open the reisby.ss3 
in the SuperMix spreadsheet, then highlight the column WEEK. Select the Insert 
Column option on the Edit menu as shown below to insert a blank column named D 
after WEEK.  
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Keep the column D highlighted, type the formula (C1)–2.5 in the string field of the 
top-left corner and click on the Apply button to produce the following screen.  
 

 
 
Rename the newly created variable to WEEKC by first highlighting the column, then 
selecting the Column Properties option on the Edit menu as shown below. 
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Input the desired variable name, e.g. WEEKC, in the Header string field as shown 
below and click on the OK button. By default, all variables are assumed to be 
continuous. 
 

 

 
Save the changes to reisby.ss3 by selecting the Save option on the File menu. 
 

3.2.3.2 The model 

The revised random intercept-and-slope model for the response variable HDRS may 
be expressed as 

 ( ) ( )0 1 0 1HDRS WEEKC WEEKCij i i ijij ij
v v eβ β= + × + + +  
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or, alternatively, as 

 ( ) ( )0 1 0 1HDRS WEEK WEEK WEEK WEEKij i i ijij ij
v v eβ β    = + × − + + − +     

where WEEK 2.5.=  
 

3.2.3.3 Setting up the analysis 

Open the previous model setup for reisby1.mum. Save the file as reisby2.mum by 
using the Save As option on the File menu. Change the title on the Configuration tab 
if desired.  
 
Click on the Variables tab and select WEEKC both as Explanatory Variable and L-2 
Random Effects instead of WEEK as shown below.  
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Save the changes to the file reisby2.mum. Select the Run option on the Analysis 
menu to produce the output file reisby2.out. Use the Analysis, View Output option to 
open the output file. 

3.2.3.4 Discussion of results 

The output file contains the final estimates of the fixed and random coefficients 
included in the model, along with some goodness of fit measures as given below. 
Note that the use of grand mean centering of the time variable has no effect on the 
fit statistics.  
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3.2.3.5 Interpreting the results 

Comparison of models  

Table 3.3 contains the estimates and standard errors of the above two analyses. The 
coefficient for WEEKC is the same as for the uncentered variable WEEK. However, 
the variance of the random intercept (

0

2
vσ ) and the covariance term 

0 1v vσ  have 
changed. The covariance between the intercept and the WEEKC slope is now 
significant.  
 

Table 3.3: Estimates and standard errors for two models 
 

Coefficient Level-2 model 
 WEEK = 0 ~ 5 WEEKC = –2.5 ~ 2.5 

0β  23.57695 17.63428 
  (0.54555) (0.56031) 

 1β  –2.37707 –2.37707 
  (0.20865) (0.20865) 

 
0

2
vσ  12.6293 18.51833 

  (3.46653) (3.61203) 
 

0 1v vσ  –1.42093 3.77654 

  (1.02595) (1.05839) 
 

1

2
vσ  2.07899 2.07899 

  (0.50417) (0.50416) 
 2

eσ  12.21663 12.21663 

  (1.10697) (1.10697) 
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Table 3.3: Estimates and standard errors for two models (continued) 
 

Deviance 2219.0375 2219.0375 
 AIC  2231.0375 2231.0375 
 SBC 2244.1754 2244.1754 
 Number of free parameters       6 6 

 
As shown above, the estimates of the slope and its variance are the same. This is 
because the scale of WEEK was not changed; only its location changed. The 
estimated intercept decreased from 23.58 to 17.63, which corresponds to the average 
HDRS score at week 2.5 instead of week 0. Similarly, the 

0

2
vσ  of intercept increased 

to 18.52, which shows the increase of the individual variance at week 2.5. The 
change of 

0 1v vσ  is interesting: not only the value changed, but also the sign. The 
covariance of the first analysis tells us that the higher the variance of intercept, the 
lower the variance of slope. Or say, at week 1, the HDRS score decreases at a faster 
rate for those patients who started with higher HDRS. However, at week 2.5, the 
patients with higher HDRS tend to improve less.  
 

   
Figure 3.8: Changes in covariance over time 

When looking at the three HDRS versus WEEK plots for patient 604, 302 and 361, 
we can see why this could happen. The graphs show the change of 

0 1v vσ  from week 
0 to week 2.5. 
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3.2.4 A random intercept-and-slope with a covariate and an interaction 
term 

The type of depression a patient was diagnosed with was recorded as part of the 
study and information on this patient characteristic is represented by the variable 
ENDOG, which assumes a value of 1 for patients with endogeneous depression and 0 
otherwise. Including this variable in the model allows us to explore the potential 
relationship between a patient's HDRS score and the type of depression the patient 
was diagnosed with. Moreover, it is possible that the trend in HDRS scores over the 
study period may differ for the two ENDOG groups. Including an interaction term 
between the time of measurement and the type of depression in the model will allow 
us to evaluate this potential relationship as well. 
 

3.2.4.1 The model 

We now include ENDOG and WxENDOG in the level-1 model. ENDOG is a dummy 
variable representing the type of depression a patient was diagnosed with, and 
WxENDOG represents the interaction between WEEK and ENDOG. The model shows 
changes at both levels: at level 2, the covariate ENDOG is now included, while at 
level 1 the interaction between WEEK and ENDOG, which can potentially change 
from week to week, is added. The revised model for the response variable HDRS 
may be expressed as  
 
Level-1 model:  

( ) ( )0 1 2HDRS WEEK WxENDOGij i i i ijij ij
b b b e= + × + × +  

Level-2 model:  

( )0 0 3 0

1 1 1

2 2

ENDOGi ii

i i

i

b v

b v
b

β β

β
β

= + × +

= +

=
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or, in mixed model formulation, as 

( ) ( ) ( )
( )

0 1 2 3

0 1

HDRS WEEK WxENDOG ENDOG

WEEK
ij ij ij i

i i ijij
v v e

β β β β= + × + × + ×

+ + × +
 

where 0β  denotes the average HDRS level at week 0 for the non-endogenous 
depression patients (ENDOG=0), 1β  refers to the weekly improvement for the non-
endogenous group, 2β  indicates the expected change in HDRS score for a unit 
change in the value of the interaction term WxENDOG, and 3β  refers to the average 
expected change in HDRS level for endogenous patients. 0iv  is the individual 
deviation from the average intercept. 1iv  denotes the average deviation from the 
slope, or say, average improvement of the HDRS.  
 
We can also write the model in terms of our original variables (WEEK and ENDOG) 
as: 
 
Level-1 model:  

( ) ( )0 1 2HDRS WEEK WxENDOGij i i i ijij ij
b b b e= + × + × +  

Level-2 model:  

( )
( )

0 0 2 0

1 1 4 1

ENDOG

ENDOG
i ii

i ii

b v

b v

β β

β β

= + × +

= + × +
 

 

3.2.4.2 Setting up the analysis 

To create the model specifications for this model, we start by opening reisby.ss3 in 
a SuperMix spreadsheet window. Then we use the Open Existing Model Setup option 
on the File menu to load the Model Setup window for reisby1.mum. Save the file as 
reisby3.mum by using the Save As option on the File menu. Change the string in the 
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Title 1 text box on the Configuration screen to reflect the new model, thereby 
producing the following dialog box.  
 

 
 
Next, click on the Variables tab to proceed to the Variables screen of the Model 
Setup window. 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

155 

 
 
The two covariates are specified by checking the E check boxes for ENDOG and 
WxENDOG respectively in the Available grid respectively to produce the following 
Variables tab.  
 
Save the changes to the file reisby3.mum. To fit the revised model to the data, select 
the Run option on the Analysis menu to produce the output file reisby3.out.  
 

3.2.4.3 Interpreting the results 

Fixed effects results 

A portion of the output file reisby3.out is shown below.  
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The interaction WxENDOG between the time variable WEEK and the depression 
classification variable ENDOG, is not significant. Given this, we can take a closer 
look at the estimated coefficients for the main effects WEEK and ENDOG 
respectively. Note, however, that the p-value for the ENDOG coefficient is larger 
than 0.05, and thus can only be considered significant at a 10% level of significance. 
The effect of time, on the other hand, is found to be highly significant. While the 
average HDRS score is predicted to decrease by –2.37 score scale units each week, 
patients classified as having endogenous depression (i.e., ENDOG = 1) are predicted 
to have a HDRS score of 2 units higher at all occasions. 
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To obtain the predicted average HDRS scores, the estimates obtained from the output 
are used: 

 0 1 2 3(WEEK) (ENDOG) (WxENDOG)
22.47626 2.36569(WEEK) 1.98802(ENDOG) 0.02706(WxENDOG)

y β β β β
∧ ∧ ∧ ∧ ∧

= + + +
= − + −

  

 

Model comparison 

A question that arises from inspection of the results obtained thus far is whether the 
interaction term contributes overall to the explanation of the variation in the HDRS 
scores. To test this, we can fit a model without the interaction term and use the 
deviance reported in the output to compare results for the model with interaction 
and the model without this term. The relevant output from an analysis without the 
interaction term is shown below. We note that the deviance obtained for the simpler 
model is almost identical to that of the model considered in this section. Based on 
this, we conclude that a model without the interaction WxENDOG would fit the data 
as well as the one with the interaction term included. 
 

 
  
In addition, we can test the hypothesis that the model with covariate (ENDOG) fits 
the data better than the random intercept and slope model considered previously. To 
test this hypothesis, we calculate the difference between the –2 log likelihood value 
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obtained for the previous model and the –2 log likelihood value for the current 
model. It can be shown that this difference of 2219.04 – 2214.93 = 4.11 has a 2χ  
distribution with associated degrees of freedom equal to the difference in the 
number of parameters estimated in the two examples, i.e., 8 – 7 = 1 degrees of 
freedom. Since the p-value for this test statistic is less than 0.05, it is concluded that 
the random intercept-and-slope model with ENDOG as a covariate provides a better 
description of the data than the original random intercept-and-slope model. This 
finding is supported by the fact that the p-value for ENDOG when the interaction 
effect between WEEK and ENDOG is excluded equals 0.04. 
 

3.2.5 A random intercept-and-slope quadratic model 

3.2.5.1 The model 

In this section we include an additional predictor and a random term to examine a 
possible quadratic response trend in HDRS scores over time. Keeping the level-2 
model the same as before, the corresponding model for the response variable HDRS 
may be expressed as  
 
Level-1 model: 

( ) ( )2
0 1 2HDRS WEEK WEEKij i i i ijij ij

b b b e= + × + × +  

Level-2 model:  

0 0 0

1 1 1

2 2 2

i i

i i

i i

b v
b v
b v

β
β
β

= +
= +
= +

 

 

3.2.5.2 Preparing the data 

Create a new blank variable named WEEKSQ as shown in section 2.5.1. Highlight 
the column WEEKSQ, type the formula SQUARE(C1) where C = WEEK in the string 
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field and click on the Apply button to produce the following screen. Save the change 
to reisby.ss3. 
 

 
 

3.2.5.3 Setting up the analysis 

Again, we can modify the model setup file of reisby1.mum by first opening it, then 
saving the file as reisby4.mum. Change the title on the Configuration tab and request 
Bayes estimates by selecting the means & (co)variances option from the Write Bayes 
Estimates drop-down list. 
 
Next, click on the Variables tab to proceed to the Variables screen of the Model 
Setup window. The two covariates are specified by checking the E and 2 check 
boxes for WEEKSQ in the Available grid to produce the Variables screen shown 
below. 
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Save the changes to the file reisby4.mum and run the model.  
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3.2.5.4 Interpreting the results 

A portion of the output file reisby4.out is shown below.  
 

Fixed effects results 

 
 

The level-1 estimate of the WEEKSQ coefficient is 0.05, which turns out not to be 
significant (p = 0.56). On the other hand, the WEEKSQ random effect is significant 
at a 5% level (p = 0.04). Comparing the present results with those reported in 
reisby1.out, we see that the deviance difference of 2219.04 – 2207.65 = 11.19 with 
10 – 7 = 3 degrees of freedom, indicating an improved overall model fit at a 5% 
significance level. These results imply that, although the mean trend of HDRS scores 
over time is linear, some of the individuals' trajectories are quadratic. 
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3.2.5.5 Residuals 

Level 2 Bayes results 

Up to this point, we have considered results averaged over all patients. We now turn 
our attention to the residual file reisby4.ba2, which offers the opportunity to take a 
closer look at the results by individual patient. After running the above model, select 
the Analysis, View L-2 Bayes Results option to open the image below. The contents 
of this file are displayed for the first 5 patients. Three lines of information are given 
for each patient, containing, in order of appearance, 

 
o the number of the patient in the data set,  
o the number of the empirical Bayes coefficient,  
o the empirical Bayes estimate,  
o the estimated variance of the Bayes coefficient, and  
o the name of the associated coefficient as used in the model.  

 

 
 
To obtain patient-specific predicted HDRS scores, the empirical Bayes estimate for 
each patient have to be taken into account, as these estimates indicate the extent to 
which the random intercept or slope for that patient deviates from the intercept and 
slope over all patients. Patient-specific predicted HDRS scores are calculated as 
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2

2
0 1 2

ˆ| 23.76025-2.63258 WEEK 0.05148 WEEK

WEEK WEEK

ij ijij

i i iij ij

y

v v v

β
∧

∧ ∧ ∧

= × + ×

+ + × + ×
 

For the first patient shown in the residual file above, we have 0iv
∧

 = 1.4054, 1iv
∧

 = 

2.6506−  and 2iv
∧

 = 0.099315. From this information, we can already tell that the 
intercept for the patient is higher than average, but that the WEEK slope for this 
patient is lower than average. The positive value of the quadratic term indicates that 
the decreasing rate slows down more quickly than average with an increase in time. 
The predicted HDRS score for this patient (PATIENT = 101) is found to be 

2

2

ˆ| 23.76025-2.63258 WEEK 0.05148 WEEK

1.4054-2.6506 WEEK 0.099315 WEEK
ij ijij

ij ij

y β
∧

= × + ×

+ × + ×
. 

Substituting the WEEK with values 0, 1, …, 5, we get the predicted HDRS scores for 
Patient 101, and similarly, for all the other patients. Table 3.4 and the graphical 
display below give the predicted HDRS for the first 5 patients. 
 

Table 3.4: Predicted HDRS values for selected patients 
 

 Patient 101 Patient 103 Patient 104 Patient 105 Patient 106 Population 
Avg. 

Week 0 25.166 27.507 25.998 21.011 23.643 23.760 
Week 1 20.033 24.192 22.727 18.224 22.757 21.179 
Week 2 15.202 21.117 19.102 15.765 21.587 18.701 
Week 3 10.673 18.282 15.124 13.636 20.133 16.326 
Week 4 6.446 15.686 10.792 11.836 18.396 14.054 
Week 5 2.520 13.330 6.106 10.365 16.375 11.884 
 
We find that Patient 101 had a higher initial HDRS score, but over time obtained a 
lower than average score. For Patient 103, a higher than average predicted HDRS 
score is obtained at each time point. In contrast, Patient 105 scored lower at each 
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time point. The quadratic term doesn't affect much of the population average; 
however the effect is obvious for Patients 105 and 106. 
 

 
Figure 3.9: Predicted HDRS for selected patients 

 

Model-based graphs 

Residual plot 
Level-1 residuals can also be obtained, either for a typical or specific patient, by 
using the empirical Bayes estimates. The residuals for a typical patient are obtained 
as  

2

Patient residual Observed HDRS score |
Observed HDRS score [23.76025-2.63258 WEEK

0.05148 WEEK
ij

ij

y β
∧

= −
= − ×

+ ×
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The residuals for a specific patient use the additional information given by the 
empirical Bayes residuals and have the form 
 

2 2
0 10 20

Patient-specific residual Observed HDRS score |
Observed HDRS score [23.76025-2.63258 WEEK

0.05148 WEEK WEEK WEEK ]

ij

iij ij ij

y

v v v

β
∧

∧ ∧ ∧

= −
= − ×

+ × + + × + ×

 

 
Select the Residuals option on the File, Model-based Graphs menu to activate the 
Plot of Residuals dialog box. Check the Mark check box for WEEK as shown below, 
then click on the Plot button.  
 

 
 
The graph obtained, as shown below, shows that, in general, the range of the level-1 
residuals is 5 5−( ; ) .  
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Figure 3.10: Plot of level-1 residuals vs. predicted values 

 
Inspection of these residuals can be useful in examining the distributional 
assumptions for the level-1 data, in this case at the measurement level. For the 
current example, residuals for a typical patient have a mean of 0.000 with standard 
error of 2.66. Double-click on the middle of the graph to open an additional window 
that shows the detailed residual data for each observation. 
 
We note that the estimate for Patient 101 at the beginning of the study was 25.166, 
and 2.520 at the end of the study. On both occasions, the residuals associated with 
these estimates were positive, indicating that the estimates are above estimated 
average. 
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3.2.6 A 2-level random intercept-and-slope model with autocorrelated 
errors 

In the mixed models discussed so far, it was assumed that the level-1 errors are 
conditionally independent from each other. However, the errors could be correlated 
over time. Different types of correlated error structures are available in SuperMix: the 
first-order stationary autoregressive process, stationary AR(1), the first-order non-
stationary autoregressive process, non-stationary AR(1), the first-order stationary 
moving average process, MA(1), the first-order stationary autoregressive moving 
average process, ARMA(1), and a general Toeplitz autocorrelation structure.  
 
The stationary AR(1) and ARMA(1) use the stationary assumption, that is that the 
variance of errors is constant over time and that the covariance of errors from 
differing times depends only on the time interval between these time points and not 
on the starting time point. The assumption of stationarity is relaxed in the other two 
types of models. In SuperMix, the maximum marginal likelihood (MML) solution at 
convergence is obtained by first using the EM algorithm and then Fisher scoring 
iterations. 
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3.2.6.1 The non-stationary AR(1) model 

The model here is essentially the same as the one we had in section 3.2.2, apart from 
the autocorrelated error term.  
 
Level-1 model: 

0 1 2HDRS WEEK WxENDOG ,ij i i ij i ij ijb b b e= + × + × +  

where 

 , 1ij i j ije eρ ε−= +  

with ρ  denoting the AR coefficient. 
 
Level-2 model: 

0 0 3 0

1 1 1

2 2

ENDOGi i i

i i

i

b v
b v
b

β β
β
β

= + × +
= +
=

 

 
We can rewrite the model as follows: 
 

 
( )

0 1 2 3

0 1

0 1 1 2 3

0

HDRS WEEK ENDOG WEEK ENDOG

WEEK

WEEK ENDOG WEEK ENDOG

ij ij ij ij

i i ij ij

i ij ij ij

ij i

u u e

u
e u

β β β β

β β β β

= + × + × + × ×

+ + × +

= + + × + × + × ×

+ +
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The difference between the present and previous models lies in the assumption 
concerning the error term. Previously, we assumed that 1 2( , ,..., ) '

ii i i ine e e=e  

( )2, iN σ0 I: , where iI  is an identity matrix of order i in n× . Now we assume that 

the errors are autocorrelated, and that  ( )2,i iN σe 0 Ω: , where iΩ  is the 
autocorrelation matrix. 
 

The analysis – step 1: starting values from a non-AR model 

Two types of iteration algorithms, EM and Fisher scoring, are used for fitting an 
autoregressive model:  
 
o The EM solution proceeds by assigning starting values for the structural and 

population parameters.  
o The Fisher scoring procedure utilizes the first derivatives and expected values of 

the second derivatives to obtain improved parameter estimates. 
 
Although the Fisher scoring solution is a significant improvement in terms of speed 
of convergence over the EM solution, it can fail in the estimation of the covariance 
matrix of the random effects when these terms become very small. The most reliable 
way to minimize the chance of encountering convergence problems is first obtaining 
the starting values by running the model without autocorrelated errors, then 
substituting the starting values obtained prior to fitting the AR model.  
 
Recall that in Section 3.2.4 we fitted the model 
 
Level-1 model:  

0 1 2HDRS WEEK WxENDOGij i i ij i ij ijb b b e= + × + × +  
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Level-2 model:  

0 0 3 0

1 1 1

2 2

ENDOGi i i

i i

i

b v
b v
b

β β
β
β

= + × +
= +
=

 

The estimates obtained for that model are repeated below. The level-2 estimated 
variance of intercept and WEEK are 11.64121 and 2.07707 respectively. The 
estimated level-2 covariance is –1.40161. The estimated level-1 variance is 
12.21847. These numbers will be used as the starting values in the non-stationary 
AR model to be fitted next. 
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The analysis – step 2: non-stationary AR model 

We modify the model setup file, reisby3.mum, by first saving the file as 
reisby_ar2.mum. Change the title on the Configuration screen. Keep the settings of 
the Variables tab the same as before.  
 
Click on the Starting Values tab. Select the user-defined option from the Starting 
Values drop down list to activate the grid fields for the starting values. Input the 
starting values we obtained from reisby.out to generate the following screen. 
 

 
 
Click on the Advanced tab to proceed to the Advanced screen. First, select the 
estimate all option from the Autocorrelation drop down list; then select Non-
stationary AR1 as the Error Form and specify WEEK as the 'Time' Variable. Input 0.1 
in the Autocorrelation Starting Values grid field to get the Advanced screen as shown 
below.  
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Save the changes to reisby_ar2.mum and run the model to produce the output file 
reisby_ar2.out.  
 

3.2.6.2 Interpreting the output 

The output for the AR model first shows the syntax information of the model setup. 
The number of observations, hierarchical structure of the 2-level model and 
descriptive statistics follow next.  
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The starting values 

The starting values could either be user-defined or program generated. In our case 
the user-defined starting values are listed below. 
 

 
 
The Starting values section in the output file corresponds with the starting values 
we specified in the Starting Values and Advanced screens. The mean row refers to 
the starting values for the fixed regressors, which are intercept and WEEK in this 
example. The covariates row contains the starting values for ENDOG and 
WxENDOG. The elements of the var. terms row are the starting values for the level-
2 variance/covariance matrix. The residual value is the starting error variance. The 
auto term(s) is the autocorrelation starting value(s).  
 

The maximum marginal likelihood (MML) estimates  

The starting values section is followed by the Final Results. The maximum 
marginal likelihood (MML) solution at convergence is obtained by first using the EM 
algorithm and then Fisher scoring iterations. The AIC, SBC and –2 log likelihood 
(deviance) are given right below the iteration information. 
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As shown above, the convergence is obtained after 10 EM and 10 Fisher iterations. 
The log likelihood value can be used to perform likelihood ratio tests.  
 

 
 
For each model parameter, maximum marginal likelihood estimates, standard errors, 
z-values, and p-values are provided. These p-values are two-tailed, except for the 
variance parameters where one-tailed p-values are given. 
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Considering the estimated fixed effects, the initial level of severity for non-
endogenous patients is approximately 22.5 on the HDRS, while the endogenous 
patients start about 1.9 units higher. The difference in initial severity is almost 
significant (p < 0.0790). The reason that the intercept and endogenous effect reflect 
HDRS levels at week 0 is due to the coding of WEEK that was used, namely, 0 to 6. 
Using other codings of WEEK would change the meaning of these regression 
coefficients. 
 
Both groups exhibit an overall weekly rate of improvement of roughly 2.3 units 
which is highly significant. In terms of the random-effect variance and covariance 
terms, there is a significant rate of improvement (p < 0.00343). The variation in 
patients' initial severity is marginally significant at 0.066. However, the overall 
covariation between those two terms are significant at a 10% level (p > 0.90864). 
 

Correlation of the MML estimates  

Finally, correlation matrices are also provided for the estimates of all model 
parameters. It is important to realize that these correlation matrices are not 
correlations of the variables themselves, but correlations of the estimated model 
parameters. These matrices may be helpful in determining the degree to which 
collinearity is present in terms of the model parameters. 
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It is interesting to note that, when the correlations are rounded to two decimal 
places, equalities exist between the correlations: 
 

 
(INTCEPT,ENDOG) (WEEK, WxENDOG) 0.74
(INTCEPT, WEEK) (ENDOG, WxENDOG) 0.45
(ENDOG, WEEK) (INTCEPT, WxENDOG) 0.33

r r
r r
r r

= = −
= = −

= =
 

 
From the fixed effect results we see that the WxENDOG effect was not significant 
( 0.976p = ). It is reasonable to assume that, with the interaction term omitted from 
the model, the correlations between the intercept, ENDOG and WEEK coefficients 
will be close to those reported above. 
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Level-2 Bayes results 

The residual file reisby_ar2.ba2 offers the opportunity to take a closer look at the 
results by individual patient. Select the Analysis, View L-2 Bayes Results option to 
open the Bayes results as shown below. The contents of this file are displayed for 
the first 7 patients. Two lines of information are given for each patient, containing, 
in order of appearance, 
 

o the number of the patient in the data set,  
o the number of the empirical Bayes coefficient,  
o the empirical Bayes estimate,  
o the estimated variance of the Bayes coefficient, and  
o the name of the associated coefficient as used in the model.  

 

 
 
The user can obtain patient-specific predicted HDRS scores using the empirical 
Bayes estimates for each patient by using the method discussed earlier in Section 
3.2.5.5. 
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Model comparison 

In Table 3.5, the estimates of the regular model without an autoregressive term and 
the non-stationary AR(1) are summarized. Note that the AIC and BIC values obtained 
from the AR(1)  model were multiplied by – 2.0 in order to facilitate comparison 
over the models. 
 

TABLE 3.5: Comparison of models with and without AR(1) term 
 

 no AR term Non-stationary 
AR(1) 

intcept 22.47626 22.47646 

 (0.79435) (0.78704) 
WEEK –2.36569 –2.33888 

 (0.31181) (0.30299) 
ENDOG 1.98802 1.85677 

 (1.06905) (1.05917) 
WxENDOG –0.02706 –0.01205 

 (0.41947) (0.40784) 
Log Likelihood –1107.4646 –1103.72 

Akaike's Information Criterion 2214.9292 2217.44 
Schwarz's Bayesian Criterion 2230.9292 2237.076 

–2 Log Likelihood 2248.4465 2207.441 
Number of free parameters 8 9 

 
We notice that the estimates of both models are close to each other. The estimated 
variances of the non-stationary AR(1) model are smaller for all the parameters. The 
deviance is  2248.4465 – 2207.441 =  41.0055 with 1 degree of freedom, which is 
highly significant. Thus, we conclude that in this example, the non-stationary AR(1) 
model fits the data better.  
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3.3 Models based on the TVSFP data 

3.3.1 The data 

The data set used here is from the Television School and Family Smoking 
Prevention and Cessation Project (TVSFP) (Flay et. al., 1988). The study was 
designed to test independent and combined effects of a school-based social-
resistance curriculum and a television-based program in terms of tobacco use and 
cessation. The data from the study included a total of 1,600 students from 135 
classrooms drawn from 28 schools.  
 
Schools were randomized to one of four study conditions:  
 

o a social-resistance classroom curriculum 
o a media (television) intervention 
o a social-resistance classroom curriculum combined with a mass-media 

intervention, and 
o a no-treatment control group 

 
A tobacco and health knowledge scale (THKS) was used in classifying subjects as 
knowledgeable or not. In its original form, the student's score was defined as the 
number of correct answers to seven items on tobacco and health knowledge. 
 
While the structure of this study indicates a three-level hierarchical structure, the 
present application uses these data to fit a two-level model, with students nested 
within either classes or schools, in order to present an introduction to the analysis of 
ordinal outcomes. A 3-level model is presented in Sections 3.3.4 and 3.3.5. 
 
Data for the first 10 students on most of the variables used in this section are shown 
below in the form of an SuperMix spreadsheet file, named TVSFP.ss3. 
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The variables of interest are: 
 

o SCHOOL indicates the school a student is from (28 schools in total). 
o CLASS identifies the classroom (135 classrooms in total). 
o POSTTHKS represents the post-intervention tobacco and health 

knowledge scale. It is treated as a continuous variable in the examples in 
this chapter. See Sections 4.2 and 6.2 for examples where POSTTHKS is 
treated as a binary or ordinal outcome. 

o PRETHKS indicates the pre-intervention THKS score. 
o CC is a binary variable indicating whether a social-resistance classroom 

curriculum was introduced, where 0 indicates "no" and 1 "yes." 
o TV is an indicator variable for the use of media (television) intervention, 

with a "1" indicating the use of media intervention, and "0" the absence 
thereof. 

o CCxTV was constructed by multiplying the variables TV and CC, and 
represents the CC by TV interaction. 

 

3.3.1.1 Exploring the data 

In this section, a univariate bar chart and a bivariate box-and-whisker plot are given. 
More information on other types of plots available are given in Chapter 4 of the 
SuperMix primer. 
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Univariate graphs 

The pop-up menu below shows the data-based graphing options currently available 
in SuperMix. As a first step, we will take a closer look at the distribution of the total 
post-intervention scores (POSTTHKS), which is the potential dependent variable in 
this study. While scores such as these are not truly continuous variables, they are 
often treated as if they were. 
 
Bar chart 
To do so, select the Univariate option from the Data-based Graphs menu as shown 
below. 
 

 
 
The Univariate plot dialog box appears. Select the variable POSTTHKS and indicate 
that a Bar Chart is to be graphed. Click the Plot button to display the bar chart. 
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Figure 3.11: Bar chart of POSTTHKS scores 

 
The bell-shaped bar chart above shows that the variable POSTTHKS is 
approximately normally distributed. Note that histograms are usually used for the 
depiction of the distribution of a continuous variable. 
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Bivariate graphs 

It is hoped that the social-resistance classroom curriculum (CC), the television 
intervention (TV) and the CC and TV interaction combination (CCxTV) would affect 
the tobacco and health knowledge (POSTTHKS). Before we start with the model, we 
would like to show a box-and-whisker plot of POSTTHKS for each category of CC.  

 
Box-and-whisker plots 
A box-and-whisker plot is useful for depicting the locality, spread and skewness of 
variables in a data set and may be used to examine the distributions of continuous 
variables, such as for the different values of discrete valued predictors. This option 
is accessed via the Data-based Graphs, Bivariate option on the File menu. 
 
To assign labels to the categories of CC, right-click on the CC column in the 
spreadsheet and select Column Properties. On the Column Properties dialog box, 
select the Nominal option and assign the appropriate labels and save the data file. 
 

 
 

The Bivariate plot dialog box is completed as shown below: select the outcome 
variable POSTTHKS as the Y-variable of interest, and the predictor CC to be plotted 
on the X-axis. Check the Box and Whisker option, and click Plot.  
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Figure 3.12: Box-and-whisker plots of POSTTHKS scores for different CC values 
 

The bottom line of a box represents the first quartile ( 1q ), the top line the third 
quartile ( 3q ), and the in-between line the median (me). The arithmetic mean is 
represented by a diamond. Here, the mean of POSTTHKS is lower in the group 
without the social-resistance classroom curriculum (CC). The box-and-whisker plot 
indicates a positive relationship between CC and POSTTHKS. 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

185 

 

3.3.2 A 2-level random intercept model using classroom as level-2 ID 

3.3.2.1 The model 

The first model fitted to the data explores the cluster effects of each classroom on 
the outcome. The mixed model can be expressed as  

0 1 2 3 0POSTTHKS CC TV (CC TV )ij i i i i i ijv eβ β β β= + + + × + + , 

where 0iv  represents the classroom influence on POSTTHKS. To understand the 
model better, we can rewrite the model in the following way. The level-1 or within-
cluster model is shown below. 
 
Level-1 model: ( 1 )ij … n= , ,   

0POSTTHKSij i ijb e= + , 

2(0 )ije NID σ,:  

The level-1 model estimates POSTTHKS as a function of the intercept 0ib  and error 
term ije . Subscript i denotes the subscript for classroom, while subscript j refers to 
the student j. in  is used to denote the number of students in each classroom. 
Because we have different numbers of students in different classrooms, in  also 
varies. In this data set, 1 28in≤ ≤ .  

 
The level-2, or between-cluster, model describes the intercept 0ib  as a function of 
cluster characteristics. 
 
Level-2 model: ( 1 )i N= , ,L  

 0 0 1 2 3 0CC TV (CC TV )i i i i i ib vβ β β β= + + + × +  
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 2
0 (0 )i vv NID σ,:  

As shown above, the intercept 0ib  is estimated as a function of the population 
average 0β , the covariates CCi , TVi , and CC TVi i× , and the classroom difference 

0iv . The coefficient 0iv  represents the amount that unit i deviates from the average 

0β , after controlling for the effects of the covariates included. The level-2 residual 

0iv  is assumed to follow 2(0 )vNID σ,  for all the is. If 0 0iv =  for all i , which implies 
2 0vσ = , the model is the same as the ordinary regression model. 

 

3.3.2.2 Setting up the analysis 

Open the SuperMix spreadsheet TVSFP.ss3 used during the exploratory analysis 
discussed previously in this chapter. The next step is to describe the model to be 
fitted. We use the SuperMix interface to provide the model specifications. From the 
main menu bar, select the File, New Model Setup option.  
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Select the continuous outcome variable POSTTHKS from the Dependent Variable 
drop-down list box. Select the classroom number CLASS from the Level-2 IDs drop-
down list box. Enter a title for the analysis in the Title text boxes. In this example, 
default settings for all other options associated with the Configuration screen are 
used. 
 
Proceed to the Variables screen by clicking on that tab. The Variables screen is used 
to specify the fixed and random effects to be included in the model. Select the 
explanatory (fixed) variables using the E check boxes next to the variables names in 
the Available grid at the left of the screen. Note that, as the variables are selected, the 
selected variables are listed in the Explanatory Variables grid. After selecting all the 
explanatory variables, the screen shown below is obtained. The Include Intercept 
check box in the Explanatory Variables grid is checked by default, indicating that an 
intercept term will automatically be included in the fixed part of the model.  
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Next, specify the random effects at level 2 the hierarchy. In this example, we want 
to fit a model with random intercepts at level 2. By default, the Include Intercept 
check box in the L-2 Random Effects grid is checked. If this box is left checked, and 
no additional random effects are indicated using the 2 column in the Available grid 
to the left, the model fitted will be the random-intercepts-only model we intend to 
use. No further changes on this screen are necessary. 
 
Before running the analysis, the model specifications have to be saved. Select the 
File, Save As option, and provide a name (TVSFP1.mum) for the model specification 
file. Run the analysis by selecting the Run option from the Analysis menu. 
 

3.3.2.3 Discussion of results 

Model and data description 

In the numbers of observations section, a summary of the hierarchical structure is 
provided. 
 

 
 

As shown above, data from a total of 1600 students within 135 classrooms were 
included at levels 2 and 1 of the model. This corresponds to the study design 
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described earlier. In addition, a summary of the number of students nested within 
each classroom is provided. The classroom with N2 = 6, for example, had 26 
students (N1: 26). By contrast, classroom 26 had only 1 student. 

Descriptive statistics and starting values 

Next, the descriptive statistics for all variables are given. The minimum value, 
maximum value, mean and standard deviation are given for all the variables 
included in the model. For example, the mean POSTTHKS is 2.6618 with a standard 
deviation of 1.38293. 
 

 
 

Starting values – OLS estimates 
The starting values for the fixed regressor(s) are shown below. The log likelihood 
value and number of free parameters of the OLS regression are given in this part 
of the output. 
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After the number of free parameters, the starting values of variance/covariance 
components are reported as shown. 
 

 
 

Fixed effects estimates 

The number of iterations needed to obtain convergence is given after the starting 
values. The output describing the estimated fixed regressor(s) after convergence is 
shown next.  
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As shown below, the estimates for CC and TV are both positive. On average, a 
social-resistance classroom curriculum can improve the tobacco and health 
knowledge by 0.58910, and television intervention can increase the POSTTHKS 
score by 0.12018. However the estimate of CCxTV is negative, which implies that 
the students who had both CC and TV are expected to show a decrease of 0.24713 in 
their POSTTHKS score. The estimates associated with intercept and TV are highly 
significant, but estimates of the other two coefficients are not statistically 
significantly different from zero. 
 

 
 
The estimates for the fixed regressors and model fit statistics are given next. For 
more information on these statistics, see Section 3.1.2.3. 
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Random effect estimates 

The estimates for the random part of the model are reported next. The variation in 
the average estimated intercept at level 2 is highly significant, which indicates that 
the classroom difference in intercepts does help to explain the variation in 
POSTTHKS scores. 
 

 
 
The covariance and correlation matrix of level-2 and level-1 random effects are 
given in matrix format at the end of the output file. These values are the same as the 
estimates of variance/covariance components as shown above. 
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3.3.2.4 Interpreting the results 

Estimated outcomes for different groups 

For a student who participated in neither social-resistance classroom curriculum nor 
television intervention (CC = 0; TV = 0), the expected POSTTHKS is equal to just the 
intercept 2.36105. For a student who participated in both programs (CC = 1; TV = 1; 
CCxTV = 1), the predicted POSTTHKS is calculated as follows: 

0 1 2 3POSTTHKS CC TV (CC TV )

2.34116 0.5891 0.12018-0.24713
2.80331

ij i i i iβ β β β
∧ ∧ ∧ ∧ ∧

= + + + ×

= + +
=

. 

 

Fit statistics and % variation explained 

An estimate of the percentage of variation in the outcome at classroom level is 
obtained as 

 0.13361 100% 7.18%
0.13361 1.72651 

× =
+

 

indicating that about 7.18% of the total variance lies between the 
clusters/classrooms and that 92.82% of the variance remains at the student level.  
 

3.3.3 2-level random intercept model by using school as level-2 ID 

The model in the previous section shows that only about 7% of the total variation in 
outcome is at the classroom level. The question that arises is whether clustering 
within schools may provide a better explanation of the way in which post-
intervention scores vary. In this section, the model is fitted using SCHOOL, rather 
than classroom, as the level-2 ID. 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

194 

3.3.3.1 The model 

The mathematical equation of the model to be fitted is exactly the same as for the 
previous model.  

0 1 2 3 0POSTTHKS CC TV (CC TV ) ,ij i i i i i ijv eβ β β β= + + + × + +  

The difference here is in the meaning of the subscript i. In the previous model, we 
used i to refer the classroom. However, the is here refer to the schools.  
 

3.3.3.2 Setting up the analysis 

To create the model specifications for this model, we start by opening TVSFP.ss3 in 
a SuperMix spreadsheet window.  
 

 
 
We use the Open Existing Model Setup option on the File menu to load the Model 
Setup window for TVSFP1.mum. Click on File, Save as to save the model setup in a 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

195 

new file, such as TVSFP2.mum. Next, change the string in the Title 1 text box on the 
Configuration screen, and select SCHOOL as the Level-2 ID as shown above. 
 
Keep all the other settings unchanged. Save the changes to the file TVSFP2.mum and 
select the Run option on the Analysis menu to produce the output file TVSFP2.out.  
 

3.3.3.3 Discussion of results 

Model and data description 

The number of observations section clearly shows that the data set contains 28 
schools and each school has between 18 and 137 students as shown below. 

 

  
 

Fixed effects estimates and descriptive statistics 

The estimates for the fixed estimates as shown below are close to the estimates in 
the previous example, but not exactly the same. For example, the estimate for CC 
increased by 0.06326 (0.65236 – 0.58910 = 0.06326), and the estimate for the effect 
of television intervention is about 0.07811 higher when using school as the level-2 
ID. However, the estimate of the interaction of CC and TV is about 0.17 lower. 
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Both the deviance and Akaike information criterion (AIC) are slightly higher than 
the previous model. The SBC is smaller.  
 

  
 

Random effect estimates and covariance/correlation matrices 

The estimates for the random part of the model are reported next. 
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The variation in the average estimated intercept at level 2 is highly significant, 
which indicates that the difference in school intercepts also explains the variation of 
POSTTHKS scores. Similarly, we can calculate that about 3.84% of the total variance 
can be explained by the school difference: 

0.07131 100% 3.84%
0.07131 1.78756 

× =
+

. 

 

3.3.4 A 3-level random intercept model using class and school as IDs 

The previous two models show that both school and classroom contribute to the 
explanation of the total variation of the POSTTHKS scores. We now construct a 
three-level model that uses both CLASS and SCHOOL as level-2 and level-3 IDs. 

3.3.4.1 The model 

The level-1 and level-2 models are the same as the previous two models, as shown 
below. 
 
Level-1 model ( 1 )ijk … n= , ,   

0POSTTHKSijk ij ijkb e= + , 

2(0 )ijke NID σ,:  
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Level-2 model ( 1 )ij … n= , ,  

 0 0 1 2 3 0CC TV (CC TV )ij i i ij i ij i ij ij ijb b b b b v= + + + × +  

 2
0 (2)(0 )ij vv NID σ,:  

Level-3 model ( 1 )i … N= , ,  

 

0 0 0

1 1

2 2

3 3

i i

i

i

i

b v
b
b
b

β
β
β
β

= +
=
=
=

 

 2
0 (3)(0 )i vv NID σ,:  

In this mixed model the intercept 0ijb  is estimated by a level-2 equation. It indicates 
that classroom j's initial value is not only determined by the population average 0ib , 
but also by the classroom difference 0ijv . The level-2-intercept 0ijb  is estimated by a 
level-3 equation which takes the school difference 0iv  into consideration, where i 
denotes the school ID.  
 
The above model can also be written in the following format. 

0 1 2 3 0 0POSTTHKS CC TV (CC TV )ijk ij ij ij ij ij i ijkv v eβ β β β= + + + × + + + . 

 

3.3.4.2 Setting up the analysis 

We modify our model setup saved to the syntax file TVSFP1.mum by first using the 
Open Existing Model Setup option on the File menu of the TVSFP.ss3 window to 
retrieve the syntax file. Then click on File, Save as to save the model setup in a new 
file, such as TVSFP3.mum.  
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Next, we change the string in the Title 1 text box on the Configuration screen, and 
select SCHOOL as the Level-3 ID as shown below. We now have both level-2 and 
level-3 IDs selected. Keep all the other settings unchanged. Save the changes to the 
file TVSFP3.mum and select the Run option on the Analysis menu to produce the 
output file TVSFP3.out.  
 

3.3.4.3 Discussion of results 

Model and data description 

The number of observations section clearly shows the hierarchical structure of the 
data. The data contains 1600 students from 135 classes nested in 28 schools. In 
school number 20 (LEVEL 3: 20), the data of 73 students (N1: 73) from 7 (N2: 7) 
classes are present in this data set. 
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Fixed effects estimates 

As shown below, the estimates are not markedly different from the estimates of the 
previous two models. 
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Both the deviance and Akaike information criterion (AIC) are slightly higher than 
the previous model. The SBC is smaller.  
 

  
 

Random effect estimates 

The estimates for the random part of the model are reported next. 
 

 
 
The estimated level-2 random effect is highly significant ( p  = 0.08), but the level-3 
is not ( p  = 0.06).  

 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

202 

3.3.4.4 Interpreting the results 

Fit statistics and % variation explained 

The variation of POSTTHKS scores can be explained by individual differences, 
classroom differences and school differences. 
 
For schools, 

0.05660 100% 3.04%
0.05660 0.07903 1.72652 

× =
+ +

, 

while for classrooms 

0.07903 100% 4.24%
0.05660 0.07903 1.72652 

× =
+ +

. 

As calculated above, the school difference contributes 3.04% to the explanation of 
the total variance in the outcome, and classroom difference contributes 4.24%. The 
rest, 92.72% of the variation, is explained by the student differences.  
 

Comparison of models 

In Table 3.6 the estimates of the previous three models and OLS in this chapter are 
summarized. The three-level estimates all lie between the corresponding two level-2 
estimates. 
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Table 3.6: Comparison of OLS and mixed model results 

 
 OLS Estimates Mixed Model 
  L-2 model L-3 model 

    L-2 ID: CLASS L-2 ID: SCHOOL 
L-2 ID: CLASS 
L-3 ID: SCHOOL 

intcept 2.361 2.341 2.361 2.355 
  (0.066) (0.092) (0.124) (0.128) 
CC 0.607 0.589 0.652 0.615 
  (0.096) (0.133) (0.178) (0.182) 
TV 0.177 0.120 0.198 0.172 
  (0.094) (0.131) (0.175) (0.179) 
CCxTV –0.323 –0.247 –0.417 –0.351 
  (0.137) (0.189) (0.250) (0.255) 
Deviance  5498.168 5501.438 5491.033 
 AIC   5510.168 5513.438 5505.033 
 SBC  5527.600 5521.431 5514.359 
Number of free parameters 6 6 7 

 

3.3.5 A 3-level random intercept  model including pre-THKS score 

The PRETHKS variable indicates the observed score before implementation of 
intervention. It might have an impact on the POSTTHKS scores. In this section, a 
three-level model including the PRETHKS as predictor is fitted. 
 

3.3.5.1 The model 

The only difference between this model and the previous one is the addition of the 
variable PRETHKS as a covariate: 
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( )0 1 2 3 4

0 0

POSTHKS CC TV (CC TV ) PRETHKS

.
ijk ij ij ij ij ijk

ij i ijkv v e

β β β β β= + + + × +

+ + +
 

From the subscripts associated with the coefficients, we note that while CC, TV and 
CCxTV were measured at a classroom level, the pre-intervention score PRETHKS is 
measured on the individual level. Such a variable may also be referred to as a level-
1 predictor, while CC, TV and CCxTV may be called level-2 predictors, covariates, or 
mediating effects. 
 

3.3.5.2 Setting up the analysis 

The easiest way to set up this model is to modify the model setup in the syntax file 
TVSFP3.mum by first using the Open Existing Model Setup option on the File menu. 
Then click on File, Save as to save the model setup in a new file, such as 
TVSFP4.mum.  
 

 
 

Next, we change the string in the Title 1 text box on the Configuration screen. Notice 
that we would like to request Bayes estimates as part of the program output. To do 
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so, select means & (co)variances option from the Write Bayes Estimates drop down 
list as shown above. 
 
Click on the Variables tab and select PRETHKS as an additional Explanatory Variable 
by checking the corresponding E check box. Save the changes to the file 
TVSFP4.mum and select the Run option on the Analysis menu to produce the output 
file TVSFP4.out.  
 

3.3.5.3 Discussion of results 

Fixed effects estimates and descriptive statistics 

As shown below, the estimated coefficient of PRETHKS is highly significant. The 
estimate of the intercept coefficient decreased because part of the variation in the 
intercept can now be explained by PRETHKS.  
 

 
 
The fit statistics are given below. A comparison of these two three-level examples 
will be given in the next section. 
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Random effect estimates 

The third-level random intercept estimate is not significant at a 5% level of 
significance, which implies that after taking PRETHKS into account, the school 
differences are not significant.  
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3.3.5.4 Interpreting the results 

Estimated outcomes for different groups 

For example, if a typical student who only participated in television intervention had 
a PRETHKS score of 2 (CC = 0; TV = 1; CCxTV = 0), the expected POSTTHKS score is 
calculated as follows: 

( )00 02 04POSTTHKS TV PRETHKS

1.697+0.17811+2 0.3072
2.48951.

ijk ij ijkβ β β
∧ ∧ ∧ ∧

= + +

= ×
=

 

 

ICCs and R square 

ICCs 
The so-called ICC (interclass correlation) measures the proportion of variation in the 
outcome variable between units at the different levels. It is occasionally referred to 
as the cluster effect, and is defined as the ratio of the between-cluster variance to the 
total variance. From the output for the random effects, we have  

( )
( )
( )

Level-1: estimated error var  = 1.6020

Level-2: estimated class var  = 0.0636

Level-3: estimated school var  = 0.0258.

 

Based on this information, we can calculate the ICCs as shown below. 
 
Similarity of students within the same school:  

 0 0258 0 0153
1 6020 0 0636 0 0258

ICC .
= = .

. + . + .
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Similarity of students within the same classrooms (and schools):  

 0 0636 0 0258 0 0529
1 6020 0 0636 0 0258

ICC . + .
= = .

. + . + .
 

Similarity of classes within the same school:  

0 0258 0 289
0 0636 0 0258

ICC .
= = .

. + .
 

 
R-square 

Another way to evaluate the explanation of variation in the outcome is to compute a 
statistic analogous to the familiar 2R  used in multiple linear regression. In a 
multilevel model, however, there is an 2R  for each variance component. Use of 
these statistics is not without problems, however, because the 2R  may at times have 
negative values, and in other cases the addition of explanatory variables can lead to 
an increase rather than a decrease in variance components. The more complex a 
hierarchical model is, the more likely is the occurrence of anomalies in variance-
explained statistics.  
 
To calculate the 2R s for different levels of the level-3 model, we first need to get 
the variances for the null model, which is a 3-level model with no covariates. Open 
the file TVSFP4.mum, click on the Variables tab, and uncheck the check boxes of the 
selected Explanatory Variables as shown below.  
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Save the setup as TVSFP7.mum and run the model to get the following output of the 
variance/covariance component. 
 
The 2R s are calculated as 

 ( 2) (3)

( 2)0 (3)0

2 22
2 2 2

1 2 32 2 2
0

ˆ ˆˆ1 1 1
ˆ ˆ ˆ

p pv vp

v v

R R R
σ σσ

σ σ σ
= − = − = −  

where subscript 0 refers to a model with no covariates (i.e., the null model, 
TVSFP7.out) and subscript p refers to a model with p covariates (i.e., the full model, 
TVSFP4.out). The 2R s for different levels are given in Table 3.7. 
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Table 3.7: 2R  values for a set of nested models 
 

level variance null full 2R  
1 (students) 2σ̂  1.724 1.602 .071 
2 (classrooms) 

( 2)

2ˆυσ  
.085 .064 .247 

3 (schools) 
(3)

2ˆυσ  
.110 .026 .764 

 
In the current example, only the intercept coefficient is allowed to vary randomly 
over classrooms and schools, thus making the calculation of the 2R  relatively 
straightforward. In the case of models with random slopes, the calculation of 2R  
statistics becomes more difficult. For an extensive discussion of the rationale and 
calculation of 2R  statistics, the user is referred to Snijders & Bosker (2000). 

 

Model fit statistics and comparison of models 

Now, we consider two level-2 models using the same covariates but different level-
2 IDs: one uses CLASS as level-2 ID, the other uses SCHOOL. The models' setups are 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

211 

given in TVSFP5.mum and TVSFP6.mum. The comparison of estimates is 
summarized in the Table 3.8. 

 
Table 3.8: Comparison of OLS and mixed model results 

 

  OLS 
Estimates Mixed Model 

   L-2 model L-3 model 

    L-2 ID: CLASS L-2 ID: SCHOOL L-2 ID: CLASS 
L-3 ID: SCHOOL 

intcept 1.6613 1.6776 1.6952 1.6970 

  (0.0844) (0.0988) (0.1145) (0.1167) 

CC 0.6406 0.6330 0.6601 0.6392 

  (0.0921) (0.1186) (0.1440) (0.1472) 

TV 0.1987 0.1597 0.2024 0.1781 

  (0.0900) (0.1167) (0.1401) (0.1437) 

CCxTV –0.3216 –0.2747 –0.3697 –0.3204 

  (0.1303) (0.1678) (0.2011) (0.2055) 

PRETHKS 0.3252 0.3116 0.3103 0.3072 

  (0.0259) (0.0258) (0.0259) (0.0258) 

 
error variance  1.6030 1.6523 1.6020 
   (0.0589) (0.0589) (0.0589) 
class variance  0.0870  0.0636 
   (0.0277)  (0.0277) 
school variance   0.0372 0.0258 
    (0.0184) (0.0197) 
Deviance  5359.9641 5366.0133 5357.3586 
 AIC   5373.9641 5380.0133 5373.3586 
 SBC  5394.3010 5389.3387 5384.0163 

Number of free parameters 7 7 8 
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When comparing the deviances, AIC and SBC of the level-3 model with the level-2 
models, we conclude that the three-level model has a better fit to the data. 
 

3.3.5.5 Residuals 

Level-2 Bayes results 

Returning to the TVSFP4.mum output, click on the Analysis menu of the output 
window or the model set up window, and note that View Level-2 Bayes Results is 
now activated. Select the option to open the level-2 Bayes results. 
 

 
 
Note that the default extension for the level-2 Bayes estimates is .ba2. Part of the 
file is shown below. 
 

 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

213 

The representations of these seven columns are given in order below: 
 

o Column 1: level-3 ID, which is school in our example.  
o Column 2: level-2 ID, which refers to classroom. 
o Column 3: number of the observations within level-2 ID, number of students 

within each classroom.  
o Column 4: the number of the empirical Bayes coefficients. 
o Column 5: the empirical Bayes estimate. 
o Column 6: the estimated variance of the Bayes coefficient. 
o Column 7: the name of the associated coefficient as used in the model.  

 
Classroom 407102 has the largest Bayes estimate with a value of 0.38397. When 
considering the class difference, the predicted POSTTHKS score for a student in this 
specific class who only participated in television intervention with a PRETHKS score 
of 2 (CC = 0; TV = 1; CCxTV = 0) is calculated as follows. 

( )0 2 4 0POSTTHKS TV PRETHKS

1.697+0.17811+2 0.3072+0.38397
2.87348.

ijk ij ijk iuβ β β
∧ ∧ ∧ ∧ ∧

= + + +

= ×
=

 

 

Level-3 Bayes results 

Similarly, the level-3 Bayes results can be viewed by clicking on the Analysis, View 
Level-3 Bayes Results.  
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Part of the TVSFP.ba3 is shown below. 
 

 
 
The same classroom (ID = 407102) discussed above is nested in school number 407. 
Now, considering both the class and school differences, the estimated POSTTHKS 
for a student from this classroom who only participated in television intervention 
with a pre-intervention score of 2 (CC = 0; TV = 1; CCxTV = 0) is calculated as 
follows. 

( )0 2 4 0 0POSTTHKS TV PRETHKS

1.697+0.17811+2 0.3072+0.38397+0.15296
3.02644.

ijk ij ijk ij iv vβ β β
∧ ∧ ∧ ∧ ∧ ∧

= + + + +

= ×
=

 

 

Confidence intervals for random coefficients 
The Confidence Intervals option on the File, Model-based Graphs menu provides the 
option to display confidence intervals for the empirical Bayes estimates of the 
random effects specified in a given model. This option is now used to examine the 
confidence intervals of the random intercepts for the schools, which represent the 
highest level of the hierarchy in the current example. 
 
Select the Confidence Intervals option on the File, Model-based Graphs menu to 
activate the 95% Conf. Intervals for EB estimates dialog box. Two graphs of the 
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confidence intervals for the empirical Bayes estimates of the intercepts at the 
classroom level and school level are obtained by selecting CLASS intcept and 
SCHOOL intcept in the Predictor column before clicking Plot.  
 

 
 
The graph obtained, as shown below, shows that, in general, the range of the 
confidence intervals for the level-3 empirical Bayes estimates of the intercepts is (–
0.2; 0.2), and the range for level-2 is about (–0.4; 0.4).  

 

  
Figure 3.13: 95% confidence intervals for level-2 Bayes estimates 
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The deviations from the estimated population intercept over schools are also 
apparent. Each confidence interval is obtained using the formula 

( )1 96Empirical Bayes residual . var Empirical Bayes residual± . 

 

3.4 3-level continuous example using a subset of 
Schoenwald data 

3.4.1 The data 

The data set for this example is taken from a study described in Schoenwald & 
Henggeler (2005). Children in the study were assigned to therapists and followed 
across time. In this study, respondents were rated with the Child Behavioral 
Checklist (Achenbach, 1991) at four occasions. The gender of each respondent 
was also recorded.  
 
Although the total number of patients in this study was 1,951, the number of patients 
treated by any single therapist ranged between 1 and 19. A total of 7,127 
measurements were made for all patients over the course of the study. Data for the 
observations of all the variables for the first four patients treated by therapist 
number 18 are shown below in the form of a SuperMix spreadsheet file, named 
cbtot.ss3. 
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The variables of interest are: 

o THERAPIS is the therapist ID (446 in total). 
o SID is the patient ID (1951 in total). 
o CBTOT is the total score of the Child Behavior Checklist. 
o INT is a column of ones, representing an (optional) intercept. 
o VISIT represents the visit number (0, 1, 2, or 3) at which a measurement was 

made. 
o GENF is an indicator variable for gender, and assumes the value 0 for males 

and 1 for females. 
o GVISIT represents the interaction between GENF and VISIT, and is the product 

of GENF and VISIT. 
 

3.4.2 Exploring the data 

Relationships between variables, and trends over time in repeated measurement 
data, may be conveyed in an informal and simplified visual form via graphical 
displays. SuperMix offers both data-based and model-based graphs. Data-based 
graphing options are accessed via the File, Data-based Graphs option once a 
SuperMix data file (.ss3) is opened, while model-based graphs are available after the 
analysis has been performed, and will be discussed later in this section. 
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In the case of data-based graphs, we distinguish between three categories: 
univariate, bivariate, and multivariate graphs. Univariate graphs are particularly 
useful to obtain an overview of the characteristics of a single variable. In the 
sections to follow, we use data-based graphs to take a closer look at some of the 
variables in these data. 
 

3.4.2.1 Univariate graphs 

Histograms 

As a first step, we take a look at the distribution of the total score on the Child 
Behavior Checklist (CBTOT) which is the potential dependent variable in this study. 
While scores such as these are not truly continuous variables, they are often treated 
as if they were. However, like personal income, the distribution of a score often is 
skewed. As a first step, we will take a closer look at the distribution of the intended 
outcome variable CBTOT. To do so, select the Univariate option from the Data-based 
Graphs menu as shown below. 
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The Univariate plot dialog box appears. Select the variable CBTOT and indicate that 
a Histogram is to be graphed. Note that the number of class intervals shown on the 
histogram is controlled by the Number of class intervals field, which is left at the 
default value of 10 in this case. Click the Plot button to display the histogram. 
 
The histogram below shows that the distribution of total scores (CBCTOT) on the 
Child Behavior Checklist (CBC) is markedly asymmetrical. Given the normality 
assumptions used in fitting a 3-level linear multilevel model, it would be 
inappropriate to use CBCTOT in its current state. A transformation of this variable is 
required before it would make a suitable outcome variable for the intended analysis. 
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Figure 3.14: Histogram of the variable CBCTOT 
 

Transformation of variables 

Common transformations used in the case of skewed variables include the natural 
logarithm of the variable in question, or the square root of the variable. We opt to 
explore the possibility of using the square root of the total score as outcome. To do 
so, a new variable containing the square root of the current total scores has to be 
created in the SuperMix spreadsheet. Right-click on the column with CBCTOT as 
heading, and select the Insert Column option from the pop-up menu that appears. 
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Select the new column and input the function SQRT(D1) in the formula box as 
shown below. Click the Apply button. Each value of the new variable is the square 
root value of the corresponding value of the variable CBCTOT as shown below. 
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To rename the new variable, right-click again on the column header and select the 
Column Properties option. 
 

 
 
Complete the Header field in the Column Properties dialog box as shown below. 
Also indicate that this is a continuous variable by selecting the Continuous option 
before clicking the OK button. 
 

 
 

Check the distribution of the square root of the total score on the Child Behavior 
Checklist (SQR_CBC) by selecting the Univariate option from the Data-based Graphs 
menu to activate the Univariate plot dialog box. After selecting SQR_CBC by 
checking the appropriate box in the Plot column, select the Histogram option as 
before, and click Plot. 
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The histogram for the variable SQR_CBC is appreciably more symmetric than was 
the case for the original variable CBCTOT, as evident from the histogram shown 
below.  
 

 
Figure 3.15: Histogram of the variable SQR_CBC 
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3.4.2.2 Bivariate graphs 

It is hoped that the total scores of patients would change over time, i.e., with 
successive visits to their therapists. In addition, it is hypothesized that the gender of 
a patient may also have some relationship to the total score of a patient. Bivariate 
plots of possible relationships are a handy tool for the exploration of possible 
relationships.  
 

Exploratory graphs 

To explore the relationship between the time since the start of therapy and the 
square root of the total score, select the Data-based Graphs, Exploratory option from 
the File menu to activate the New Graph dialog box. 

 

 
 
Select the outcome variable SQR_CBC as the Y-variable and VISIT as the X variable. 
Add the variable representing gender, GENF, from the Color field. Doing so will 
lead to the graphs of the gender groups to be displayed in different colors (blue and 
green being the default colors for two groups). Select the patient ID, as denoted by 
the variable SID, as the Filter variable to obtain individual graphs for patients. Click 
OK after completing the fields on this dialog box. 
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Graphs for patients with SIDs equal to 973, 790, and 2233 are shown below. These 
are but three of the 1951 graphs created via the graphing specification described 
above. Plotting symbols for each patient are shown at the bottom left of the 
graphing window, and the legend for gender groups to the right. The slider at the 
bottom of the window is used to move from one graph to another. 
 
For the first patient, with SID equal to 973, a roughly linear decrease in the outcome 
is observed as the visit number increases. This is not the case for patient 790, where 
an almost parabolic curve is observed, or for patient 2233 where an inverted 
parabola seems to be the most obvious line to fit. It can be concluded from these 
graphs that the relationship between SQR_CBC and VISIT differs from patient to 
patient, and moreover that it may not be strictly linear. The possible inclusion of a 
quadratic function of the time of measurement, i.e. VISIT, should be explored. No 
definite trend is immediately apparent for gender groups within the wide variety of 
curves plotted, but the possibility of an interaction between the gender and the 
number of the visit cannot be excluded.  
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Figure 3.16: Relationship between SQR_CBC and VISIT for selected patients 
 

Transforming a variable 

To examine the relationship between the outcome and the quadratic value of VISIT, a 
new variable has to be created. This is done in a similar way to adding the square 
root of the total score. First insert a column, then type the appropriate function into 
the formula box as shown below. Click the Apply button. Each value of the new 
variable is the squared value of the corresponding value of the variable VISIT as 
shown below. 
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Right-click on the header of the newly inserted column to activate the Column 
Properties dialog box and enter a variable name such as SQ_VISIT into the Header 
field. Click OK to return to the spreadsheet. 
 

3.4.2.3 Exploratory graphs 

Remake the bivariate graphs shown previously for SQR_CBC and VISIT, using the 
squared value of VISIT (SQ_VISIT) instead. The completed New Graph dialog box, 
accessed via the Data-based Graphs, Exploratory option, is shown below. Click OK 
to display the graphs for individual patients. 
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Very little change in the shape of the plots is observed in the graphs obtained for the 
three patients considered earlier. To follow up on the possibility of a nonlinear 
relationship between the outcome and the visit number, both of the variables VISIT 
and SQ_VISIT will be included in the first model fitted, where the relationship of 
each with the outcome can be evaluated in the presence of the other. 
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Figure 3.17: relationship between SQR_CBC and SQ_VISIT for selected patients 
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Box-and-whisker plots 

Another bivariate plot of interest is a box-and-whisker plot, which may be used to 
examine the distributions of continuous variables such as for the different values of 
discrete valued predictors. This option, accessed via the Data-based Graphs, 
Bivariate option on the File menu, is now used to take a closer look at the 
distribution of the transformed outcome variable at different visits, and for the two 
gender groups. 
 
The Bivariate plot dialog box is completed as follows: select the outcome variable 
SQR_CBC as the Y-variable of interest, and the predictor VISIT to be plotted on the 
X-axis. Check the Box and Whisker option, and click Plot. 
 

 
 
In the plot shown below, the box-and-whisker plots for the square root of the 
CBCTOT scores are shown at each of the measurement occasions. Recall that the 
bottom line of a box represents the first quartile ( 1q ), the top line the third quartile 
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( 3q ), and the in-between line the median (me). Here, the arithmetic mean is 
represented by a diamond. A decrease in the mean HDRS rating is observed over the 
course of the study. In addition, the larger distances between the extremes of the 
boxes at the later measurement occasions indicate more variability in the 
transformed  CBCTOT scores towards the end of the study.  
 

  
Figure 3.18: Box-and-whisker plot of SQR_CBC vs. VISIT 
 

When a similar plot is made for the original total score as represented by the 
variable CBCTOT, it is clear that the distributions of the transformed scores, though 
still exhibiting more variability at later visits, are closer to normal for the 
transformed variable (figure below).  
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Figure 3.19: Box-and-whisker plot of CBCTOT vs. VISIT 

 

 
Figure 3.20: Box-and-whisker plot of SQR_CBC vs. GENF 

 
A box-and-whisker plot of the transformed scores for the two gender groups can 
easily be obtained. Simply close the graph window shown above, deselect VISIT as 
the X-variable and select the indicator of gender GENF instead. Click Plot to obtain 
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the box-and-whisker plot shown below. A slightly larger range of scores is observed 
for males (GENF = 0) than for females (GENF = 1).  
 
When Figure 3.20 is compared to a similar one for the untransformed outcome 
variable CBCTOT, the same tendency towards a less normal distribution is observed, 
particularly with respect to the total scores of male patients. 
 

 
Figure 3.21: Box-and-whisker plot of CBCTOT vs. GENF 
 

Bivariate bar charts 

Another bivariate plot that may provide insight is  a plot of gender by the number of 
visits. The Bivariate option on the File, Data-based Graphs menu is again used to 
access the Bivariate plot dialog box. Select VISIT as the Y-variable and GENF as the 
X-variable, and request a bivariate bar chart prior to clicking the Plot button. 
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Figure 3.22: Bivariate chart of VISIT vs GENF 
 

The bar chart for VISIT vs. GENF shows not only that more males than females are 
present in the data, but also that roughly equal numbers of observations/scores are 
available for the two groups at each of the visits. The pattern in terms of the number 
of observations available at each visit is the same for the two gender groups. 
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3.4.3 Fitting a growth curve model to the data 

3.4.3.1 The model 

The first model fitted to the data explores the relationship between SQR_CBC and 
the visit number, as represented by the variables VISIT and SQ_VISIT: 

0 1 2 0 0SQR_CBC VISIT SQ_VISITijk ijk ijk i ij ijkv v eβ β β= + ∗ + ∗ + + +  

In this model, 0β  denotes the average expected total score, and 1β  and 2β  indicate 
the estimated coefficients associated with the fixed part of the model which contains 
the predictor variables VISIT and SQ_VISIT. The random part of the model is 
represented by 0iv , 0ijv  and ijke , which denote the variation in average total score 
over therapists, between patients (or, in other words, over patients nested within 
therapists) and between measurements at the lowest level of the hierarchy.  
 

3.4.3.2 Setting up the analysis 

Open the SuperMix spreadsheet cbtot.ss3. The next step is to describe the model to 
be fitted. We use the SuperMix interface to provide the model specifications. From 
the main menu bar, select the File, New Model Setup option.  
 
Select the continuous outcome variable SQR_CBC from the Dependent Variable 
drop-down list box on the Configuration tab. The therapist number THERAPIS and 
respondent identification code SID used to define the levels of the hierarchy are 
specified as Level-3 ID and Level-2 ID respectively by selecting them from the Level-
3 IDs and Level-2 IDs drop-down list boxes. Enter a title for the analysis in the Title 
text boxes. Select the means & (co)variances option from the Write Bayes estimates 
drop-down list box to request the writing of residuals to an external file. In this 
example, default settings for all other options associated with the Configuration 
screen are used. Proceed to the Variables screen by clicking on that tab. 
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The Variables screen is used to specify the fixed and random effects to be included 
in the model. Select the explanatory (fixed) variables using the E check boxes next 
to the variables names in the Available grid at the left of the screen. Note that, as the 
variables are selected, the selected variables are listed in the Explanatory Variables 
grid. After selecting all the explanatory variables, the screen shown below is 
obtained. The Include Intercept check box in the Explanatory Variables grid is 
checked by default, indicating that an intercept term will automatically be included 
in the fixed part of the model.  
 
Next, specify the random effects at levels 2 and 3 of the hierarchy. In this example, 
we want to fit a model with random intercepts at levels 2 and 3. By default, the 
Include Intercept check boxes in both the L-2 Random Effects and L-3 Random 
effects grids are checked. If these boxes are left checked, and no additional random 
effects are indicated using the 2 column in the Available grid to the left, the model 
fitted will be the random-intercepts-only model we intend to use. No further 
changes on this screen are necessary.  
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Before running the analysis, the model specifications have to be saved. Select the 
File, Save As option, and provide a name (cbctot.mum) for the model specification 
file. Run the analysis by selecting the Run option from the Analysis menu. 
 

3.4.3.3 Discussion of results 

Portions of the output file cbtot.out are shown below.  
 
In the first section of the output file, a description of the hierarchical structure is 
provided. Data from a total of 446 therapists and 1951 patients at 7127 measurement 
occasions were included at levels 3, 2 and 1 of the model. This corresponds to the 
study design described earlier. In addition, a summary of the number of patients and 
measurements nested within each therapist is provided. The therapist with ID3 = 21, 
for example, had 15 patients (N2: 15). These patients were measured at 59 occasions. 
By contrast, therapist 23 had only 1 patient, for whom 4 measurements were made. 
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The data summary is followed by descriptive statistics for all the variables included 
in the model. The mean of 6.61867 reported for the outcome SQR_CBC translates to 
a total score of 43.806 on the Child Behavior Checklist. 
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Fixed effects results 

The output describing the estimated fixed effects after convergence is shown next. 
The estimates are shown in the column with heading Estimate, and correspond to the 
coefficients 0 1 3, , ,β β β  in the model specification. From the z-values and 
associated exceedance probabilities, we see that the coefficients associated with 
both the time of measurement (VISIT) and squared value of the time of measurement 
(SQ_VISIT) are highly significant. The significance of the estimate associated with 
SQ_VISIT supports the tentative conclusion made during the exploratory analysis 
that the relationship between score and visit number cannot adequately be described 
by a linear relationship. While the average CBC score is expected to decrease with 
0.94119 units between two successive visits, a smaller increase in score of 0.13671 
is associated with the squared value of the time of measurement. 
 

 

Random effects results 

The output for the random part of the model follows, and is shown in the image 
below. 
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There is significant variation in the average estimated total health expenditure at all 
levels, with the most variation over the patients (level-2), and the least variation 
over therapists (level-3). 
 

3.4.3.4 Interpreting the results 

Estimated outcomes for different groups 

A typical patient at the start of the study is expected to have a transformed CBC 
score of 

0 0 1 0 2 0

2

SQR_CBC VISIT SQ_VISIT

7.59246 0.94119(0) 0.13671(0 )
7.59246,

ij ij ijβ β β
∧ ∧ ∧ ∧

= + ∗ + ∗

= − +
=

 

that is, the estimated intercept. Similar equations for expected transformed scores at 
subsequent measurements (visits) are obtained in the same way: 
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2
1VISIT 1:SQR_CBC 7.59245 0.94119(1) 0.13671(1 )

7.59246 0.94119 0.13671
6.78798

ij

∧

= − +

= − +
=

 

2
2VISIT 2 :SQR_CBC 7.59245 0.94119(2) 0.13671(2 )

7.59246 1.88238 0.54684
6.25692

ij

∧

= − +

= − +
=

 

2
3VISIT 3:SQR_CBC 7.59245 0.94119(3) 0.13671(3 )

7.59245 2.82357 1.23039
5.99928

ij

∧

= − +

= − +
=

 

The effect of the positive estimate for SQ_VISIT in slowing down the expected 
decrease in CBC scores over successive measurement occasions is clear from the 
equations above: without this estimate, the expected CBC scores at visits 1, 2, and 3 
would have been 6.65126, 5.71007, and 4.76888 respectively. In terms of the actual 
rather than the square root of the CBC scores, the expected scores at the 4 
measurement occasions under the current model are 57.6453, 46.0765, 39.1489, and 
35.9914 respectively. 
 

Model-based graphs 

Using the Plot Equations for: SQR_CBC dialog box that appears when the File, 
Model-based Graphs, Equations option is selected, we can graphically depict the 
trend in expected average squared score for the predictors VISIT and SQ_VISIT. The 
dialog box below shows the selection of the predictor VISIT, and in the graph 
requested, SQ_VISIT will be fixed at a value of 0. 
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The graph below shows the result obtained when the Plot button is clicked after 
completion of the Plot Equations for: SQR_CBC dialog box as shown above.  
 

 
Figure 3.23: Plot of SQR_CBC vs. VISIT 
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A similar plot for the predictor SQ_VISIT is given in Figure 3.24. Note that, in the 
second graph, the increase in expected score seems larger than implied by the 
estimate of 0.13671. This is due in part to the difference in the ranges of the two 
predictors, as reflected in the tick marks on the X-axes of the graphs. 
 

 
Figure 3.24: Plot of SQR_CBC vs. SQ_VISIT 
 

Fit statistics and ICC 

From the output for the random part of the model it is clear that there is significant 
variation in the average estimated total health expenditure at all levels, with the 
most variation over the patients (level-2), and the least variation over therapists 
(level-3). 
 
An estimate of the percentage of variation in the outcome at a patient level, for 
example, is obtained as 
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 3.08097 100% 51.32%
0.58201 3.08097 2.34083

× =
+ +

 

indicating that 51.32% of the total variance in scores is at the patient level. In 
contrast, 

 0.58201 100% 9.69%
0.58201 3.08097 2.34083

× =
+ +

 

is at the therapist level, with the remainder over measurements nested within 
patients. 
 

3.4.4 Fitting a random intercept model with 3 predictors and 
interaction term to the data 

3.4.4.1 The model 

From the exploratory analysis, we are aware of a possibly nonlinear relationship 
between the transformed outcome variable SQR_CBC and the visit number, as 
represented by the variables VISIT and SQ_VISIT. Differences in the distributions of 
the transformed scores of the two gender groups also lead us to suspect that the 
outcome may depend to some extent on the gender of the patient. The possibility of 
an interaction between the time elapsed since the start of the study, as represented 
by VISIT and SQ_VISIT, and the gender of a patient cannot be ruled out.  
 
The model considered in this section uses the participant's gender, visit number, 
squared value of the visit number, and the interaction between visit number and 
gender (represented by the variable GVISIT in the data spreadsheet) to predict the 
square root of the total score on the Child Behavior Checklist. This second order 
growth curve with gender and the interaction term as covariates can be expressed as 
follows: 

0 1 2 3 4

0 0

SQR_CBC GENF VISIT SQ_VISIT GENF *VISITijk ij ijk ijk ij ijk

i ij ijkv v e
β β β β β= + ∗ + ∗ + ∗ + ∗

+ + +
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

246 

As before, 0β  denotes the average expected total score, 1 2 4, , ,β β β  indicate the 
estimated coefficients associated with the fixed part of the model, and 0iv , 0ijv  and 

ijke  represent the random part of the model.  

 

3.4.4.2 Setting up the analysis 

The SuperMix spreadsheet cbtot.ss3 and the model specification file cbtot.mum 
discussed in the previous example are used a point of departure. With the model 
specification file open, click on the Variables tab of the Model Setup window. Add 
the predictors GENF and GVISIT to the model by checking the boxes next to these 
variables in the E column, as shown below. 
 

 
 
Save the modified model specification file as cbtot2.mum, then select the Run 
option from the Analysis menu to perform the analysis. 
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3.4.4.3 Discussion of results  

Fixed effects results 

The maximum likelihood estimates of the coefficients in the fixed part of the model 
are shown below.  
 

 
 

The statistical significance of all the effects confirm our suspicion that the CBC 
scores measured over time not only depend on the time of measurement and the 
squared value thereof, but also on the gender of the patient. A significant interaction 
between gender and the time of measurement is also observed. Recall that for male 
patients GENF was coded 0, and for females GENF was assigned a value of 1. The 
positive estimate of 0.28977 for the effect of gender indicates that males tended to 
have a lower score on average than females: the expected average male score is 
0.28977 units lower on the transformed CBC scores than for females. This effect is 
offset by the negative estimate of the interaction effect. For males, the interaction 
term GVISIT assumes the value 0, but for females GVISIT is equal to 0, 1, 2, and 3 
respectively at the 4 measurement occasions. The transformed score of a female 
patient is thus expected to be 0.10034 units lower at the second visit than the score 
of a male patient, or a female patient at the beginning of the study. 
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Random effects results 

The output for the random part of the model is given next.  
 

 
 
As before, most variation in scores is found at a patient level, and the least variation 
at the therapist level. The estimated percentages of variation in outcome at patient 
and therapist level are  

 3.08225 100% 51.39%
0.57846 3.08225 2.33648

× =
+ +

 

and 

0.57846 100% 9.65%
0.57846 3.08225 2.33648

× =
+ +

 

 
respectively. When compared to the similar percentages for the growth curve model, 
changes observed are negligible. The addition of the variables GENF and GVISIT did 
not contribute significantly to the explanation of remaining variation in the outcome 
at the various levels of the model. 
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3.4.4.4 Interpretation of the results  

Estimated outcomes for different groups 

For a typical patient, the expected CBC score can be calculated as 

0 1 2 3 4SQR_CBC GENF VISIT SQ_VISIT GVISIT

7.49255 0.28977 GENF 0.90730 VISIT

0.13703 SQ_VISIT 0.10034 GVISIT .

ijk ij ijk ijk ijk

ij ijk

ijk ijk

β β β β β
∧ ∧ ∧ ∧ ∧ ∧

= + ∗ + ∗ + ∗ + ∗

= + ∗ − ∗

+ ∗ − ∗

 

For male patients GENF = 0, and thus the formula used to predict their CBC scores 
reduces to 

SQR_CBC 7.49255 0.28977 (0) 0.90730 VISIT

0.13703 SQ_VISIT 0.10034 (0)

7.49255 0.90730 VISIT 0.13703 SQ_VISIT .

ijk ijk

ijk

ijk ijk

∧

= + ∗ − ∗

+ ∗ − ∗

= − ∗ + ∗

 

For female patients GENF = 1, and thus the formula used to predict their CBC scores 
can be expressed as 

SQR_CBC 7.49255 0.28977 (1) 0.90730 VISIT

0.13703 SQ_VISIT 0.10034 GVISIT

7.78232 0.90730 VISIT 0.13703 SQ_VISIT 0.10034 GVISIT .

ijk ijk

ijk ijk

ijk ijk ijk

∧

= + ∗ − ∗

+ ∗ − ∗

= − ∗ + ∗ − ∗
 

Table 3.9 below shows the expected square roots of CBC scores for the various 
groups formed by the gender groups and interaction term at all measurement 
occasions. In Table 3.10, the same expected scores are given in the scale of the 
original total score on the Child Behavioral Checklist. The initial impression, based 
on the positive coefficient of GENF, that females had higher expected CBC scores 
than males, seems to hold at the onset of the study. However, these tables show that, 
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after the effects of the other variables are also taken into account, females are likely 
to have a slightly lower score than males at the end of the study period.  
 

Table 3.9: Expected square root of CBC scores 
 

Gender Visit 
0 1 2 3 

Male 7.4926 6.7223 6.2261 6.0039 
Female 7.7823 6.9117 6.3152 5.9927 

 
Table 3.10: Expected CBC scores in original scale 

 
Gender Visit 

0 1 2 3 
Male 56.1385 45.1890 38.7638 36.0468 
Female 60.5648 47.7719 39.8812 35.9120 

 
The results in these tables can also be depicted graphically using the File, Model-
based Graphs menu. This menu offers three options, namely equation modeling, 
residual plots and confidence intervals for random effects.  
 

Equation modeling 

To plot the trends in CBC scores for gender groups over successive visits, make sure 
the Model Setup window is activated by clicking on it before select the Equations 
option from the File, Model-based Graphs menu.  
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This activates the Plot Equations for: SQR_CBC dialog box. Select VISIT as the 
predictor, and request marking by gender as shown in Figure 3.25. Note that, by 
default, remaining predictors are fixed at 0. Click Plot to display the graphing 
window. 
 
By default, graphs using a two-category marking variable such as GENF will be 
displayed using blue and green to indicate the categories. To make the distinction 
between the groups of interest more clear, and create a graph that can be included in 
a report or paper to be printed in black and white, the plotting symbols can be 
changed. Here, we opt to change the line for female patients to a black, dotted line. 
Double-click on the line for this group in the legend box shown at the top right of 
the graph to activate the Plot Parameters dialog box. Next, click the Line Attributes 
button to load the Line Parameters dialog box. 
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Figure 3.25: Plot of SQR_CBC vs. VISIT for gender groups 

 
Change the line style to dotted using the Style drop-down list box, and select black 
from the Color drop-down list box. Click OK on both the Line Parameters and Plot 
Parameters dialog boxes to obtain the final graph shown below.  
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Figure 3.26: Modified plot of SQR_CBC vs. VISIT for gender groups 

 
The predicted decrease in CBC score echoes the results of the maximum likelihood 
estimation of the fixed effects, where a negative coefficient of –0.9073 was reported 
for the predictor VISIT. While the predicted intercept for males at the beginning of 
the study is approximately 7.5 as indicated in the graph at the top-left of the 
graphing window, the predicted intercept for the same group has decreased to 
approximately 4.75 by the final visit. This is lower than reported in Table 3.10, 
where calculations showed an expected CBC score of 6.00 for males by the final 
visit. The reason for this difference can be found in the formula used to produce the 
graph: recall that all remaining predictors were fixed to a value of 0. Whereas the 
result for males at the final visit shown in Table 3.10 was based on the calculation 

SQR_CBC 7.49255 0.28977 (0) 0.90730 VISIT

0.13703 SQ_VISIT 0.10034 (0)

7.49255 0.90730 VISIT 0.13703 SQ_VISIT ,

ijk ijk

ijk

ijk ijk

∧

= + ∗ − ∗

+ ∗ − ∗

= − ∗ + ∗

 

the line shown for this group in the graph above is based on the formula 

SQR_CBC 7.49255 0.28977 (0) 0.90730 VISIT .ijk ijk

∧

= + ∗ − ∗  

As a result, the predicted outcome shown in the graph for males at the end of the 
study will be 0 13703 9 1 2333( )( ). .=  units lower than reported in Table 3.10. This 
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difference underlines the fact that care should be taken when selecting the treatment 
for remaining predictors in the model. In this case, both SQ_VISIT and GVISIT can 
assume the value of 0, and thus using the remaining predictors fixed at zero option 
is permissible. In cases where predictors cannot assume a value of zero, the better 
choice would be to fix remaining predictors at their mean values instead when 
completing the Plot Equations for: dialog box. 
 

Confidence intervals for random coefficients 

The Confidence Intervals option on the File, Model-based Graphs menu provides the 
option to display confidence intervals for the empirical Bayes estimates of the 
random effects specified in a given model. This option is now used to examine the 
confidence intervals of the random intercepts for the therapists, who represent the 
highest level of the hierarchy in the current example. 
 
Select the Confidence Intervals option on the File, Model-based Graphs menu to 
activate the 95% Conf. Intervals for EB estimates dialog box. A simple graph of the 
confidence intervals for the empirical Bayes estimates of the intercepts at the 
therapist level is obtained by selecting THERAPIST Intcept in the Predictor column 
before clicking Plot. Note that it is also possible to select both a grouping and 
marking variable to be used in the graph. 
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The graph obtained, as seen below, shows that, in general, the range of the confidence 
intervals for the level-3 empirical Bayes estimates of the intercepts is 2 2( ; )− . The 
deviations from the estimated population intercept over therapists are also apparent.  

 

 
Figure 3.27: 95% confidence intervals for level-3 units 

 
Each confidence interval is obtained using  

( )1 96Empirical Bayes residuals . var Empirical Bayes residuals± . 

 

Fit statistics 

Recall that for the growth curve model the following indices were obtained: 
 

o Log Likelihood:   –14946.6389 
o –2 Log Likelihood (Deviance):  29893.2778 
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o Akaike's Information Criterion:  29905.2778 
o Schwarz's Bayesian Criterion:  29929.8797 
o Number of free parameters:  6 

 
When the deviances of the two models are compared, a 2χ -statistic of 29893.2778 
– 29882.7036 = 10.57 with 8 – 6 = 2 degrees of freedom is obtained. This indicates 
that the current model fits the data better than the growth curve model. The AIC 
decreased from 29905.2778 to 29898.7036, and also favors the use of the current 
model. The SBC, however, increased slightly, from 29929.8797 to 29931.5062, and 
thus favors the growth curve model previously fitted as the more parsimonious. 
Note, however, that the changes in all three criteria are rather small. 
 

3.4.4.5 Residuals 

Residual plots 

The Residuals option on the File, Model-based Graphs menu is used to examine the 
residuals obtained for a fitted model. It is useful for examining the fit of the model, 
and also as a check for possible distributional assumption violations. As residuals 
are defined as the difference between the observed and predicted outcomes, trends 
in residuals, for example over the course of a study in a longitudinal data set, may 
indicate that an important predictor was not included in the model fitted to the data. 
 
Select the Residuals option on the File, Model-based Graphs menu to activate the 
Plot of Residuals dialog box. To simultaneously check for any differences in 
residuals for the gender groups, select GENF as marking variable. Opt to create an 
unstandardized plot of the residuals by selecting the Unstandardized Plot option 
rather than the default Standardized Plot option. Click Plot. 
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The graph below shows the residuals for the gender groups in the default colors of 
blue and green. To make the distinction between the groups more clear, click on the 
plotting symbol for the female group in the legend box. 
 

 
Figure 3.28: Level-1 residual plot by gender group 
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The Plot Parameters dialog box appears. Change the Shape of the symbol to "Up 
Triangle," adjust the Size to 3 and change the display Color to black as shown 
below. Click OK when done. 
 

 
 
Click on the symbol for the male group next, and change the parameters for this 
group to those shown in the dialog box below. Click OK to return to the graphing 
window. 
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The final plot is shown below. The residuals are clustered reasonably symmetrically 
around the 0 tick mark on the Y-axis, and no gender pattern can be discerned for the 
larger residuals. A single residual, for a male respondent, has a value larger than 10. 
This potential outlier can be identified using the Data option on the Plot Parameters 
dialog box (see above). 
 

  
Figure 3.29: Modified level-1 residual plot by gender group 
 

3.4.5 Fitting a random intercepts and slopes model 

3.4.5.1 The model 

The graphs obtained during the exploratory analysis of the CBC data showed that the 
change in total CBC score over the course of the study differed from patient to 
patient. Because of this, the models fitted in Sections 3.4.3 and 3.4.4 allowed for the 
intercepts to vary randomly at both patient and therapist level. In effect, we assumed 
that each patient may have a different starting point. These models indicated a 
statistically significant relationship between the observed CBC score and the 
measurement occasion. To test whether there is significant variation in the way 
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individual patients' scores change over the study period, a model in which both 
intercepts and slopes of the predictor VISIT are allowed to vary randomly can be 
used.  
 
The model can be formulated as 

0 1 2 3 4

0 1 0 1

SQR_CBC GENF VISIT SQ_VISIT GENF *VISIT

( *VISIT ) ( VISIT )
ijk ij ijk ijk ij ijk

i i ijk ij ij ijk ijkv v v v e
β β β β β= + ∗ + ∗ + ∗ + ∗

+ + + + +
 

At level 2, two random coefficients are now included: 0ijv  represents the random 
intercept and 1ijv  the random coefficient for the slope of the predictor VISIT. The 
random coefficients 0iv  and 1iv  serve the same purpose at level 3 (the therapist 
level) of the model.  
 

3.4.5.2 Setting up the analysis 

Again, we use the SuperMix spreadsheet cbtot.ss3 and the model specification file 
cbtot.mum discussed in the previous example as the starting point. With the model 
specification file open, click on the Variables tab of the Model Setup window. Add 
random coefficients for the predictor VISIT to levels 2 and 3 of the model by 
checking the boxes next to these variables in the 2 and 3 column, as shown below. 
Save the changes to the model specification file, using the File, Save option to 
overwrite the previous specification file or the File, Save as option to assign a new 
filename. Click Run on the Analysis menu to perform the analysis.  
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3.4.5.3 Discussion of results  

Partial output is given below. We focus on those parts of the output that differ from 
the output obtained for the previous analysis, and conclude with a discussion of the 
additional output files containing the empirical Bayes residuals.  
 

Fixed effects results 

The inclusion of random VISIT slopes at levels 2 and 3 of the hierarchy has very 
little impact the estimated fixed coefficients. Results for the fixed part are shown 
below.  
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Random effects results 

Turning to the estimated coefficients in the random part of the model, we note a 
change in the between measurement (level-1) variation, which has decreased from 
2.33648 to 1.88939. This illustrates that the addition of a random coefficient at any 
level of a model can affect the random effect(s) at another level.  
 
At levels 2 and 3 we find evidence of significant variation in the VISIT slopes. While 
not of the same magnitude as the intercept variation, it is clear that it is more 
realistic to allow the slopes to vary from patient to patient, and from therapist to 
therapist, than to assume that the VISIT slope can be described adequately by a 
common fixed effect as was done in the previous model.  
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3.4.5.4 Interpreting the results  

Fit statistics and ICC 

Model fit 
When the measures of fit are compared to those of the random-intercepts-only 
model, it becomes clear that the current model fits the data better. Recall that for the 
random intercepts model the following fit measures were obtained: 

o Log likelihood:    –14941.3518 
o –2 log Likelihood (Deviance):    29882.7036 
o Akaike's Information Criterion:  29898.7036 
o Schwarz's Bayesian Criterion:  29931.5062 
o Number of free parameters:   8 

 
While four more parameters had to be estimated in the random intercepts and slopes 
model, the deviance decreased significantly. The 2χ -statistic for comparing these 
models is 29882.7036 – 29658.6022 = 223.9185, with 4 degrees of freedom. The 
improved fit of the current model is also clear from the other fit measures: both the 
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AIC and the SBC clearly favor the current model, and have decreased substantially 
from those reported for the random-intercepts-only model.   
 
Percentage variation explained 
To take a closer look at the amount of variation explained at the levels of the 
hierarchy, the total variation at each level has to be calculated. At level 3, we have 
three variance/covariance components to take into account. Recall that the model 
included two random effects, namely 0iv  and 1( )i ijkv VISIT . The total variation at this 
level follows as 

0 1

0 1 0 1

2
0 1 0 1

2

( 3) var( (VISIT ))

var( ) var( (VISIT )) cov( , (VISIT ))

var( ) (VISIT ) var( ) 2(VISIT )cov( , )

0.58870 0.03869(VISIT ) 2(0.03108)(VISIT )

0.58870 0.03

i i ijk

i i ijk i i ijk

i ijk i ijk i i

ijk ijk

Var level v v
v v v v

v v v v

− = +

= + +

= + +

= + −

= + 2869(VISIT ) 0.06216(VISIT )ijk ijk−

 

At level 2, the total variation can be expressed in similar fashion as 

0 1

2
0 1 0 1

2

( 2) var( (VISIT ))

var( ) (VISIT ) var( ) 2(VISIT )cov( , )

3.04361 0.23823(VISIT ) 0.2297(VISIT )

ij ij ijk

ij ijk ij ijk ij ij

ijk ijk

Var level u u

u u u u

− = +

= + +

= + −

 

The total variation in the model is 

2

var( 1) var( 2) var( 3)
5.5217 0.27692(VISIT ) 0.29186(VISIT )ijk ijk

Total Var level level level= − + − + −

= + −
 

The variation at the higher levels and, consequently, the total variation are a 
function of the measurement occasion, as represented by the predictor VISIT. For 
example, at the start of the study we find that the total variation is equal to 5.5217, 
with 0.58870 at level 3 and 3.04361 at level 2. This indicates that at the time of the 
first visit,  
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0.58870 100 10.66%
5.5217

× =  

of the total variation explained by this model is at a therapist level. By the end of the 
study, VISIT assumes a value of 3, and thus the total variation is equal to 7.1384. The 
total variation at the therapist level at the last measurement occasion is 0.75043, and 
thus the percentage of variation at therapist level at the end of the study is 

0.75043 100 10.51%.
7.1384

× =  

At a patient level, the corresponding percentages of variation at the first and last 
visit are 

3.04361 100 55.12%.
5.5217

× =  

and 

4.49858 100 63.02%
7.1384

× =  

respectively. While the total variation explained at a therapist level declines over 
visits, there is an increase of approximately the same size in the total variation 
explained at a patient level over visits. The variation over patients is consistently 
much higher than over therapists or over measurements nested within patients. 
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4 Models for binary outcomes 

4.1 Introduction 
 
The nominal and ordinal outcome models can be seen as generalizations of the 
binary outcome model. In order to understand these models, an understanding of the 
binary outcome model is required.  
 
A binary random variable is a discrete random variable that has only two possible 
values, such as whether a subject dies (event) or lives (non-event). Such events are 
often described as success versus failure, and coded using the values 0 or 1. 
Consequently, the assumption that this type of outcome variable has a normal 
distribution does not hold anymore.  
 
The most common distribution used for a binary outcome is the Bernoulli 
distribution, which takes a value 1 with probability of success p  and a value 0 with 
probability of failure 1q p= − . The selection of the distribution for the outcome 
variable is not fixed. For example, if the occurrence is very rare, the Poisson 
distribution can be used. 
 

4.1.1 Link functions 

In the case of a binary variable, observed values are usually assigned as either 0 or 
1. When such a variable is treated as if it were continuous, predicted 
values, indicating the probability of the event occurring, can fall outside the (0,1) 
interval. Moreover, the assumption of normality at level 1 is not realistic as the 
random effects can no longer be assumed to have a normal distribution or to have 
homogeneous variance. 
 
The multilevel generalized linear model (MGLM) generalizes the multilevel model 
for continuous outcomes by additionally allowing for error distributions from the 
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exponential family (see, for example, McCullagh & Nelder, 1989). Let y  denote 
the outcome variable, and ( )E y  the expected value of y . The key to MGLM models 
is that a nonlinear relationship between ( )E y  and β  is allowed, with the aid of a 
link function.  
 
Suppose that ( )1 nx x=x   is the vector of all the predictors and that ( )1 nβ β=β   
is the vector of unknown regression parameters. In the models discussed up to now, 
it was assumed that the outcomes were normally distributed variables and that a 
model of the form 

 ' ' , 1, 2,...,ij ij ij i ij iy e j n= + + =x β z v  

could be used to describe the relationship between the outcome and predictor 
variables. The vector '

ijz  denotes a design vector for the random effects contained in 

the vector iv , and '
ijx  is the design vector for the predictors in the fixed part of the 

model with corresponding vector β  of regression parameters. The covariance 
matrix of iv  is denoted by (2)Φ  and the variance of ije  by 2

eσ .  

 
The link function specifies a nonlinear transformation between the linear predictor 
η  and the assumed distribution function. These link functions transform the 
observed outcome value to a function η ′= x β  and ensure that the predicted 
probability lies within the (0,1) interval. Instead of y, η  is being analyzed. For the 
binary outcome, the probability of success η  is the predictor of interest. 

 
The most commonly used link functions are the log, logit, probit and 
complementary log-log link functions. The log link generally is used for the count 
variable with Poisson distribution, which will be discussed in the next chapter. The 
link functions available in SuperMix include the logit, probit and complementary log-
log functions for models with an ordinal dependent variable, and the logit link 
function for models with a nominal dependent variable. Table 4.1 shows these link 
functions, along with their distribution functions (CDF), means and variances. 
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Table 4.1: Link functions for the Bernoulli distribution 
 

Link name 
Link function 
( )1F p−

, 0 1p< <  
CDF 

w−∞ < < ∞  
Mean Variance 

logit (logistic) ( )logit ln
1

pp
p

 
=  −   1

w

w

e
e+  

0 
2

3
π

 

probit 
1 ( )p−Φ , where 1−Φ  is the 

inverse of the standard normal 
cumulative distribution  

( )wΦ  0 1 

complementary 
log-log ( )( )log log 1 p− −  ( )( )1-exp exp w−  -0.577 

2

6
π

 
 
These link functions map the probability η  with an open interval (0,1) to the entire 
set of real numbers  . Figure 4.1 illustrates how a real number w is transformed to 
the probability η . 
 
As shown below, the logit and probit link functions are both symmetric around a 
value of 0. The logit function has a larger variance. The complementary log-log link 
function is asymmetric. When the probability of a successful outcome ( p ) is 
extremely small or large, the linear relationship does not hold. Understanding the 
nature of the link function used in an analysis is essential to the correct 
interpretation of the results.  
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Figure 4.1: Cumulative density of link functions 
 
In this chapter, we will consider examples of two- and three-level models based on 
two data sets, both with binary outcome variables. These data will also be used to 
illustrate the ordinal outcome model in Section 6.2. 
 

4.1.2 Methods of estimation 

For models with binary, ordinal, count, and nominal outcomes, SuperMix offers two 
methods of estimation: maximization of the posterior distribution (MAP) and 
numerical integration (adaptive and non-adaptive quadrature) to obtain parameter 
and standard error estimates. 
 
The MAP method of estimation can be used to obtain a point estimate of an 
unobserved quantity on the basis of empirical data. It is closely related to Fisher's 
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method of maximum likelihood (ML), but employs an augmented optimization 
objective which incorporates a prior distribution over the quantity one wants to 
estimate. 
 
Quadrature is a numeric method for evaluating multi-dimensional integrals. For 
mixed effect models with count and categorical outcomes, the log-likelihood 
function is expressed as the sum of the logarithm of integrals, where the summation 
is over higher-level units, and the dimensionality of the integrals equals the number 
of random effects. 
 
Typically, MAP estimates are used as starting values for the quadrature procedure. 
When the number of random effects is large, the quadrature procedures can become 
computationally intensive. In such cases, MAP estimation is usually selected as the 
final method of estimation. Numerical quadrature, as implemented in SuperMix, 
offers users a choice between adaptive and non-adaptive quadrature. Quadrature 
uses a quadrature rule, i.e., an approximation of the definite integral of a function, 
usually stated as a weighted sum of function values at specified points within the 
domain of integration.  
 
Adaptive quadrature generally requires fewer points and weights to yield estimates 
of the model parameters and standard errors that are as accurate as would be 
obtained with more points and weights in non-adaptive quadrature. The reason for 
that is that the adaptive quadrature procedure uses the empirical Bayes means and 
covariances, updated at each iteration to essentially shift and scale the quadrature 
locations of each higher-level unit in order to place them under the peak of the 
corresponding integral.  
 
A full description of these methods is given in Chapter 10. A brief description of 
MAP estimation and quadrature follows below. 
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MAP estimation 

For level-2 unit i , let 1 2, ,...,i i irv v v  denote the random effects and 1 2, ,...,
ni i iny y y  the 

outcomes. Let ( ),i if v y  denote the joint distribution of ( )1 2, ,...,i i i irv v v=v  and 

( )1 2, ,...,
ii i i iny y y=y .  

 
Using standard results for conditional distributions, it follows that 

 ( ) ( ) ( ) ( )| | / .i i i i i if f f f=v y y v v y  

By taking logarithms on both sides of the equation, the following density function is 
obtained: 

 ( ) ( ) ( )ln | ln | lni i i i if f f K= + −v y y v v  

where K  is a constant. Mode estimates iv
∧

 of the random effects and estimates 
∧

β  of 
the fixed parameters are obtained by iteratively solving the equations 

 
( )ln | 0,i i

k

f
γ
∂

=
∂

v y
 

where kγ   is a typical element of the unknown parameters 1 2, ,...,i i irv v v  and 

1 2, ,..., pβ β β . 

 

As a by-product of the iterative procedure, estimates of cov , 1,2,...,iv i N
∧  = 

 
 are 

obtained and these, in turn, are used to estimate  ( ) ( )2 cov iΦ = v . 
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Numerical quadrature 

Since 

 ( ) ( ) ( ), |i i i i if f f=y v y v v  

it follows that the marginal distribution of iy  can be obtained as the solution to the 
multi-dimensional integral  

 ( ) ( ) ( )
1

1... | .... .
r

i i i r
v v

f f f dv dv= ∫ ∫y y v v  

Since it is assumed that ( )(2)~ ,i Nv 0 Φ  it follows, for example, that 

 ( ) ( ) / 2 1/ 2 ' 1
(2) (2)

12 | | exp .
2

r
i i if π − − − = −  

v Φ v Φ v  

In general, a closed-form solution to this integral does not exist. To evaluate 
integrals of the type described above, we use a direct implementation of Gauss-
Hermite quadrature (see, e.g., Krommer & Ueberhuber, 1994, Section 4.2.6 and 
Stroud & Sechrest, 1966, Section 1).  
 
With this rule, an integral of the form 

 2( ) ( ) expI t f t t dt = − ∫  

is approximated by the sum 

 ( )
1

( ) ,
Q

u u
u

I t w f z
=

≈∑  

where uw  and uz  are weights and nodes of the Hermite polynomial of degree Q. A 
Q-point adaptive quadrature rule is a quadrature rule constructed to yield an exact 
result for polynomials of degree 2 1Q − , by a suitable choice of the n points ix  and 
n weights iw . 
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4.2 Models based on a subset of the TVSFP data 

4.2.1 The data 

The data are from the Television School and Family Smoking Prevention and 
Cessation Project (TVSFP) study (Flay, et. al., 1988) described in Section 3.3. The 
study was designed to test the independent and combined effects of a school-based 
social-resistance curriculum and a television-based program in terms of tobacco use 
and cessation.  
 
A tobacco and health knowledge scale was used in classifying subjects as 
knowledgeable or not. In its original form, the student's score was defined as the 
number of correct answers to seven items on tobacco and health knowledge. The 
structure of this study indicates a three-level hierarchical structure. However, we 
will first consider two two-level structures. In the first, students are nested within 
schools; in the second, students are nested within classrooms. Finally, a three-level 
model recognizing the role of both classroom and school in the hierarchical 
structure of the data will be considered.  
 
Data for the first 10 participants on most of the variables used in this section are 
shown below in the form of a SuperMix spreadsheet file, named tvsfpors.ss3, located 
in the Examples\Binary subfolder. 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

274 

  

 
The variables of interest are: 

o School indicates the school a student is from (28 schools in total). 
o Class identifies the classroom (135 classrooms in total). 
o THKSord represents the tobacco and health knowledge scale, with 4 

categories ranging between 1 and 4. The frequency distribution of the post-
intervention THKS scores indicated that approximately half the students had 
scores of 2 or less, and half of 3 or greater. In terms of quartiles, four ordinal 
classifications were suggested corresponding to  0 – 1, 2, 3, and 4 – 7 correct 
responses. 

o THKSbin is a recoded version of the ordinal variable THKSord, but in binary 
form: a value of "0" indicates an original scale score of 1 or 2, while a value 
of "1" indicates an scale score of 3 or 4. This variable will serve as our 
outcome variable in the current chapter.  

o PreTHKS indicates a student's score prior to intervention, i.e., the number 
correct of 7 items.  

o CC is a binary variable indicating whether a social-resistance classroom 
curriculum was introduced, with 0 indicating "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with 
a "1" indicating the use of media intervention, and "0" the absence thereof. 

o CC*TV is the product of the variables TV and CC, and represents the CC by TV 
interaction. 
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In this chapter, we consider models for binary outcomes, using quadrature as 
method of estimation. 
 

4.2.1.1 Exploring the data 

Crosstabulation 

The focus is on the influence of the intervention on the tobacco health knowledge 
scores of the students, as represented by the binary outcome variable THKSbin. A 
cross-tabulation of the variables CC and TV for the two categories of the binary 
variable THKSbin is given in Table 4.1 below.  
 

Table 4.1: Crosstabulation of CC, TV and THKSbin 
 

THKSbin      CC Total 
  0 1  
0 TV 0 246 140 386 
    1 215 152 367 
Total 461 292 753 
1 TV 0 175 240 415 
    1 201 231 432 
Total 376 471 847 

  
The proportion of students with high scale scores (THKSbin = 1) in each of the four 
cells formed by the categories of CC and TV can be derived from Table 4.1. For 
example, 246 students in the category CC = 0, TV = 0 had a low score (THKSbin = 0), 
while 175 students had a high score (THKSbin = 1). The proportion of students in 

this cell with a high score is thus 175 0.4157
175 246

=
+

. The observed proportions of 

high scores are summarized in Table 4.2 below. 
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Table 4.2: Observed proportion of high post–intervention scores 
 

Study condition Proportion odds logits 
CC = 0, TV = 0 0.4157 0.711 –0.340 
CC = 0, TV = 1 0.4832 0.935 –0.067 
CC = 1, TV = 0 0.6316 1.714 0.539 
CC = 1, TV = 1 0.6031 1.520 0.418 

 
Proportions less than 0.5 indicate odds less than one and negative logits, while 
proportions above 0.5 yield odds greater than one and positive logit values. We note 
that, based on the observed proportion of high post-intervention scores, the use of 
only the social-resistance classroom curriculum (as represented by the variable CC) 
seemed the most successful, followed by the use of both curriculum and media 
intervention (CC = 1, TV = 1).  
 

Exploratory graphs 

The pre-intervention scores of the students may be useful as a covariate in the 
analysis. To get an idea of the relationship between the scale score PreTHKS and the 
post-intervention score THKSbin, an exploratory graph is created. Select the Data-
based Graphs, Exploratory option from the File menu. 
 
The New Graph dialog box is activated. Select the binary outcome variable THKSbin 
as the Y variable and the pre-intervention score PreTHKS as the X variable. Uncheck 
the Draw points check box, which is checked by default, to obtain the settings as 
shown. 
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Click OK to obtain Figure 4.1. The value associated with the tick marks on the X-
axis represents the proportion of students with that PreTHKS score that had a value 
of 1 on the THKSbin variable, in other words the proportion of students with a post-
intervention score of 3 or 4. We note that the relationship is reasonably linear, and 
that higher post-intervention scores are more often observed for students with high 
pre-intervention scores, which is what one intuitively would expect.  
 

 
Figure 4.1: Exploratory graph of THKSbin vs. PreTHKS 
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Univariate graphs 

We now take a closer look at the distribution of the pre-intervention scores by 
utilizing the Data-based Graphs, Univariate option on the File menu. By default, a 
bar chart will be produced. Select the variable PreTHKS in the Plot column, and click 
Plot. 
 

 

 
By clicking anywhere in the bars, the Bar Graph Parameters dialog box is activated. 
Click the Data button and then OK to display the data used to construct the bar chart. 
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Figure 4.2 below shows both the graphing window with bar chart and the data in 
spreadsheet format. Note that only 55 of the 1600 observations showed a score of 5 
or higher, and that no student obtained a post-intervention score of 7 out of 7.  
 

 
Figure 4.2: Bar chart of PreTHKS values 

 
Finally, we also take a look at the mean pre-intervention scores of the students for 
each of the four subgroups. These are summarized in Table 4.3 below, and show 
that the mean pre-intervention scores do not differ much. 
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Table 4.3: Mean pre-intervention scores 
 

Study condition Mean 
CC = 0, TV = 0 2.152 
CC = 0, TV = 1 2.087 
CC = 1, TV = 0 2.050 
CC = 1, TV = 1 1.979 

 

4.2.2 A 2-level random intercept logistic model with 2 predictors 

4.2.2.1 The model 

The outcome variable THKSbin used here is binary. It assumes a value of  "0" when 
the original scale score was either 1 or 2, and a value of "1"  for an  original scale 
score of 3 or 4. The predicted value of the outcome can be viewed as the predicted 
probability that THKSbin is 1. As explained in Section 4.1.1, predicted values outside 
the interval [0,1] would not be meaningful and a model constraining predicted 
values to lie in this interval would be appropriate, in contrast with the model for a 
continuous outcome (see above) where effect sizes outside this interval would be 
interpretable. In addition, the assumption of normality at level 1 is not realistic, as 
the level-1 random effect can only assume one of two values: 0 or 1. This random 
effect can thus not have homogeneous variance.  
 
In order to insure that the predicted values lie within the (0,1) interval, a 
transformation of the level-1 predicted probability can be used. For the binary case 
considered here, the following link function is used: 

Prob(THKSbin 1| , )
1

ij

ijij
e

e

η

η= =
+

β v  

where ijη  represents the log of the odds of success.  
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For the current model, we want to explore the relationship between the post-
intervention scores and the type of intervention applied. This relationship can be 
expressed as 
 
Level 1 model:  

0 1 2 3 4CC TV CC *TV PreTHKSij i i i i i i i ij i ij ijb b b b b eη = + × + × + × + × +  

Level 2 model: 

0 0 0

1 1

2 2

3 3

4 4

i i

i

i

i

i

b v
b
b
b
b

β
β
β
β
β

= +

=
=
=
=

 

An equivalent expression for the model is 

0 1 2 3 4 0CC TV CC *TV PreTHKS .ij i i i ij ij i ijv eη β β β β β= + × + × + × + × + +  

The interpretation of the logistic regression model is made in terms of the logits, as 
the model is linear in terms of the logits. Thus the coefficients 1 2 4, , ,β β β  can be 
interpreted as follows: 
 

o 0β  is the THKS logit for CC = 0, TV = 0, that is the log odds of a positive 
outcome for an individual from the control group where no intervention was 
made and with a pre-intervention score of 0. One could also refer to 0β  as 
the PreTHKS adjusted logit for the CC = 0, TV = 0 subgroup. 

o 1β  = the logit difference between (CC = 1, TV = 0) and (CC = 0, TV = 0) for 
the case where  PreTHKS = 0: 

   0 1 3 2 4 0( TV )CC TV PreTHKSij i i i ij ivη β β β β β= + + + + + , 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

282 

in other words, the  PreTHKS adjusted logit difference between  these two 
subgroups. 

o 2β  = the logit difference between (TV = 1, CC = 0) and (TV = 0, CC = 0) with 
PreTHKS = 0: 

   0 2 3 1 4 0( CC )TV CC PreTHKSij i i i ij ivη β β β β β= + + + + + . 

o 3β  is the difference in logit attributable to the interaction between the two 
intervention methods. 

 
The interpretation of the coefficients is dependent on the coding of the variables 
used in the model. 
 

4.2.2.2 Setting up the analysis 

Using the data in tvsfpors.ss3, we consider the situation where students are nested 
within schools, and fit a two-level model with the binary variable THKSbin as 
outcome. We wish to examine the relationships between the outcome and the two 
intervention methods employed, simultaneously taking students' pre-intervention 
scores into account. To do so, we use the model described above with schools as the 
level-2 units. 
 
Use the File, Open Spreadsheet option to activate the Open dialog box. Browse for 
the file tvsfpors.ss3 in the Examples\Binary folder. Select the file and click the Open 
button to return to the main SuperMix window, where the contents of the SuperMix 
system file are displayed. 
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Next, we use the SuperMix interface to provide the model specifications. From the 
main menu bar, select the File, New Model Setup option.  
 
The Model Setup dialog box that appears has six tabs: Configuration, Variables, 
Starting Values, Patterns, Advanced, and Linear Transforms. In this example, only 
three of the tabs are used.  
 
As a first step, the binary outcome variable THKSbin is selected from the Dependent 
Variable drop-down list box. The type of outcome is specified as binary using the 
drop-down list box in the Dependent Variable Type field. Once this selection is 
made, the Categories field is displayed. The school identification variable is used to 
define the hierarchical structure of the data, and is selected as the Level-2 ID from the 
Level-2 IDs drop-down list box. A title for the analysis (optional) is entered in the 
Title fields. A convergence criterion of 0.0001 is requested. By default, the 
maximum number of iterations performed is set to 100. Empirical Bayes residuals, 
written to additional output files, are requested by setting the Write Bayes Estimates 
option to means and (co)variances. Default settings for all other options associated 
with this tab are used. Proceed to the Variables tab by clicking on this tab. 
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The Variables tab is used to specify the fixed and random effects to be included in 
the model. Start by selecting the explanatory (fixed) variables using the first column 
of boxes in the Available group field. The first variable selected is PreTHKS, 
followed by CC, TV, and the interaction term CC*TV. After selecting these 
explanatory variables, the random effect(s) at level 2 must be selected. In this case, 
we wish to allow only the intercept to vary randomly over the schools. By default, 
the intercept is assumed to vary randomly over higher levels of the hierarchy as 
indicated by the checked box for the Include Intercept option in the L-2 Random 
Effects group field. A common fixed intercept coefficient is also included, as shown 
in the Explanatory Variables group field. 
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We opt to increase the number of quadrature points to be used during estimation. To 
do so, click the Advanced tab. First select adaptive quadrature from the Optimization 
Method drop-down list box, then change the Number of Quadrature Points field to 
25. The default distribution for a binary outcome variable is Bernoulli and the 
default link function is probit. Change probit to logistic by using the drop-down list 
box in the Function Model field. 
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Before running the analysis, the model specifications have to be saved. Select the 
File, Save option, and provide a name for the model specification file, for example 
TVBS.mum. Run the analysis by selecting the Run option from the Analysis menu. 
 

4.2.2.3 Discussion of results 

Portions of the output file tvbs.out are shown below.  
 

Syntax 

At the top of the file, the syntax saved to the TVBS.mum file is shown. The first part 
states the selection of iteration control options, requests for Bayes residuals, and the 
specifications necessary to define the model fitted as an binary model with a logistic 
link function. The second part of the syntax provides information on the structure of 
the data, the name and structure of the outcome variable, and the predictors included 
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in the model. Text to the left of the equal sign in each line denote keywords 
recognized by the program; text to the right are either keywords (for example, in the 
case of Cov2PatType = Correlated) or variable names as given in the ss3 file (for 
example, Level2ID = School). 
 

 

 

Model and data description 

The next section of the output file contains a description of the hierarchical structure 
and model specifications.  
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The use of a logistic response function (logit link function) with the assumption of a 
Bernoulli distribution is indicated. This is followed by a summary of the number of 
students nested within each school. The number of students per school (level-2 unit) 
ranges between 23 and 137. 
 

Descriptive statistics  

The data summary is followed by descriptive statistics for all variables included in 
the model. We note that 47% of the students had a value of 0 on the binary 
knowledge score outcome variable THKSbin, and 53% a value of 1. 
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Results for the model without any random effects 

Descriptive statistics are followed by parameter estimates obtained under the 
assumption that all random effects are zero. The parameter values for the predictors 
CC, TV, CC*TV and PreTHKS are given in the first column, followed by the standard 
errors and z- and p-values.  
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This is followed by the odds ratios and associated confidence intervals. The odds 

ratios are the exponents ( eβ
∧

) of the estimated regression coefficients. 
 

 

 

Results for the model fitted with adaptive quadrature 

The output describing the estimated parameters after convergence is shown next. 
Three iterations were required to obtain convergence. The number of quadrature 
points used per dimension was 25. The likelihood function value at convergence as 
well as the deviance are also given, and may be used to compare a set of nested 
models. 
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The estimates are shown in the column with heading Estimate, and correspond to the 
coefficients 0 1 4, , ,β β β  in the model specification. Significant effects of PreTHKS 
and CC are observed. The variation in the intercept over the schools is estimated as 
0.1065, and from the associated p -value we conclude that there is significant 
variation, at a 10% level of significance, in the intercept between the schools 
included in this analysis.  
 
In the case of the fixed effects, a 2-tailed p -value is used, as the alternative 
hypothesis considered here is of the form 1 : 0H β ≠ . As variances are constrained 
to be elements of the interval [0, )+∞ , the p -values used for these effects are 1-
tailed.  
 
If the model is true, it is assumed that the level-1 error variance is equal to 2 / 3π  = 
3.29895 for the logistic link function (see, e.g., Hedeker & Gibbons (2006), p. 157), 
where π  represents the constant 3.141592654.  
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Thus the estimated ratio between level-2 variation and the total variation is 
calculated as 

2

0.1065 0.031
0.1065 / 3

ICC
π

= =
+
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This indicates that almost all variation is attributable to students, rather than to the 
schools. 
 

4.2.2.4 Interpreting the adaptive quadrature results 

The expected log-odds of having a high post-intervention knowledge score (THKSbin 
score of 1) for a student with a zero value on all the predictors (that is, no social-
resistance curriculum, no media intervention, and a pre-intervention knowledge 
score of 0) is represented by the estimated intercept of –1.2281. When a social-
resistance curriculum was in place (CC = 1), or a mass-media intervention was 
performed (TV = 1), the log-odds of a typical student is expected to increase, as 
indicated by the positive estimated coefficients for CC and TV. Similarly, a higher 
score on the pre-intervention knowledge test is associated with higher log-odds of a 
higher post-intervention knowledge score. It can be concluded from the results that 
the implementation of a classroom curriculum was more likely to lead to a higher 
post-intervention knowledge score than was the case when mass-media intervention 
was used. In contrast, the log-odds of a high post-intervention knowledge score was 
expected to be lower for a typical student from a school where both social resistance 
classroom curriculum and mass-media intervention defined the study condition for 
that school, as the estimated coefficient for the interaction term CC*TV was negative.  
 

Estimated outcomes for different groups: unit-specific results 

To evaluate the expected effect of CC, TV, CC*TV, and PreTHKS on the predicted 
probability that the post-intervention score is equal to 1, we use the following 
expression for the predicted log odds of success 
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0 1 2 3 4CC TV CC TV PreTHKSij i i i i ijη β β β β β
∧ ∧ ∧ ∧ ∧ ∧

= + × + × + × × + ×  

for the four groups defined by the categories of CC and TV. Note the similarity of 
this equation with that given for ijη  earlier: random coefficients are not included, as 
their expected value is 0. 
 
For a typical student with a PreTHKS score of 0 from any school where no media 
television intervention and no social-resistance classroom curriculum was 
implemented, CC = TV = 0, and thus 

0ijη β
∧ ∧

=  

In the case of a typical student with a PreTHKS score of 0 from any school where 
only media television intervention was implemented (TV = 1),  

0 2 TV .ij iη β β
∧ ∧ ∧

= + ×  

The equations for similar students from a school with only a social–resistance 
classroom curriculum implemented (CC = 1, TV = 0), and from a school with both 
interventions implemented  (TV = 1, CC = 1) are 

0 1 4CC PreTHKSij i ijη β β β
∧ ∧ ∧ ∧

= + × + ×  

and 

0 1 2 3 4CC TV CC TV PreTHKSij i i i i ijη β β β β β
∧ ∧ ∧ ∧ ∧ ∧

= + × + × + × × + ×  

 
respectively. 
 
For a student with an average PreTHKS score (2.152, see exploratory analysis) from 
any school with similar values of CC and TV we find that 
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0 4

0 4

PreTHKS

2.152.

ij ijη β β

β β

∧ ∧ ∧

∧ ∧

= + ∗

= + ∗
 

Using the 0β
∧

 and 4β
∧

 estimates of –1.2280 and 0.3870 respectively as obtained for 
the current analysis, we can calculate the estimated probability of a THKSbin score of 
1 for typical students with PreTHKS scores of 2.152 and 0 respectively as 

1.2280 0.3870(2.152)

1.2280 0.3870(2.152)

0.39518

0.39518

Prob(THKSbin 1| CC TV 0;PreTHKS 2.152)
1

1
0.40247

ij
e

e
e

e

− +

− +

−

= = = = =
+

=
+

=

 

and 
1.2280

1.2280Prob(THKSbin 1| CC TV PreTHKS 0)
1

0.22653.

ij
e

e

−

−= = = = =
+

=

 

A student with an average observed score of PreTHKS is almost twice as likely to 
have a THKSbin score of 1 as a student with the lowest observed score on the same 
variable. Note that we opted to use the mean pre-intervention score for this specific 
subgroup. 
 
On the other end of the scale in terms of intervention, we have schools where both a 
social-resistance classroom curriculum and a mass-media intervention were 
implemented (CC = TV = 1). For two typical students from these schools, an 
observed PreTHKS score of 0 or the mean score of 1.979 will imply a predicted 
probability of a THKSbin score of 1 of 0.4201 for the first and 0.6091 for the second. 
Again, the higher the pre-intervention score, the higher the predicted probability of a 
high post-intervention score. 
 
In Table 4.4, the estimated probabilities of high post-intervention scores on the 
tobacco and health questionnaire are given for typical students with high or low pre-
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intervention scores for each of the subpopulations formed by mass-media 
intervention and implementation of social-resistance classroom curriculum. 
 

Table 4.4: Estimated unit-specific probability of a high post-intervention 
knowledge score 

Group prescore prob. prescore prob. 
CC = 0, TV = 0 0 22.65% 2.152 40.25% 
CC = 1, TV = 0 0 46.54% 2.05 65.81% 
CC = 0, TV = 1 0 29.86% 2.87 48.85% 
CC = 1, TV = 1 0 42.01% 1.979 60.91% 

 
These estimated probabilities can also be presented graphically, as shown in the bar 
chart below. 

 
Figure 4.3: Bar chart of estimated unit-specific probabilities 

 
Students with a high pre-intervention score were predicted to have a high post-
intervention score too, regardless of the study conditions. Similarly, students with a 
low pre-intervention score were generally likely to have a low post-intervention 
score too. If only curriculum intervention (CC = 1) was used, scores for students 
were likely to be higher regardless of their pre-intervention scores. On both ends of 
the pre-intervention knowledge score scale, in groups where mass-media 
intervention was used (TV = 1), scores were predicted to be higher than where media 
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intervention was not used, except when both mass-media and curriculum 
intervention were used. For these groups, with CC = TV = 1, the estimated 
probabilities of a high post-intervention score were actually lower than for the group 
where only a classroom curriculum was used (42.01% vs. 46.54%, and 60.91% vs. 
65.80%).  
 
We conclude that for most students, the implementation of a social-resistance 
classroom curriculum is more likely to be effective in increasing their knowledge 
(predicted probabilities of a high score being 46.54% and 65.80% respectively) than 
mass-media intervention (predicted probabilities of a high score being 29.86% and 
48.85% respectively). The control group, where neither method was implemented, 
had the lowest predicted knowledge scores (22.65% and 40.25% respectively). 
While the implementation of both procedures was associated with higher 
probabilities than either the control group or the group where only mass-media 
intervention was used, its predicted gain was disappointing when compared to the 
use of only social-resistance curriculum implementation. Generally speaking, the 
implementation of a curriculum only seems to be most effective in increasing the 
predicted knowledge of students on the tobacco and health questionnaire. 
 

Estimated outcomes for different groups: population-average results 

In the introduction to this section, we defined the latent response variable model as  

 ' ' , 1, 2,...,ij ij ij i ij iy e j n= + + =x β z v  

where '
ijz  denotes a design vector for the random effects contained in the vector iv , 

and '
ijx  the design vector for the predictors in the fixed part of the model with 

corresponding vector β  of regression parameters. The covariance matrix of iv  is 
denoted by ( )vΦ  and the variance of ije  by 2

eσ .  

 
For a probit link function 2 1eσ = , and for a logistic link function it is assumed to be 

2 2 / 3eσ = π . Under the assumption that iv  and ije  are independently distributed, it 
follows that 
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 2 ' 2.
ij iy ij v ij eσ = +σz zΦ  

The design effect ijd  is defined in terms of 2
eσ  and 2

ijyσ :  

 
2

2 .ijy
ij

e

d
σ

=
σ

 

This design effect may be used to obtain the estimated population-average 
probabilities in a similar fashion as the unit-specific probabilities, but with replacing 

ijη
∧

 with 
*

/ij ij ijdη η
∧ ∧

=  (Hedeker & Gibbons, 2006).  

 
We can compare these estimated population-average probabilities with the observed 
data for the four groups formed by the categories of TV and CC as shown in Table 
4.5. To illustrate, we calculate the estimated population-average probabilities for a 
few of the subgroups. 
 
From the output, we have ( )0var 0.1065iv = , where 0iv  denotes the random 

intercept coefficient. In this case, '
ik =z 1  and hence, with 2 2 / 3eσ = π  for the logistic 

link,  

 2 1 0.1065 1 3.2899 3.3964.
ijyσ = × × + =  

Therefore 

 3.3964 1.0324.
3.2899ijd = =  

To obtain the population-average probability estimates, we now replace the ijη
∧

 

values calculated for the unit-specific case with 
*

/ij ij ijdη η
∧ ∧

= . 
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For the subgroup where TV = CC = 0 and the mean  PreTHKS value is equal to 2.152, 
for example, we find that 

 1.2281 0.3871(2.152)
0.39506

ijη
∧

= − +
= −

 

so that 
*

0.39506 / 1.0324
0.38881

ijη
∧

= −
= −

 

and 
*

*(THKSbin 1| CC TV 0,PreTHKS 2.152)
1

0.67786 40.40%.
1.67786

ij

ij
ij

eP
e

η

η
= = = = =

+
= =

 

Similarly, for the group where TV = CC = 0 and  PreTHKS = 0, we find that 

 *

1.2281

1.2281/1.01606
1.2087.

ij

ij

η

η

∧

∧

= −

= −
= −

 

 
Table 4.5: Estimated population-average probabilities 

 
Group prescore prob. prescore prob. 

CC = 0, TV = 0 0 22.99% 2.15 40.40% 
CC = 1, TV = 0 0 46.59% 2.05 65.57% 
CC = 0, TV = 1 0 30.14% 2.87 48.87% 
CC = 1, TV = 1 0 42.13% 1.98 60.74% 
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A comparison of these probabilities with the observed ratios given in Table 4.6 for 
the control group at the end of the study indicates that the population-average results 
are slightly closer to the observed ratios than is the case for the unit-specific results. 
Recall that 1.0161ijd = . The extent of differences between unit-specific and 
population-average results is highly dependent on the "scaling" induced by dividing 

the  sijη
∧

 by ijd . 

 
Table 4.6: Observed and predicted proportions of high post–intervention scores 

 

Group Proportion observed Unit-specific 
predicted prob. 

Population-average 
predicted prob. 

CC = 0, TV = 0 41.57% 40.25% 40.40% 
CC = 1, TV = 0 63.16% 65.80% 65.57% 
CC = 0, TV = 1 48.32% 48.84% 48.86% 
CC = 1, TV = 1 60.31% 60.91% 60.74% 

 

4.2.2.5 Interpreting the contents of the level-2 residual file 

In addition to the standard output file, the Write Bayes Estimates field on the 
Configuration tab of the Model Setup dialog was used to request Bayes estimates for 
the individual random terms. These estimates are written to the file TVBS.ba2. The 
first few lines of this file are shown below. 
 
Four pieces of information per school are given:  
 

o all 1s for the level-2 model, 
o the school's ID,  
o the value of  random intercept,  
o the empirical Bayes estimate,  
o the associated posterior variance for the school estimate, and 
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o the name of the associated random coefficient. 
 

 

 
The mean of the empirical Bayes estimates is – 0.0002. The estimates ranged from 

0.473614−  for school 506 to 0.4110043 for school 407. In both cases a mass-media 
intervention procedure was applied, and thus TV = 1, but CC = CC*TV = 0. For 
students with a PreTHKS score of 3 from each of these schools, this implies 

0.473614 0.3741 0.3870(3)

0.473614 0.3741 0.3870(3)

1.061486

1.061486

Prob(THKSbin 1| CC 0,PreTHKS 3, ID 506)
1

0.7430
1

ij
e

e
e

e

− + +

− + += = = = =
+

= =
+
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and 
0.4110043 0.3741 0.3870(3)

0.4110043 0.3741 0.3870(3)

1.9461043

1.9461043

Prob(THKSbin 1| CC 0,PreTHKS 3, ID 407)
1

0.8750
1

ij
e

e
e

e

+ +

+ += = = = =
+

= =
+

 

respectively. The fact that the intercept for school 407 lies higher than the average is 
reflected in the higher probability (87.5%) that a student with average pre-
intervention knowledge score will obtain a high post-intervention score. School 506, 
on the other hand, has an intercept far below the average, and a student from this 
school has, in effect, a 74.30% chance of obtaining a high post-intervention score.   
 

4.2.3 A 2-level random intercept logistic regression model 

Using the same data (tvsfpors.ss3) and model setup file TVBS.mum from the 
previous example, we now consider the situation where students are nested within 
classrooms and fit a two-level model of the form described earlier, again with the 
binary variable THKSbin as outcome.  
 

4.2.3.1 Setting up the analysis 

Use the File, Open Spreadsheet option to re-open the previously used spreadsheet 
tvsfpors.ss3 from the Examples\Binary folder. Next, use the File, Open Existing 
Model Setup option to browse and open the syntax file TVBS.mum.  
 
The biggest change to be made to the syntax file is in terms of the ID variable. 
Change the Level-2 IDs field on the Configuration tab of the Model Setup dialog box 
from School to Class, as shown below. Also, turn of the writing out of Bayes 
estimates by setting the Write Bayes Estimates field to no. 
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Save the revised syntax file under a new name such as TVBC.mum and run the 
analysis. 
 

4.2.3.2 Discussion of results  

Partial output for this run is provided below. The summary of units now reflects the 
number of students nested within each classroom. The number of students per class 
(level-2 unit) ranges between 2 and 28. In this analysis, there were 135 level-2 units, 
compared to 28 in the previous analysis. 
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Estimated coefficients with adaptive quadrature and the estimated level-2 variances 
are given below. 
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The estimates for the classroom analysis are very similar to those of the school 
analysis. All estimated fixed coefficients are slightly lower than was the case in the 
previous analysis. There seems to be more variation between classrooms than 
between schools, as indicated by the estimated variation in the random intercept of 
0.2193, compared to the similar estimate of 0.1065 in the school analysis. 
 
The estimates can again be used to obtain predicted probabilities by first calculating 

the 
*

sijη
∧

, using the formulae 

 ( )1.2535 0.9883 CC 0.2870 TV 0.369 CC TV

0.401 PreTHKS
ij i i i

ij

η
∧

= − + × + × − × ×

+ ×
 

and 
*

/ij ij ijdη η
∧ ∧

=  where 

 

2 2

2 2

0.2193 / 3
/ 3

0.2193 3.289865 1.0666.
3.289865

ijy
ij

e

d
σ + π

= =
σ π

+
= =

 

A comparison of unit-specific and population-average predicted probabilities for the 
current model are given in Table 4.7. For comparison purposes, similar results for 
the previous model can be found in Table 4.7. 
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Table 4.7: Observed and predicted proportions of high post–intervention scores 

 

Group Proportion observed Unit-specific 
predicted prob. 

Population-average 
predicted prob. 

CC = 0, TV = 0 41.57% 40.36% 40.66% 
CC = 1, TV = 0 63.16% 63.57% 63.16% 
CC = 0, TV = 1 48.32% 46.76% 46.87% 
CC = 1, TV = 1 60.31% 60.98% 60.64% 

 

4.2.4 A 3-level random intercept logistic regression model 

Having fitted 2-level models where students were nested within either classrooms or 
schools thus far, we now consider a 3-level model with both classroom and school 
defining levels of the hierarchy.  
 

4.2.4.1 The model 

The level-1 and level-2 models are the same as for the previous two models, as 
shown below. 
 
Level 1 model ( 1 )ijk n= , , : 

0 1THKSbin PRETHKSijk ij ij ijk ijkb b e= + +  

 
Level-2 model ( 1 )ij n= , , : 

0 00 01 02 03 0

1 10

CC TV (CC TV )ij i i ij i ij i ij ij ij

ij i

b b b b b v
b b

= + + + × +

=
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With classrooms nested within schools, however, a third level of the hierarchy is 
defined. At this level, the level-2 coefficients become outcomes again, and can 
potentially vary over the schools (level-3 units). In the current model, we allow only 
the intercept to vary randomly over the schools. 
 
Level-3 model ( 1 )i N= , ,  

00 0 0

01 1

02 2

03 3

10 4

i i

i

i

i

i

b v
b
b
b
b

β
β
β
β
β

= +
=
=
=
=

 

 

4.2.4.2 Setting up the analysis 

We modify our model setup saved to the syntax file TVBS.mum by first using the 
Open Existing Model Setup option on the File menu to retrieve the syntax file. Then 
click on File, Save as to save the model setup in a new file, such as TVBCS.mum. 
Next, select CLASS as the Level-2 ID and SCHOOL as the Level-3 IDs as shown 
below. We now have both level-2 and level-3 IDs selected. 
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Keep all the other settings unchanged. Save the changes to the file TVBCS.mum and 
select the Run option on the Analysis menu to run the analysis.  
 

4.2.4.3 Discussion of results  

The portions of the output file TVBCS.out containing the estimates of the fixed and 
random coefficients in the current model are shown below.  
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Table 4.8: Comparison of results for three models with binary variable THKSbin 
as outcome 

 

Coefficient 
2-level: 2-level: 

3-level 
CLASS as ID SCHOOL as ID 

Fixed effects:     

Intercept 
estimate –1.2535 –1.228 –1.2465 
standard error 0.1695 0.1949 0.1957 

PRETHKS 
estimate 0.401 0.3871 0.3954 
standard error 0.0461 0.0451 0.0463 

CC 
estimate 0.9883 1.0893 1.0383 
standard error 0.1973 0.2454 0.2448 

TV 
estimate 0.287* 0.3741* 0.3325* 
standard error 0.192 0.235 0.2358 

CCxTV 
estimate –0.369* –0.5578* –0.4644* 
standard error 0.2774 0.3403 0.3427 

Random effects:         

Var(between classrooms) 
estimate 0.2193 

  
0.1649 

standard error 0.0802 0.0813 

Var(between schools) 
estimate 

  
0.1065 0.063* 

standard error 0.0578 0.0616 
 
*: Not significant at 5% level of significance. 
 
Results for this model are compared to those obtained using the two 2-level models 
in Table 4.8. Generally, there is close agreement between the models in terms of 
both the sign and size of the effects. Note that the only intervention method that 
consistently has an estimated coefficient significantly different from zero is CC. 
While use of the media intervention (TV) can positively influence the post-
intervention score, it seems clear that using both methods simultaneously does not 
have any real benefits. 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

311 

4.2.4.4 Interpreting the adaptive quadrature results 

3-level ICCs 

Intraclass correlation coefficients can be obtained for the three-level dichotomous 
outcome model. As mentioned earlier, it is assumed that the level-1 error variance is 
equal to 2 / 3π  for the logistic link function if the model is true (see, e.g., Hedeker & 
Gibbons (2006), p. 157). Using this approximation, the formulae for the standard 
ICCs can be adjusted. 
 
From the output for the random effects, we have  

( )
( )
( )

2Level-1: estimated error var  = /3=3.2899

Level-2: estimated class var  = 0.1649

Level-3: estimated school var  = 0.0630.

π

 

Based on this information, we can calculate the ICC as shown below. 
 
Similarity of students within the same school:  

2
(3)

2 2 2
(3) (2)

0 063
0 063 0.1649 3.28986

0 0179.

v

v v e

ICC
σ

σ σ σ
.

= =
+ + . + +

= .
 

Similarity of students within the same classrooms (and schools):  
2
(2)

2 2 2
(3) (2)

0 1649
0 063 0.1649 3.28986

0 04688.

v

v v e

ICC
σ

σ σ σ
.

= =
+ + . + +

= .
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Similarity of classes within the same school:  
2
(2)

2 2
(3) (2)

0 1649
0 063 0.1649

0 7236.

v

v v

ICC
σ

σ σ
.

= =
+ . +

= .
 

 

Estimated unit-specific and population-average probabilities 

Under the assumption that iv , ijv and ijkε  are independently distributed, it follows 
that for the three-level model the design effect is defined as 

2 2 2
(3) (2)

2

( )
1.0692.v v e

ijk
e

d
σ +σ +σ

= =
σ

 

The estimated unit-specific probabilities are calculated using 

1.2465 1.0383 CC 0.3325 TV 0.4.644 CC TV

0.3954 PreTHKS
ijk i i i i

ijk

η
∧

= − + × + × − × ×

+ ×
 

and 

1Prob(THKSbin 1| )
1 ijke η−= =
+

β  

The estimated population-average probabilities (Hedeker & Gibbons, 2006) are 

obtained in a similar fashion as the unit-specific probabilities after replacing ijkη
∧

 

with * /ijk ijk ijkdη η
∧ ∧

=  in the second of the equations shown above. 
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4.3 Models based on the subset of NESARC data 

4.3.1 The data 

The data set is from the National Epidemiologic Survey on Alcohol and Related 
Conditions (NESARC). This data file has been used in some of the examples in 
Section 3.1. Detailed information about the survey is available at the NIAAA 
website at http://niaaa.census.gov/index.html. We focus on information regarding 
occurrences of major depression, family history of major depression and dysthymia. 
This information was used, in combination with the demographic information 
provided in Section 1 of the study description, to produce the nesarc_berc.ss3 data 
set used in this section. The image below shows the first ten records of this data set. 
There are 2339 dysthymia respondents in the survey; after listwise deletion, the 
sample size is 1981. 
 

 

 
The variables of interest are: 
 

o PSU denotes the Census 2000/2001 Supplementary Survey (C2SS) primary 
sampling unit. 

o FINWT represents the NESARC weights sample results used to form national 
level estimates. The final weight is the product of the NESARC base weight 
and other individual weighting factors. 

o AGE represents the age of the respondent. 

http://niaaa.census.gov/index.html
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o SEX is the gender of the respondent (1 for male, 0 for female). 
o FULLTIME is recoded from question S1Q7A1. It is the response to the 

statement "present situation includes working full time (35+ hours a week)" 
with 1 indicating yes and 0 indicating no. 

o YR2_DEP is the observed response to the statement that the respondent had a 
period of at least 2 years with low mood, and being sad or depressed most of 
day (1 = yes, 0 = no.) It is recoded from S4CQ1 in the source data. 

o WHITEOTH represents the origin of white and other ethnicities, excluding 
Black and Hispanic. It is recoded from items S1Q1C, S1Q1D2, S1Q1D3 and 
S1Q1D5 in the NESARC source code (1 for white and other, 0 for black and 
Hispanic). 

o BLACK represents African American respondents in the sample. It is recoded 
from S1Q1C and S1Q1D3 (1 for African American, 0 for others). 

o HISPANIC is an indicator for Hispanic respondents in the sample data. It is 
recoded from S1Q1C, S1Q1D3 and S1Q1D5 (1 for Hispanic, 0 for others). 

o YOUNG is recoded from AGE. Respondents younger than 35 have the value 
1; otherwise, YOUNG = 0. 

o MIDDLE is recoded from AGE. Respondents with 35 AGE<50≤  have the 
value 1. Otherwise, MIDDLE = 0. 

o OLD is recoded from AGE. Respondents with AGE 50≥  have the value 1. 
Otherwise, OLD = 0. 

 
We recoded the ethnicity variables because of the unbalanced numbers of 
respondents from different ethnicities in the original NESARC data. While weights 
are supplied with the data and should be used to adjust for the disproportionality of 
the sample, the use of indicator variables offers the opportunity to obtain estimated 
coefficients for individual groups while using one of the other ethnic groups as a 
reference group. The recoding of ethnicity is discussed in detail in Section 3.1.  

 
In this section, we discuss the fitting of three Bernoulli models to these data. 
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4.3.2 A 2-level random intercept probit model 

4.3.2.1 The model 

In the previous models (see Section 4.2) the logistic link function was used. We now  
fit a model by using the probit link function.  
 
The outcome variable of interest is YR2_DEP has the values 0 or 1. For this binary 
outcome variable 

( )1Prob(YR2_DEP 1| )ij i ijη−= =β Φ  

where ijη  represents the log of the odds of success, and can be expressed as 

 0 1 2 3 0 0AGE SEX FULLTIMEij ij ij ij i i ijb b b b b v eη = + × + × + × + + +  

for the intended model. This transformation, commonly referred to as the probit link 
function, constrains Prob( 1| )ijy = β  to lie in the interval (0,1).  

 

4.3.2.2 Setting up the analysis 

Open the SuperMix spreadsheet nesarc_berc.ss3. From the main menu bar, select the 
File, New Model Setup option.  
 
The Configuration screen is the first tab on the Model Setup dialog box. It is used to 
define the outcome variable and level-2 and level-3 IDs. Some other settings such as 
missing values, convergence criterion, number of iterations, etc. can also be 
specified here. For all the available settings, please refer to Section 2.4.  
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To obtain the model shown above, proceed as follows. 
 

o Select the binary option from the Dependent Variable Type drop-down list. 
o Select the outcome variable YR2_DEP from the Dependent Variable type 

drop-down list box.  
o Select PSU from the Level-2 ID drop-down list box.  
o Enter a title for the analysis in the Title text boxes if needed (optional). 
o Request a crosstabulation of the outcome variable against AGE by selecting 

Yes from the Perform Crosstabulation drop-down list box, and select AGE as 
Crosstab Variable.  

o Keep all the other settings on the Configuration screen at their default values. 
Proceed to the Variables screen by clicking on this tab. 

 
The Variables screen is used to specify the fixed and random effects to be included 
in the model. Select the explanatory (fixed) variables using the E check boxes next 
to the variables AGE, SEX and FULLTIME in the Available grid at the left of the 
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screen. After selecting all the explanatory variables, the screen shown below is 
obtained. The Include Intercept check box in the Explanatory Variables grid is 
checked by default, indicating that an intercept term will automatically be included 
in the fixed part of the model.  
 

 

 
The Advanced tab enables the user to define the weight variable. Weights are often 
used in complex sampling to adjust the existing sample for known biases. In 
SuperMix, the weight is normalized by default. To include a weight variable, proceed 
as follows: 
 

o Select differential from the Unit Weight drop-down list to activate the 
Assigned Weight. 

o Select FINWT from the drop-down list of the Level-1 Weight field. 
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Save the model specifications to the file nesarc_ber1.mum and run the analysis. 
 

4.3.2.3 Discussion of results 

Portions of the output file nesarc_ber1.out are shown below.  
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Model and data description 

As shown in the model and data description section, the Bernoulli sampling 
distribution and probit link function are specified. The weight variable FINWT is 
used to include sampling weight. There are 41,849 observations from 435 PSUs 
included in the data we are analyzing.  
 

 

 

Descriptive statistics 

The data summary is followed by descriptive statistics for all the variables included 
in the model. As shown below, about 94.41% of the respondents did not have a 2+ 
year period of low moods or being sad or depressed most of day.  
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Results for the model without any random effects 

Descriptive statistics are followed by the results for the model without any random 
effects. These results are used as the starting values for the model with random 
effects. 
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Results for the model with random effects 

The total number of iterations, the goodness of fit statistics and the estimated 
regression weights are shown below.  
 

  

 

 
The estimated intercept coefficient is – 1.5544. The estimated coefficient associated 
with AGE is – 0.0015, which implies that for every year increase in age of a typical 
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respondent, the estimated probit ˆijη  is expected to decrease by 0.0015. The 
coefficient seems small, but keep in mind that age has a wide range, and 
consequently this estimate may have a big effect on the overall probability. The 
estimated coefficient associated with gender is 0.2121, which indicates that the male 
respondents (SEX = 1) have a larger ˆijη . The estimate for the indicator of FULLTIME 
shows that respondents with full-time jobs were expected to have a lower ˆijη  value 
than respondents with a similar profile in terms of age and gender but without full-
time employment.  
 

4.3.2.4 Interpreting the adaptive quadrature results 

The probit link function is now used to transform these estimates into probabilities. 
First, we substitute the regression weights and obtain an expression for ˆijη  : 

( ) ( ) ( )
( ) ( ) ( )

0 1 2 3
ˆ ˆ ˆ ˆˆ AGE SEX FULLTIME

1.5546 0.0015 AGE 0.2121 SEX 0.23 FULLTIME .
ij i i i iij ij ij

ij ij ij

b b b bη = + × + × + ×

= − − × + × − ×
 

For a typical 30-year-old male with a full-time job, SEX = 1, FULLTIME = 1 and AGE 
= 30, and thus  

ˆ 1.5546 0.0015 30 0.2121 0.23

1.6025.
ijη = − − × + −

= −
.  

Transform the ˆijη  into the corresponding probability by using the probit link 
function:  

( )1Prob YR2_DEP 1 1.60937 0.0545.ij

∧
− = = − = 

 
Φ  

In terms of percentages, 5.45% of males with this profile would be expected to 
suffer from long-term depression episodes. Similarly, the probability of having a 
depression episode of 2+ years' duration for different gender and age combinations 
can be calculated. These probabilities, expressed as percentages, are reported in 
Table 4.9 below.  
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Table 4.9: % probabilities of having a depression episode 
 

Age 20 30 40 50 60 70 
not fulltime, female 5.66% 5.49% 5.32% 5.16% 5.00% 4.85% 
not fulltime, male 8.50% 8.27% 8.04% 7.82% 7.60% 7.39% 
fulltime, female 3.48% 3.37% 3.26% 3.15% 3.04% 2.94% 
fulltime, male 5.45% 5.29% 5.13% 4.97% 4.82% 4.67% 

 
In general, males without full-time employment were more likely to have depression 
episodes than their female counterparts. Surprisingly, this is also true of males with 
full-time employment. 
 

 
Figure 4.4: Expected probabilities for subgroups 
 

These probabilities can also be depicted in Figure 4.4. The line associated with 
males without full-time jobs is considerably higher than for any other groups, again 
illustrating that this group has the highest probability of having 2+ years' period 
with low mood regardless of their age. For all the correspondents, as they grow 
older, the probability of having lengthy depression episodes decreased.  
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4.3.3 A 2-level random intercept model with additional predictors 

4.3.3.1 The model 

In the previous section, we modeled the outcome variable YR2_DEP in terms of its 
relationship with the predictors AGE, SEX and FULLTIME. The model discussed in 
this section takes the ethnicity of patients into consideration by including two 
dummy variables, BLACK and HISP. Since the group of WHITEOTH is not included, it 
is automatically regarded as the reference category. 
 
For the current model, the log of the odds of success ( ijη ) can be expressed as 

 0 1 2 3 4 5

0

AGE SEX FULLTIME BLACK HISP

.
ij ij ij ij ij ij

i ij

b b b b b b
v e

η = + × + × + × + × + ×

+ +
 

 

4.3.3.2 Setting up the analysis 

We can modify the model setup file nesarc_ber1.mum by opening it and then saving 
it under a different name, such as nesarc_ber2.mum.  
 
Click on the Variables tab of the Model Setup window. Add the predictors BLACK 
and HISP to the model by checking the boxes next to these variables in the E 
column, as shown below. 
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Save the modified model specification file, and select the Run option from the 
Analysis menu to perform the analysis. 
 

4.3.3.3 Discussion of results  

Portions of the output file nesarc_berc2.out are shown below.  
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Results for the model fitted with adaptive quadrature 

The goodness of fit statistics are shown below. Since the previous model can be 
considered as a submodel of the current model, the deviances of these two models 
can be used to perform a 2χ  test to evaluate possible improvement in model fit.  

 

  

 
The output describing the estimated fixed effects after convergence is shown next. 
As shown above the estimated logit for the intercept is –1.5069, the estimated logit 
associated with AGE is –0.002, etc. It is interesting to note that the only positive 
estimate is for gender. Males are thus more likely to show long-term depression, 
while it will be less likely in those who are older or fully employed. The ethnicity 
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indicators' coefficients also indicate that white respondents are most likely to have 
depression, with the Hispanic population the least likely.  
 

4.3.3.4 Interpreting the adaptive quadrature results 

Estimated outcomes for different groups: unit-specific results 

To evaluate the simultaneous impact of these estimates on the expected probabilities 
for respondents from the subgroups formed by the categories of age, gender, and 
ethnicity, we may use the estimated regression weights and the link function to 
calculate probabilities of having depression in the same way as for the previous 
model.  
 

For the current model, ijη
∧

 can be expressed as: 

1.5069 0.0020 AGE 0.2121 SEX 0.2335 FULLTIME

0.0891 BLACK 0.1814 HISP .
ij ij ij ij

ij ij

η
∧

= − − × + × − ×

− × − ×
 

Table 4.10 contains a subset of these estimated probabilities. Only typical 
respondents 30 or 50 years old are considered here, and probabilities are expressed 
as percentages. 
 
Younger white males without full-time employment have the highest risk of having 
long-term depression, while female Hispanic respondents with full-time 
employment were least at risk. 
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Table 4.10: % probabilities of having depression episodes for selected age 
groups 

 

Age 30 50 
Ethnicity White Black Hispanic White Black Hispanic 

not fulltime, female 5.86% 4.89% 4.02% 5.40% 4.49% 3.69% 
not fulltime, male 8.77% 7.44% 6.22% 8.15% 6.89% 5.75% 
fulltime, female 3.59% 2.94% 2.38% 3.29% 2.68% 2.16% 
fulltime, male 5.61% 4.67% 3.84% 5.17% 4.30% 3.52% 

 
The results in Table 4.10 can also be depicted as a bar chart. Figure 4.5 shows that 
white respondents are more likely to get depressed for a long period than African 
American or Hispanic respondents. 
 

 
Figure 4.5: Estimated probabilities for subgroups 
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Model comparison 

Since the two models in this section are nested models, the 2χ  difference test can be 
used. The deviances, AIC, and SBC statistics for these models are summarized in 
Table 4.11. These statistics suggest that the second model fits the data better. 
 

Table 4.11: Model comparison 
 

Statistic Model 1 Model 2 difference Difference 
in d.f. 

2ln L−  (deviance statistic) 17203.107 17176.677 26.430 2 
Akaike Information Criterion 17213.107 17190.677 22.430 2 
Schwarz Criterion 17256.316 17251.169 5.147 2 
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5   Models for count outcomes 

5.1 Introduction 
 
A count variable counts the number of discrete occurrences  of a characteristic of 
interest that takes place during a time interval. Examples are the occurrence of 
cancer cases in a hospital during a given period of time, the number of cars that pass 
through a toll station per day, and the phone calls at a call center. The most common 
distribution for a count variable is the Poisson distribution. Besides the Poisson 
distribution, negative binomial distributions may also be used to describe the 
properties of count variables. In this chapter, models for count data, utilizing both 
the Poisson and negative binomial distributions, are discussed. For further 
information regarding these distributions, please refer to Section 4.1.1. 
 

5.1.1 Poisson distribution 

The Poisson distribution is a discrete probability distribution. It is appropriate for 
expressing the probability of a number of events occurring in a fixed time period 
with a known average rate, under the assumption that the occurrences are 
independent of one another.  
 
The probability of k occurrences can be expressed as 

( ; ) 0,1, 2, ...
!

kef k for k
k

λλλ
−

= =  

where k is a non-negative integer and λ  is a positive real number, which equals the 
expected number of occurrences during the given interval. The cumulative 
probability function is 

0
Pr( ; ) 0,1, 2, ...

!

ik

i

ek for k
i

λλλ
−

=

= =∑ , 
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with the single parameter λ . A Poisson distribution has an important property: the 
mean number of occurrences λ  is equal to the variance: ( ) ( )varE f f λ= = . 
Figure 5.1 shows Poisson probabilities ( )f k  and cumulative probabilities ( )g k  for 
λ = 0.5, 2 and 5.  
 
As shown below, the smaller λ  is, the more skewed to the right the probability 
distribution is. When λ  is large, the Poisson distribution is close to the normal 
distribution.  

 

Figure 5.1: Poisson probabilities for various values of λ  
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The log link function is generally used for the Poisson distribution. Assume the 
response measurements for a count variable 1, ..., ny y  are independent and 

( ) 1 1~ , i p ipx x
i i iy Poi where eβ βλ λ + += L

 

The natural logarithm of the above equation is used to define the link function: 

( ) 1 1log i i p ipx xλ β β= + +L  

As shown in Figure 5.2, using the log link function maps the mean of the count 
variable λ  with an open interval (0,+ ) ∞ to the set of real numbers ( ),−∞ +∞ .  

 
Figure 5.2: Log link function 

 

5.1.2 Negative binomial distribution 

The negative binomial distribution is a probability distribution used to describe a 
certain number of failures and successes in a series of independent and identically 
distributed Bernoulli trials. Specifically, for k r+  Bernoulli trials with success 
probability p , the negative binomial gives the probability of k  failures and r  
successes, with success on the last trial. In other words, the negative binomial 
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distribution is the probability distribution of the number of failures before the thr  
success in a Bernoulli process, with probability p  of success on each trial. 

 
The negative binomial distribution can be expressed as 

 ( ) ( )
( ) ( )

( )
( ) 1/

1/
1 1/ 1

i

i

y
i i

i y
i i

y
f y

y α

α αµ
α αµ +

Γ +
= ×
Γ + Γ +

  

with ( ) 2
i i iy µ αµΣ = + , where ( )Γ  is the gamma function or generalized factorial 

from advanced calculus, and where α  denotes an additional parameter and it can no 
longer be assumed that the variance is a known function of the mean. In the example 
to follow, α  is assumed to have a fixed value. 
 

5.1.3 Adaptive versus non-adaptive quadrature 

Ordinary quadrature is a numeric method for evaluating multi-dimensional integrals. 
For mixed-effect models with count and categorical outcomes, the log-likelihood 
function is expressed as the sum of the logarithm of integrals, where the summation 
is over higher-level units, and the dimensionality of the integrals equals the number 
of random effects. 
 
A problem with ordinary quadrature is that it assumes a common location and scale 
for each level-2 unit. This assumption often requires the use of a large number of 
quadrature points to calculate the log-likelihood and derivatives to an acceptable 
level of accuracy. To overcome this problem with ordinary quadrature, SuperMix 
also offers a numeric integration procedure called adaptive quadrature. The adaptive 
quadrature procedure uses the empirical Bayes means and covariances, updated at 
each iteration to essentially shift and scale the quadrature locations of each higher-
level unit in order to place them under the peak of the corresponding integral. To 
distinguish between the two quadrature methods, SuperMix uses the terminology 
non-adaptive quadrature (ordinary quadrature) and adaptive quadrature. To illustrate 
this, models in Section 5.2 will be fitted using the default method of adaptive 
quadrature, while models in Section 5.3 will use non-adaptive quadrature.  
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5.2 Two-level models for count outcomes from NESARC 
data 

5.2.1 The data 

The data set is from the National Epidemiologic Survey on Alcohol and Related 
Conditions (NESARC), which was designed to be a longitudinal survey with its first 
wave fielded in 2001–2002. This data file has been used in some of the examples in 
Chapter 3, and contains information on the occurrences of major depression, family 
history of major depression and dysthymia of 2339 dysthymia respondents. After 
listwise deletion, the sample size is 1981. 
 

 

 
The variables of interest are: 
 

o PSU denotes the Census 2000/2001 Supplementary Survey (C2SS) primary 
sampling unit. 

o FINWT represents the NESARC weights sample results used to form national 
level estimates. The final weight is the product of the NESARC base weight 
and other individual weighting factors. 

o CONC_DEP contains the information captured in field S4CQ3A6 of the 
NESARC data. It represents the response to the statement "Often had trouble 
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concentrating/keeping mind on things," with 1 indicating "Yes," and 0 
indicating "No." 

o AGE_DEP is based on field S4CQ7AR of the NESARC data. It represents the 
age at onset of first episode. 

o N_DEP is recoded from field S4CQ6A of the NESARC data, and gives the 
number of depression/dysthymia episodes. This is the count variable we 
would like to use as outcome variable in the examples to follow. 

5.2.1.1 Exploring the data 

Inspecting the distribution of the intended outcome variable, N_DEP, before starting 
with the model is important. In the case of a count variable, this can easily be done 
by producing a bar chart of the observed frequencies of occurrence captured by the 
count variable. Select the File, Data-based Graph, Univariate option from the main 
SuperMix window and request a bar chart before clicking the Plot button. 
 

 
Figure 5.3: Bar chart for count variable N_DEP 

 
The frequency bar chart for the count variable N_DEP shown in Figure 5.3 is 
obtained. We note that the number of depression episode ranges from 1 to 29, with 
most respondents having a small number of reported episodes of depression. 
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5.2.2 A 2-level Poisson model with 2 predictors 

5.2.2.1 The model 

The first model fitted to the data explores the relationship between N_DEP and the 
variables indicating concentration (or lack thereof) and age, as represented by the 
variables CONC_DEP and AGE_DEP.  
 
The level-1 model is 

( ) 0 1 2log CONC_DEP AGE_DEPij ij ijλ β β β= + × + ×  

where the expected number of depression episodes is ( )= N_DEPij ijEλ .  

 
The level-2 model is 

0 00 0ib vβ = + , 1 10bβ =  and 2 20bβ = . 

Another way of writing the combined model is 

( ) 00 10 20 0log CONC_DEP AGE_DEPij ij ij ib b b vλ = + × + × + . 

In this model, 00be  denotes the average expected count of depression episodes, and 
10b  represents the estimated coefficient for the respondent's level of concentration.  

 
Taking exponents on both sides, we also have 

 
00 10 20 0

10 2000 0

ij ij i

ij ij i

b b b v
ij

b bb v

e

e e e e

λ + × + × +

× ×

=

=

CONC_DEP AGE_DEP

CONC_DEP AGE_DEP
 

For a person who had problems concentrating (CONC_DEP = 1), the expected 
average number of episodes 00be  is multiplied by 1eβ , compared to an expected 
count of 00be  for a person for whom  CONC_DEP = 0. Similarly, an increase of one 
year in age increases the estimated number of episodes by a factor of  20be . For 
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example, a respondent with concentration problems who is two years older than 
another respondent who had no concentration problems is expected to have 

00 10 202b b be e e  episodes compared to only 00be  episodes for the younger person without 
concentration problems.  
 
The random part of the model is represented by 0ive , which denotes the variation in 
average count of depression episodes over PSU and between respondents (or, in 
other words, over respondents nested within PSU). For a Poisson distribution, the 
assumption of normality at level 1 is not realistic, as the level-1 random effect can 
only assume a number of distinct values. Thus, this random effect cannot have 
homogeneous variance.  
 

5.2.2.2 Setting up the analysis 

Open the SuperMix spreadsheet nesarc_poi.ss3 used during the exploratory analysis. 
From the main menu bar, select the File, New Model Setup option. The Model Setup 
window that appears has six tabs. In this example, only three tabs are used: the 
Configuration, Variables, and Advanced tabs. 
 
The Configuration screen is the first tab on the Model Setup window. It enables the 
user to define the outcome variable and the level-2 and level-3 IDs. Some other 
settings such as missing values, convergence criterion, number of iterations, etc. can 
be specified here. For all the available settings, please refer to Section 2.4. To obtain 
the model we discussed, start by selecting the outcome variable N_DEP from the 
Dependent Variable drop-down list box. Indicate that it is a count variable by 
selecting the count option from the Dependent Variable Type drop-down list box. 
Next, describe the hierarchical structure of the data by selecting the level-2 ID, PSU, 
from the Level-2 IDs drop-down list box. Enter a title in the Title text boxes, and 
proceed to the Variables screen by clicking on this tab. 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

338 

 

 
The Variables screen is used to specify the fixed and random effects to be included 
in the model. To include the variables CONC_DEP and AGE_DEP as  predictor 
variables, check the E check boxes next to the variables' names. Note that, as the 
variables are selected, the selected variables are listed in the Explanatory Variables 
grid. After selection, the screen below is obtained. Note that the Include Intercept 
check boxes in the Explanatory Variables grid and L-2 Random Effects are checked 
by default, indicating that an intercept term will automatically be included in the 
fixed and random parts of the model.  
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Before running the analysis, the model specifications have to be saved. Select the 
File, Save As option, and provide a name (nesarc_poi1.mum) for the model 
specification file. Run the analysis by selecting the Run option from the Analysis 
menu. 
 

5.2.2.3 Discussion of results 

Portions of the output file nesarc_poi.out are shown below.  
 

Program information and syntax 

As shown below, the syntax for the model setup is printed in the output file. The 
first line of the syntax shows the option Model = Count, which indicates the outcome 
variable is a count variable. The Options syntax line corresponds to the settings on 
the Configuration screen. The Link = log and Distribution = Poi options specify the use 
of a Poisson distribution with a log link function for the fitted model. 
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Model and data description 

A description of the hierarchical structure follows the syntax: data from a total of 
395 PSU and 1981 respondents were included at levels 2 and 1 of the model. In 
addition, an enumeration of the number of respondents nested within each of the 
395 PSUs is provided.  
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Descriptive statistics 

The data summary is followed by descriptive statistics for all the variables included 
in the model. The mean of 1.8970 and standard deviation of 2.3304 are reported for 
the outcome N_DEP indicating that, on average, 1.8970 episodes of depression were 
recorded. 
 

 

 
Descriptive statistics are followed by the results for a fixed-effects-only model, i.e. a 
model without random coefficients.  
 

Fixed effects results 

At the top of the final results, the number of iterations required for convergence of 
the iterative procedure is given.  
 
Next, the number of quadrature points per dimension is reported which, in this case, 
is the default number of points. The log likelihood and the deviance, which is 
defined as 2 ln L− , are listed next. For a pair of nested models, the difference in 

2 ln L−  values has a 2χ  distribution, with degrees of freedom equal to the 
difference in number of parameters estimated in the models compared. 
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The estimated intercept is 0.7982, which means that the average number of 
depression episodes is 0.7982e =2.2215 , implying that on average the number of 
episodes is about two. The estimated coefficient for CONC_DEP is 0.2922, which 
indicates that respondents who had trouble concentrating on things tended to have 

0.29222.2215e  ( )( )= 2.2215 1.3394 =2.9754 episodes at the same age as respondents 
without concentration problems. The estimate of the effect of age at the onset of the 
first episode (AGE_DEP) shows that the onset age does not affect the number of 
episodes much, since -0.0165e = 0.98. A slight reduction in the expected number of 
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episodes is expected with increasing age. If one compares two typical respondents 
with reported concentration problems, but with one respondent ten years older than 
the other, one would expect the older respondent to have 
( )( ) 10(-0.0165)e2.2215 1.3394 =2.5229 episodes, compared to 2.9268 expected episodes 
for the younger respondent. In other words, the longer it takes for the first episode to 
occur, the fewer episodes a respondent is expected to have. Of course, it has to be 
kept in mind that the younger a respondent is at the first episode, the longer that 
person must live with the condition and thus the more time there is for subsequent 
episodes to occur. 
 

Random effects results  

The output for the level-2 random effect variance term follows next. The estimated 
variation in the average estimated N_DEP at level 2 is 0.1347, which is highly 
significant. Respondents are different in terms of their average expected number of 
episodes, holding all other variables constant. 
 

 

 

Level-1 variation for Poisson distribution 

The variance-to-mean ratio is a measure of the dispersion of a probability 
distribution:  
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2

variance-to-mean ratioR σ
µ

= =
 

For the Poisson distribution, where the variance equals the mean, this implies 1R = . 
Thus, we use a value of one as our level-1 variation. In the cases when over-
dispersion ( 1R > ) or under-dispersion ( 1R < ) is assumed, different level-1 
variation values will apply. The details of these scenarios are not discussed in this 
guide. 
  

5.2.2.4 Interpreting the results 

Estimated outcomes for groups: unit-specific results 

First, we substitute the regression weights and obtain the following function for 
·( )log N_DEPij :  

00 10 20log N_DEP CONC_DEP AGE_DEP

0.7982 0.2922 CONC_DEP 0.0165 AGE_DEP .

ij ijij

ij ij

b b b
∧ ∧ ∧ ∧  = + × + × 

 
= + × − ×

 

For example, at age 40, the estimated ·( )log N_DEPij  for a typical respondent who 

does not often have trouble concentrating (CONC_DEP = 0), we find that  

0 1 2log N_DEP CONC_DEP AGE_DEP

0.7982 0.2922 CONC_DEP 0.0165 AGE_DEP

0.7982 0.2922 0 0.0165 40
0.1382.

ij ijij

ij ij

β β β
∧ ∧ ∧ ∧  = + × + × 

 
= + × − ×

= + × − ×
=

 

Keeping in mind that we defined the relationship between λ  and the predictors as 

( ) 1 1log ij i p ipx xλ β β= + + , 
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it follows that 

 0.1382ˆ 1.1482.ij eλ = =  

We can estimate the count of the occurrence of depression episodes for typical 
individuals of different ages in the same way. Results are summarized in Table 5.1. 
The results show a decrease in the expected number of episodes with increasing age, 
regardless of whether they had concentration problems or not.  
 

Table 5.1: Estimated number of episodes under the Poisson log model 
 

AGE_DEP 10 20 30 40 50 60 70 

CONC_DEP = 1 2.5229 2.1391 1.8138 1.5379 1.3040 1.1056 0.9374 
CONC_DEP = 0 1.8836 1.5971 1.3542 1.1482 0.9736 0.8255 0.6999 

 

 
Figure 5.4: Expected number of episodes for two groups 

 
The results in Table 5.1 can also be presented graphically, as shown in Figure 5.4. 
We clearly see that the correspondents who often had trouble concentrating 
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(CONC_DEP = 1) have a higher estimated number of depression episodes. It also 
shows that the number of episodes is expected to decrease as people get older. 

 

Level 2 ICC 

The percentage of variance explained over level-2 units, or intraclass correlation 
coefficient (ICC),  is calculated as  

level-2 variation
level-1 variation + level-2 variation 

ICC =  

In this example, under the assumption that the level-1 variation is fixed at a value of 
one, we have 

0.1347 100% 11.8%
1 + 0.1347 

ICC = × =  

We can conclude that most of the unexplained variation in the outcome 
(approximately 78%) is between measurements at the lowest level of the hierarchy.  
 

5.2.3 A 2-level negative binomial model with 2 predictors 

5.2.3.1 The model 

In Section 5.2.2, a Poisson model was fitted to the data. It was also noted that a 
Poisson distribution has an important property: the mean number of occurrences is 
equal to the variance. The negative binomial distribution is an alternative 
distribution that may also be used to describe the properties of count variables. If the 
assumption of a Poisson distribution is reasonable, one would expect a model using 
a negative binomial distribution with a very small dispersion parameter to produce 
results that correspond closely to those obtained for the Poisson model. In this 
section, we fit a negative binomial model, utilizing the same predictors and a small 
dispersion parameter, to the NESARC data. Again, adaptive quadrature is used as the 
method of optimization. 
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Recall that the negative binomial distribution can be expressed as 

 ( ) ( )
( ) ( )

( )
( ) 1/

1/
1 1/ 1

i

i

y
i i

i y
i i

y
f y

y α

α αµ
α αµ +

Γ +
= ×
Γ + Γ +

  

with ( ) 2
i i iy µ αµΣ = +  where α  denotes an additional parameter and it can no 

longer be assumed that the variance is a known function of the mean. We assume α  
to be a fixed parameter. 
 
The model fitted to the data explores the relationship between N_DEP and the 
variables indicating concentration (or lack thereof) and age, as represented by the 
variables CONC_DEP and AGE_DEP.  
 
The level-1 model is 

( ) 0 1 2log E N_DEP CONC_DEP AGE_DEPij ij ijβ β β  = + × + ×   

The level-2 model is 

0 00 0ib vβ = + , 1 10bβ =  and 2 20bβ = . 

 

5.2.3.2 Setting up the analysis 

Using the SuperMix spreadsheet nesarc_poi.ss3 and model specification file 
nesarc_poi1.mum from the previous section, we now set up a negative binomial 
model for these data. 
 
Start by saving the model specification file under the new name nesarc_poi2.mum 
using the File, Save As option. Next, click on the Advanced tab of the Model Setup 
window. This is the only tab on which modifications have to be made to change the 
previously specified Poisson model to a negative binomial model. Set the 
Distribution Model to negative binomial, and the Dispersion Parameter to 0.0001 to 
obtain an Advanced tab as shown below.  
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Save the revised model specification file, and click the Analysis, Run option to start 
the iterative process. 
 

5.2.3.3 Discussion of results 

Portions of the output file nesarc_poi.out are shown below.  
 

Fixed and random effect results 

The estimated regression coefficients for fixed effects in the model are shown 
below. Recall that the estimated coefficients of the intercept, CONC_DEP, and 
AGE_DEP under the Poisson model in Section 5.2.2 were 0.7982, 0.2922, and 

0.0165−  respectively. The estimated variation in the average estimated N_DEP at 
level-2 was 0.1347, and highly significant. The similarity of the results obtained 
under these two models indicate that the specification of a Poisson distribution 
model is reasonable for this data. 
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5.2.4 Weighted  2-level models 

5.2.4.1 The data 

The sampling frame of many multistage surveys frequently entails selection of units 
with known, but unequal, selection probabilities. This situation is the result of a 
number of design factors, of which the cost of doing the survey is an important 
consideration. When this is the case, it is appropriate to weight observations in order 
to produce unbiased estimates of population parameters.  
 
Recall from Section 5.2.1 that the data also included a weight variable. The variable 
FINWT represents the NESARC weights sample results used to form national-level 
estimates. The final weight is the product of the NESARC base weight and other 
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individual weighting factors. In this section, we explore the effect of inclusion of the 
weights on the results obtained in Sections 5.2.2 and 5.2.3.  
 

5.2.4.2 Setting up the analysis 

The models remain the same, with only the selection of the weight variable on the 
Advanced tab of the Model Specification screen to be added. Below, we show how 
this is done in the case of the Poisson distribution model. 

 
Open the model specification file for the Poisson distribution model 
(nesarc_poi1.mum) and click on the Advanced tab. Change the Unit Weighting field 
from its default value of equal to differential. Next, select the variable FINWT from the 
Assigned Weight drop-down list box that appears when the selection has been made 
in the Unit Weighting field. The completed Advanced tab is shown below.  

 

 

 
Save the specification file as nesarc_poi1w.mum, and run the analysis.  
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5.2.4.3 Discussion of results 

Results for this analysis are reported in Table 5.2 below. The results from the 
unweighted Poisson distribution model are included in order to facilitate evaluation 
of the impact of the weights on the results. 

 
Table 5.2: Comparison of results for weighted and unweighted Poisson models 
 

Parameter Unweighted model Weighted model 
Estimate Standard error Estimate Standard error 

intcept 0.7982 0.0641 0.7229 0.0659 
CONC_DEP 0.2922 0.0510 0.3055 0.0532 
AGE_DEP –0.0165 0.0012 –0.0156 0.0013 
Level-2 variance 0.1347 0.0184 0.1373 0.0189 

 
 

Results for the two models are very similar, and interpretation of the results of both 
models would lead to the same conclusions, both in terms of significance and in 
terms of the expected number of depression episodes. However, this is more the 
exception than the rule – users are cautioned to use weight variables whenever they 
are available in order to prevent skewed or biased results that may occur when 
weights are excluded in the analysis of a disproportionally drawn sample. 
 

5.3 Two-level models for count outcomes from ASPART 
data 

5.3.1 The data 

The data for this example are taken from a paper by McKnight and Van Den Eeden 
(1993), who reported on the number of headaches in a two treatment, multiple 
period crossover trial. Specifically, the number of headaches per week was 
repeatedly measured for 27 patients. Following a seven day placebo run-in period, 
subjects received either aspartame or placebo in four seven-day treatment periods 
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according to the double-blind crossover treatment design. Each treatment period 
was separated by a washout day. The sample size is 122. Data for the first 10 
observations of all the variables used in this section are shown below in the 
form of a SuperMix spreadsheet window for aspart.ss3. 

 

 

 
The variables of interest are: 
 

o ID is the patient ID (27 patients in total). 
o Headache is the number of headaches during the week (from 0 to 7). 
o Period1 is a period 1 treatment indicator (1 for the first treatment period and 

0 otherwise). 
o Period2 is a period 2 treatment indicator (1 for the second treatment period 

and 0 otherwise). 
o Period3 is a period 3 treatment indicator (1 for the third treatment period and 

0 otherwise). 
o Period4 is a period 4 treatment indicator (1 for the fourth treatment period 

and 0 otherwise). 
o DrugAsp indicates the type of drug being used for the treatment, (0 = placebo 

and 1 = aspartame). 75 observations used placebo and 47 used aspartame. 
o Nperiods is the number of periods the individual was observed (from 2 to 5).  
o NTDays is the number of treatment days in the period (from 1 to 7).  
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5.3.2 A 2 level Poisson model with random intercept 

5.3.2.1 The model 

To model the relationship between the number of headaches during the week 
(Headache) and the treatment indicators (Period1 to Period4) and the type of drug 
administered (DrugAsp), the following Poisson regression model with a random 
intercept may be used: 

( ) 0 1 2 3

4 5 0

log Period1 Period2 Period3

Period4 DrugAsp
ij ij ij ij

ij ij iv

λ β β β β

β β

= + × + × + ×

+ × + × +
 

where ijλ  denotes the mean number of headaches of patient i  for treatment period 
j ;  ijPeriod1 , ijPeriod2 , ijPeriod3  and ijPeriod4  denote the values of the dummy 

variables Period1, Period2, Period3 and Period4 for patient i  for treatment period j  
respectively; ijDrugAsp  denotes the value of the DrugAsp for patient i  for treatment 
period j ; 0β , 1β , 2β , 3β , 4β  and 5β  denote unknown parameters; and 0iv  denotes 
the random intercept for patient i  for 1, 2, , 27i =   and 0,1,2,3j = . This model is 
fitted to the data in aspart.ss3 as described below. 
 

5.3.2.2 Setting up the analysis 

Start by opening the SuperMix spreadsheet aspart.ss3. Select the New Model Setup 
option on the File menu to load the Model Setup window. On the Configuration tab, 
enter the titles 2 level Poisson log random intercept model and ASPART data for the 
analysis in the Title 1 and Title 2 text boxes respectively. The count outcome variable 
Headache is selected from the Dependent Variable drop-down list box. The 
Dependent Variable Type drop-down list box is used to indicate that the outcome 
variable is a count. The variable ID, which defines the levels of the hierarchy, is 
selected as the Level-2 ID from the Level-2 IDs drop-down list box.  
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Next, click on the Variables tab to proceed with variable selection. The variables 
Period1, Period2, Period3, Period4, and DrugAsp are specified as the fixed effects of 
the model by checking the E check boxes for Period1, Period2, Period3, Period4, and 
DrugAsp in the Available grid. These actions produce the following Variables tab. By 
default, an intercept model is included in the fixed part of the model, along with a 
random intercept at level 2. 
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Finally, we click on the Advanced screen and keep all the default settings as shown 
below, except for those concering the method of estimation. Select non-adaptive 
quadrature, and set the quadrature points to 20. Before we can run the analysis, we 
have to save the model specifications to a file. This is accomplished by using the 
Save option on the File menu to open a Save Mixed Up Model dialog box. First enter 
the name aspart1.mum in the File name text box and then click on the Save button to 
save the file. The analysis is run by selecting the Run option from the Analysis 
menu. This produces the corresponding output file aspart1.out.  
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5.3.2.3 Discussion of results 

Portions of this output file are shown below.  
 

Model and data description 

The output file indicates that there are 27 subjects with 122 observations nested 
within them. The number of observations per subject varies between 2 and 5. 
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Descriptive statistics 

The descriptive statistics for all the variables is shown next. The variance of 
Headache is 21.8863 3.5581= , which is substantially larger than the mean 1.6803. 
This might conflict with our assumption that the Poisson distribution is an 
appropriate choice for these data. As pointed out in Section 5.2.3, this can be 
verified by fitting a negative binomial model with a small dispersion parameter. 
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Results for the model without any random effects 

The results for the model without any random effects are shown below. In this 
section the goodness of fit statistics, estimated regression weights and event rate 
ratio and 95% event rate confidence intervals are included. 
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Fixed and random effect results 

The final results are shown next. The number of iterations needed for convergence 
and the deviance information are given first, followed by the estimates. 
 
The random-effect standard deviation is estimated as .643, and although a Wald test 
rejects the hypothesis that this parameter equals 0, use of the Wald test for testing 
whether variance parameters equal zero is questionable, since the Wald test is based 
on the assumption that parameters can assume any real value. Regarding the 
regression coefficients, all effects are non-significant. The results indicate that the 
model does not fit the data very well. 
 

 

 
The event ratio and 95% event rate confidence interval and estimated level-2 
variances and covariances are shown next to the estimated regression weights. The 

event ratios are the exponents ( eβ
∧

) of the estimated regression coefficients. 
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The random-effect variance is estimated as 0.429, and although a Wald test rejects 
the hypothesis that this parameter equals 0, use of the Wald test for testing whether 
variance parameters equal zero is questionable, since the Wald test is based on the 
assumption that parameters can assume any real value. Regarding the regression 
coefficients, all effects are non-significant. The results indicate that the model does 
not fit the data very well. 

5.3.2.4 Interpreting the results 

Estimated outcomes for groups: unit-specific results 

The expected number of headaches can be obtained in the following fashion. First, 
we substitute the estimated coefficients in the model formulation 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

361 

0 1 2

3 4 5

log Headache Period1 Period2

Period3 Period4 DrugAsp

0.2572 0.0807 Period1 0.0345 Period2

0.2267 Period3 0.1592 Period4 0.2151 DrugAsp .

ij ij ij

ij ij ij

ij ij

ij ij ij

β β β

β β β

∧ ∧ ∧ ∧

∧ ∧ ∧

  = + × + × 
 

+ × + × + ×

= + × + ×

− × − × + ×

 

or, after taking exponents on both sides, as 

Headache exp(0.2572 0.0807 Period1 0.0345 Period2

0.2267 Period3 0.1592 Period4 0.2151 DrugAsp ).
ij ij ij

ij ij ij

∧

= + × + ×

− × − × + ×  

As an example, we calculate the expected number of headaches for a typical patient 
to whom aspartame was administered (DrugAsp = 1). During the first treatment 
period, we find that for such a patient 

Headache exp(0.2572 0.0807 0.2151)
1.7385.

ij

∧

= + +
=

 

The expected numbers of headaches for a typical patient (again with DrugAsp = 1) 
for the second, third, and fourth treatment periods are calculated as 

Headache exp(0.2572 0.0345 0.2151)
1.6600,

ij

∧

= + +
=

 

Headache exp(0.2572 0.2267 0.2151)
1.2784,

ij

∧

= − +
=
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and 

Headache exp(0.2752 0.1592 0.2151)
1.3677

ij

∧

= − +
=

 

respectively. Complete results for all groups are given in Table 5.2. 
 

Estimated outcomes for groups: population-average results 

The latent response variable model,   

 ' '
(1) (1) (1)ij ij i ij ijy e= + +z b x β , 

makes the assumption that 2(0, )ij ee LID σ: . For a Poisson distribution it is assumed 

that 2 1eσ = . Under the assumption that iv  and ije  are independently distributed, it 
follows that 

 2 ' 2.
ij iy ij v ij eσ = +σz zΦ  

The design effect ijd  is defined as  

 
2

2 ,ijy
ij

e

d
σ

=
σ

 

which, for the current model, may be calculated as  

( )2
0

2

var 1
1.4290

1
ijy i

ij
e

v
d

σ +
= = =
σ

 

where ( )0var 0.4290iv = , with 0iv  denoting the random intercept coefficient. The 
estimated population-average probabilities (Hedeker & Gibbons, 2006) are obtained 
in a similar fashion as the unit-specific probabilities, after replacing the exponent in 
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the formula used for calculation of the estimated unit-specific probabilities with 
exp exp/ ijd=  as shown below.  

·Headache exp[(0.2572 0.0807 Period1 0.0345 Period2 0.2267 Period3

0.1592 Period4 0.2151 DrugAsp ) / 1.4290].

ij ij ij ij

ij ij

= + × + × − ×

− × + ×
 

The expected unit-specific and population average probabilities are summarized in 
Table 5.3. We see that there is very little difference in the estimated number of 
headaches. This result is to be expected as the design effect is 1.4290 1.1954= . 

Table 5.3: Estimated unit-specific and population average results for groups 
 

DRUGASP Period Estimated headaches 
(unit-specific) 

Estimated headaches 
(population-average) 

0 1 1.4020 1.1728 
0 2 1.3387 1.1199 
0 3 1.0310 0.8624 
0 4 1.1030 0.9227 
1 1 1.7385 1.4543 
1 2 1.6600 1.3886 
1 3 1.2784 1.0694 
1 4 1.3677 1.1441 

 

5.3.3 A 2-level Poisson log model with an offset variable 

5.3.3.1 The model 

The previous analysis assumed that the counts were all observed for the same 
number of days. However, this was not the case since the number of treatment days 
in the period did vary to some degree. Most of the counts were based on the full 
seven days in the week; however, some observations were made only for 1 day in 
the given week. To take this into account, we need to specify a so-called OFFSET 
variable. The offset variable indicates the amount of time that each count is based 
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on. If OFFSET = no is specified, as was the case in the previous example, SuperMix 
assumes that all counts are based on the same amount of time.  
 
The offset variable is introduced into the Poisson model in the following way: 

 'log log(offset variable)ij ij iλ
∧   = +    

x b  

where ijx  represent the values of the covariates corresponding to level-1 unit j  
nested within level-2 unit i  and ib  denotes the coefficient vector containing both 
fixed and random effects. 
 
In the current situation, the variable NTDays is the appropriate choice as the OFFSET 
variable. The model to be fitted to the data now changes to: 

( ) ( ) 0 1 2

3 4 5 0

log Headache log NTDays ( Period1 Period2

Period3 Period4 DrugAsp ).
ij ij ij

ij ij ij iv

β β β

β β β

= + + × + ×

+ × + × + × +
 

 

5.3.3.2 Setting up the analysis 

To create the model specifications for this model, start by opening aspart.ss3 in a 
SuperMix spreadsheet window and using the Open Existing Model Setup option on 
the File menu to open the Model Setup window for aspart1.mum. On the 
Configuration screen, extend the title in the Title 1 text box by adding the string "with 
Offset Variable." Next, click on the Advanced tab of the Model Setup window. Select 
yes from the Incorporate Time Offset drop-down list to activate the Offset Variable 
drop-down list box. Select the variable NTDays from the drop-down list of Offset 
Variable to produce the following Advanced tab.  
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Save the changes to the file aspart2.mum by using the Save As option on the File 
menu and select the Run option on the Analysis menu to produce the output file 
aspart2.out.  
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5.3.3.3 Discussion of results 

Fixed and random effect results 

Portions of this output file are shown below. 
 

 

 

Results for this model differ from those obtained for the model without offset 
variable discussed in the previous section. While the overall trend in predictor 
coefficient estimates is similar, the intercept is now estimated as –1.7127, compared 
to 0.2572 previously. The variance in intercept over patients for this model is 
estimated as 0.4775 compared to 0.4290 previously. 
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5.3.3.4 Interpreting the results 

Estimated outcomes for groups: unit-specific results 

The expected number of headaches can be obtained in the following fashion. First, 
we substitute the estimated coefficients in the model formulation 

( )

( )

0 1 2

3 4 5

log Headache log NTDays ( Period1 Period2

Period3 Period4 DrugAsp )

log NTDays ( 1.7127 0.1001 Period1 0.0879 Period2

0.2116 Period3 0.0787 Period4 0.

ij ij ij ij

ij ij ij

ij ij ij

ij ij

β β β

β β β

∧ ∧ ∧ ∧

∧ ∧ ∧

  = + + × + × 
 

+ × + × + ×

= + − + × + ×

− × − × + 2797 DrugAsp ),ij×
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or, after taking exponents on both sides, as 

Headache NTDays exp( 1.7127 0.1001 Period1 0.0879 Period2

0.2116 Period3 0.0787 Period4 0.2797 DrugAsp ).
ij ij ij ij

ij ij ij

∧

= × − + × + ×

− × − × + ×
 

As most observations had a value of NTDays = 7, we start by considering typical 
patients with a full set of treatment days. We also assume that DrugAsp = 1, in other 
words, that aspartame rather than a placebo was administered. 
 
During the first treatment period, we find that for such a patient 

Headache 7exp( 1.7127 0.1001 0.2797)
7exp( 1.3329)
1.8460.

ij

∧

= − + +
= −
=

 

The expected numbers of headaches for a typical patient (again with NTDays = 7 and 
DrugAsp = 1) for the second, third, and fourth treatment periods are calculated as 

Headache 7exp( 1.7127 0.0879 0.2797)
1.8236,

ij

∧

= − + +
=

 

Headache 7exp( 1.7127 0.2116 0.2797)
1.3516,

ij

∧

= − − +
=

 

and 

Headache 7exp( 1.7127 0.0787 0.2797)
1.5437

ij

∧

= − − +
=

 

respectively.  
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For a typical patient with only 5 treatment days, the expected numbers of headaches 
in each of the four treatment periods are 1.3186, 1.3026, 0.9654, and 1.1027 
respectively.  
 
When the expected numbers of headaches for a typical patient receiving aspartame 
under the Poisson model without offset variable (see previous section) and the 
Poisson model with offset variable are compared, we clearly see the impact of the 
inclusion of the offset variable on the estimated coefficients. These results are 
shown in Table 5.4. 
 

Table 5.4: Comparison of results for Poisson models 
 

Period Without offset 
variable 

With offset 
variable 

(NTDays = 7) 

With offset 
variable 

(NTDays = 5) 
1 1.7385 1.846 1.3186 
2 1.6600 1.8236 1.3026 
3 1.2784 1.3516 0.9654 
4 1.3677 1.5437 1.1027 

 

Level 2 Bayes results 

As requested during the model specification stage, the empirical Bayes estimates of 
the random effects are written to the file aspart2.ba2. The first few lines of this file 
are shown below. 
 
The file aspart.ba2 contains five pieces of information per individual:  
 

o the individual's ID,  
o the number of repeated observations for that individual,  
o the empirical Bayes estimate for that individual (which is the mean of the 

posterior distribution),  
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o the associated posterior standard deviation, and 
o the name of the relevant random coefficient.  

 
 

 

 
 
Since they are estimates of 0ib  for each individual, the empirical Bayes estimates 
are expressed on the standard normal scale. Inspection of these estimates indicates 
that subject 13 has a very high score. This person's estimate of 1.043 (with standard 
deviation .016) suggests a very high level of headaches. This agrees well with the 
raw data, which reveals that this person recorded 7 headaches on four occasions and 
6 on the only other occasion.  
 

Graphical displays 
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Figure 5.5 is a comparison (represented by a dotted line) of the predicted average 
number of headaches reported by each patient when taking a placebo (left axis) as 
opposed to the predicted average number when the treatment is aspartame (right 
axis). From the graphical display, it appears as if all of the lines (each representing a 
patient) have a positive slope. The slopes become steeper as the number of 
headaches increases. This suggests an increase, albeit small, in the expected average 
number of headaches when aspartame is used. Note that patient 13, who reported a 
consistently high number of headaches at all occasions, was excluded from this 
graph. 

 

 
Figure 5.5: Predicted average number of headaches for placebo and aspartame 
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Figure 5.6: Fitted and observed trajectories  

 
Figure 5.6 is a graphical display of the fitted trajectory (solid line) and observed 
trajectory (dotted line) for a sample of 6 patients. These displays are ordered from a 
patient who reported a relatively small number of headaches at the different 
treatment occasions to one who reported a relatively high number of headaches at 
the treatment occasions. A study of the fitted and observed trajectories reveals that, 
in general, the model fit is best when the number of headaches is smaller and 
becomes less accurate as the number of headaches increases. For patient 13, who is 
not represented in the graphical display, the number of predicted headaches is 
almost twice the number observed. 
 
The fitted lines were obtained as 

0

Headache NTDays exp( 1.7127 0.1001 Period1 0.0879 Period2

0.2116 Period3 0.0787 Period4 0.2797 DrugAsp ) .

ij ij ij ij

iij ij ij b

∧

∧

= × − + × + ×

− × − × + × +
  

where 0ib
∧

 is obtained from the aspart2.ba2 file, shown previously in this section. 
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6 Models for ordinal outcomes 

6.1 Introduction 
The term "ordinal" is applied to variables where the response measure of interest is 
measured in a series of ordered categories. Examples of such variables include 
Likert scales and psychiatric ratings of severity. Nominal and ordinal outcome 
models can be seen as generalizations of the binary outcome model. The ordinal 
model becomes important when the outcome variable is not dichotomous, or not 
truly continuous. If an ordinal outcome is analyzed within a continuous model, such 
a model can yield predicted values outside the range of the ordinal variable. As with 
binary data, some transformation or link function becomes necessary to prevent this 
from happening. The continuous model can also yield correlated residuals and 
regressors when applied to ordinal outcomes because the continuous model does not 
take the ceiling and floor effects of the ordinal outcome into account. This can then 
result in biased estimates of regression coefficients, and is most critical when the 
ordinal variable in question is highly skewed. Armstrong & Sloan (1989) also report 
efficiency losses between 89% and 99% when comparing an ordinal to a continuous 
outcome, depending on the number of categories and distribution within the ordinal 
categories.  
 
Extensive work on the development of methods for the analysis of ordinal response 
data has been undertaken by numerous researchers, including Hedeker & Gibbons 
(1994). These developments have focused on the extension of methods for 
dichotomous variables to ordinal response data, and have been mainly in terms of 
logistic and probit regression models. The proportional odds model proposed by 
McCullagh (1980) is a common choice for analysis of ordinal data. This model, 
which is described in detail in Section 6.2.2, is based on the logistic regression 
formulation. 
 
In this chapter we will now build on the dichotomous model discussed earlier and 
introduce the ordinal model, illustrating the use of this model using the TVSFP 
(Flay, et. al., 1988) data previously used in this manual. 
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6.2 Two-level ordinal analysis of TVSFP data 

6.2.1 The data 

The study was designed to test independent and combined effects of a school-based 
social-resistance curriculum and a television-based program in terms of tobacco use 
and cessation. 

 
The structure of this study indicates a three-level hierarchical structure. However, 
for illustration purposes in this chapter we will consider a two-level structure in 
which students are nested within schools. Data for the first 10 participants on most 
of the variables used in this section are shown below in the form of a SuperMix 
spreadsheet file, named tvsfpors.ss3, located in the Examples\Ordinal subfolder. 

 

  
 

The variables of interest are: 
 

o School indicates the school a student is from (28 schools in total). 
o Class identifies the classroom (135 classrooms in total). 
o THKSord represents the post-intervention tobacco and health knowledge 

scaled score, with 4 categories ranging between 1 and 4. The frequency 
distribution of the post-intervention THKS scores indicated that 
approximately half the students had scores of 2 or less, and half of 3 or 
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greater. In terms of quartiles, four ordinal classifications were suggested 
corresponding to  0 – 1, 2, 3, and 4 – 7 correct responses. 

o PreTHKS indicates a student's score prior to intervention, i.e. the number 
correct of 7 items.  

o CC is a binary variable indicating whether a social-resistance classroom 
curriculum was introduced, where 0 indicates "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with 
a "1" indicating the use of media intervention, and "0" the absence thereof. 

o CC*TV was constructed by multiplying the variables TV and CC, and 
represents the CC by TV interaction. 

 
In this chapter we will explore a random intercept model using the ordinal variable 
THKSord as outcome. In Section 3.3, the post-intervention score was assumed to be a 
continuous variable. In contrast, here categories are created and the implied data 
collapse may lead to a loss of information and thus results may differ from those 
obtained previously.  
 

6.2.1.1 Exploring the data 

The focus in this chapter is on the influence of the intervention on the tobacco 
health knowledge scores of the students, as represented by the ordinal outcome 
variable THKSord. A cross-tabulation of the variables CC, TV, and THKSord are given 
in Table 6.1 below.  
 
In general, students not exposed to the social-resistance classroom curriculum (CC = 
0) seem to have less health knowledge than those students exposed to the social-
resistance classroom curriculum (CC = 1), regardless of their exposure to media 
intervention. The opposite is true for students from groups assigned the social-
resistance classroom curriculum (CC = 1). 
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Table 6.1: Crosstabulation of CC, TV and THKSord 
 

TV  CC Total 
 0 1  

0 THKSord 1 117 62 179 
    2 129 78 207 
    3 89 106 195 
    4 86 134 220 
  Total 421 380 801 
1 THKSord 1 110 66 176 
    2 105 86 191 
    3 91 114 205 
    4 110 117 227 
  Total 416 383 799 

 
The trend is also apparent when the post-intervention scores are expressed as 
proportions (see Table 6.2). 
 
First, notice that the outcome variable THKSord has a skewed distribution. By 
combining the proportions per category over interventions, we find that 0.2219 of 
the 1600 students had a value of 1 for THKSord, 0.2488 had a value of 2, 0.25 had a 
value of 3, and 0.2794 a value of 4 for THKSord. The monotonic increase in the 
proportion observed in each category of THKSord indicates that it would be 
inappropriate to try to fit a continuous model to the data.  
The pre-intervention scores of the students may be used as a covariate in the 
analysis. To get some idea of the relationship between the scale score PreTHKS and 
the post-intervention score THKSord, an exploratory graph may be useful. To take a 
closer look at the distribution of PreTHKS, select the Data-based Graphs, 
Univariate… option from the File menu after opening the SuperMix spreadsheet 
tvsfpors.ss3. 
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Table 6.2: Observed proportion of high post–intervention scores 
 

TV  CC Total 
 0 1  

0 THKSord 1 0.0731 0.0388 0.1119 
    2 0.0806 0.0488 0.1294 
    3 0.0556 0.0663 0.1219 
    4 0.0538 0.0838 0.1375 
  Total 0.2631 0.2375 0.5006 
1 THKSord 1 0.0688 0.0413 0.1100 
    2 0.0656 0.0538 0.1194 
    3 0.0569 0.0713 0.1281 
    4 0.0688 0.0731 0.1419 
  Total 0.2600 0.2394 0.4994 

 

 

 
The Univariate plot dialog box is activated. Select the variable PreTHKS, and request 
a Bar Chart. Click Plot. 
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Figure 6.1: Distribution of the PreTHKS scores 

 
Figure 6.1 is obtained. In contrast to the outcome variable THKSord, the distribution 
of the PreTHKS score has a lower mean, with very few students exhibiting extensive 
knowledge on the subject matter (PreTHKS = 5 or PreTHKS = 6). 
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We now take a closer look at the distribution of the outcome variable at each 
distinct pre-intervention score value by utilizing the Data-based Graphs, Bivariate 
option on the File menu. By default, a bar chart will be produced. Select the variable 
THKSord in the Y column and the variable PreTHKS in the X column, and request a 
Box and Whisker plot before clicking the Plot button. 
 

 

 
The figure below shows a reasonably steady increase in the mean THKSord with 
increasing PreTHKS scores. This seems to be expected: students with more initial 
knowledge ending up having higher post-intervention scores as well. Note that only 
55 of the 1600 observations showed a score of 5 or higher on the pre-intervention 
score, and that no student obtained a post-intervention score of 7 out of 7.  
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Figure 6.2: Box-and-whisker plot of THKSord for values of PreTHKS 

 
Finally, we also take a look at the mean pre-intervention scores of the students for 
each of the four subgroups. These are summarized in Table 6.3 below, and show 
that the mean pre-intervention scores do not differ much. 
 

Table 6.3: Mean pre-intervention scores 
 

Study condition Mean 
CC = 0, TV = 0 2.152 
CC = 0, TV = 1 2.087 
CC = 1, TV = 0 2.050 
CC = 1, TV = 1 1.979 

6.2.2 A multilevel ordinal model with logistic link function 

6.2.2.1 The proportional odds model 

The model we use for the analysis of ordinal data is based on McCullagh's (1980) 
proportional odds model, which characterizes the ordinal responses in C categories 
in terms of 1C −  cumulative category comparisons, specifically 1C −  cumulative 
logits. The McCullagh model can be written as 
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'( )log
1 ( ) c

P y c
P y c

γ
 ≤

= − − ≤ 
xβ

 

where  
 

o 1,..., 1c C= −  for the C  categories of the ordinal outcome 

o x  is the vector of explanatory variables, plus the intercept 
o cγ  represent the threshold parameter(s); and reflect the cumulative odds 

when 0=x . 
 

The positive association between a predictor variable x  and the ordinal outcome 
variable y  is reflected by β . It is assumed that the effect of x  is the same for each 
of the cumulative odds ratios.   

 
To illustrate, consider a model with a single predictor x .The odds that the response 
is less than or equal to c  (for any fixed c ) is divided by eβ  for every unit change in 
x , as shown below: 

 ( )
( )

( ) exp .
1 ( )

c

c x
P y c ex

P y c e

γ

β
γ β

 ≤
= − = − ≤ 

 

On the other hand, the odds that the response is greater than or equal to c  (again for 
a fixed c) is multiplied by eβ  for every unit change in x : 

( )1 ( ) .
( )

c
xP y c e e

P y c
γ β− − ≤

= × ≤ 
 

It can be illustrated that the ordinal model, when used for a dichotomous variable 
(coded 0 or 1), is equivalent to the model discussed in Chapter 4. In that model, 
however, no thresholds were introduced. To motivate the ordinal regression model, 
it is often assumed that there is an unobservable latent variable ( *y ) which is 
related to the actual response through the "threshold concept." An example of this is 
when respondents are asked to rate their agreement with a given statement using the 
categories "Disagree," "Neutral," "Agree." These three options leave no room for 
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any other response, though one can argue that these are three possibilities along a 
continuous scale of agreement that would also make provision for "Strongly Agree" 
and "Disagree somewhat." The ordinal responses capture in y  and the latent 
continuous variable *y  are linked through some fixed, but unknown, thresholds. 

 
For the dichotomous model, one threshold value is assumed, while for the ordinal 
model, a series of threshold values 0 1 2, , ,..., Cγ γ γ γ , where C  equals the number of 
ordered categories, 0γ = −∞ , and Cγ = ∞ , is assumed. Here, a response occurs in 
category c  ( Y c= ) if the latent response process y  exceeds the threshold value 

1Cγ − , but does not exceed the threshold value cγ . The cumulative probabilities are 
given in terms of the cumulative logits with 1C −  strictly increasing model 
thresholds 1 2 1, ,..., Cγ γ γ − . In the current case, we will thus have 1C −  = 3 cumulative 
probabilities, given in terms of 3 thresholds 1γ , 2γ  and 3γ . The thresholds represent 
the marginal response probabilities in the C  categories. We will illustrate the use of 
the logistic link function in this example.  
 
To set the location of the latent variable, it  is common to set a threshold to zero. 
Usually, the first of the threshold parameters ( 1γ ) is set to zero. Alternatively, the 
model intercept ( 0β ) is set to zero and 1C −  thresholds are estimated.  

 

6.2.2.2 The mixed-effect ordinal logistic regression model 

A limitation of the model specified in the previous section is that it is assumed that 
the effect of covariates is the same across the cumulative logits. To overcome this 
limitation, an extension of the mixed-effects ordinal logistic regression model to 
allow for nonproportional odds for a set of regressors was developed by Hedeker & 
Mermelstein (1998). This generalization of the proportional odds model can be 
formulated as 

' '( )log
1 ( ) c ij ij i

P y c
P y c

γ
 ≤  = − +   − ≤ 

x β z v . 
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In this model, as in the proportional odds model, the origin of the latent variable y  
is set by setting the first threshold, 1γ , equal to zero. It is assumed that 

( ),i vNIDv 0 Σ: . The unit of measurement is / 3σ π= . 

 
For this model, the category probabilities are defined as 

 ( )( )' '( )ij c ij ij iP y c ψ γ≤ = − +x β z v  

 and 

 ( ) ( )( ) ( )( )' ' ' '
1ij c ij ij i c ij ij iP y c ψ γ ψ γ −= = − + − − +x β z v x β z v  

where the cumulative standard logistic distribution function is 

 ( )( ) ( )
' '

' '

1 .
1 exp

c ij ij i
c ij ij i

ψ γ
γ

− + =
 + − − + 

x β z v
x β z v

 

Various link functions may be used with this model. If we define ( )1
ijG P y c−  ≤   

as 

( ) ( )1 ' '
ij c ij ij iG P y c γ−  ≤ = − +  x β z v , 

or, equivalently,  

( ) ( )' ' ,ij c ij ij iP y c G γ ≤ = − + x β z v  

three types of models can easily be fitted: 
 

o Using ( ) ( )1 log / 1G P P P− = −   will give a cumulative logit model, i.e. a 
proportional odds model, 

o using ( ) ( )1 1 / 1G P P PΦ− −= −    will produce a cumulative probit model, 
and 
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o using ( ) ( )1 log log 1G P P− = − −   , the so-called complementary log-log link, 
will give a proportional hazards model.   

 
For more on the use of link functions, please see Section 4.1.1. 
 

6.2.2.3 A general multilevel ordinal model 

The multilevel ordinal model is defined in terms of the cumulative probability 
( )ijP y c≤  where c  denotes the category of interest. The level-1 model is written in 

terms of the cumulative logits, as shown below. 
 

Level-1 model: 

 
( )
( )

'log
1

ij
c ij i

ij

P y c

P y c
γ

 ≤
 = −   − ≤  
x b . 

where ijx  represent the values of the covariates corresponding to level-1 unit j  
nested within level-2 unit i . 
 
Level-2 model: 
If all the elements of the coefficient vector ib  are allowed to vary randomly across 
level-2 units, then 

 ,i i= +b β v  

which models the level-2 effects as a function of an overall mean β  and a unique 
random component ( , )i vNIDv 0 Σ: . The latter is also referred to as the level-2 
residuals and indicates the extent to which a given level-2 unit differs from the 
average, as estimated by the first part of the level-2 model. 
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Note that the level-2 model does not depend on the response variable. As the 
regression coefficients 0 1 2, ,β β β  and 3β  are without subscript, it is assumed that 
they do not vary across the categories and hence that the relationship between the 
predictor variables and the cumulative logits is not dependent on c . McCullagh 
(1980) referred to this as the assumption of identical odds ratios across the 1C −  
categories.  
 
In practice, a subset of the coefficients ib  are assumed to have fixed, but unknown, 
values. For example, a random intercept-and-slope model with 2 predictors of which 
the first has a random slope would have a level-2 model of the form 

 
0 0 0

1 1 1

2 2

i i

i i

i

b v
b v
b

β
β
β

= +
= +
=

 

In this model, only the first two coefficients are assumed to vary randomly across 
the level-2 units. 
 
Another characteristic of the current model is that a positive coefficient for a 
regressor indicates that the odds that the response is greater than or equal to c  
increases with an increase in regressor values. However, another formulation as 
shown below, in which the regression parameters β  are identical but of opposite 
sign, is commonly used in survival analysis models (see Chapter 8): 

 'log ( 1,..., 1).
1

ijc
c i i

ijc

P
c C

P
γ

 
 = + = −   −  
x b  

 

6.2.2.4 An ordinal model with 2 covariates and an interaction term 

As in the case of the binary variable THKSbin, we intend to explore the relationship 
between the type of intervention, the pre-intervention scores of students and the 
ordinal outcome variable THKSord. We do so using a 2-level model, with students 
nested within schools. 
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Level-1 model: 
At the first level, the pre-intervention score is used as predictor. 

( )
( ) 0 1

THKSord
log PreTHKS ( 1,..., subjects)

1 THKSord
ij

c i i ij i
ij

P c
b b j n

P c
γ

 ≤
 = − + =   − ≤  

 

Level-2 model: 
At the school level, the types of intervention (represented by the dummy variables 
CC and TV) are used to explain differences in the intercepts of the groups. In 
addition, the interaction between CC and TV is included in the model. 

 
( )0 0 2 3 4 0

1 1

CC TV CC*TV ( 1,..., groups)i i i ii

i

b v i N

b

β β β β

β

= + + + + =

=
 

It is assumed that 2
0 (0, )i vv NID σ: .  

 
The model can also be formulated in a single expression as: 

( )
( )

( )0 1 2 3 4 0

THKSord
log

1 THKSord

[ PreTHKS CC TV CC*TV ]

ij

ij

c ij i i ii

P c

P c

vγ β β β β β

≤

− ≤

=

 
 
  

− + + + + +
 

 
Recall that the outcome variable has 4 categories. There are thus 3 thresholds. In 
this model 

 
o 00 β−  (remember that 1 0γ =  for identification purposes) is the first logit 

(category 1 vs. categories 2 to 4) for groups with no intervention (CC = TV = 
0). This logit is adjusted for the effect of PreTHKS. 
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o 2 0γ β−  is the second logit, representing categories 1 and 2 vs. categories 3 
and 4, for groups with no intervention (CC = TV = 0). This logit is also 
adjusted for the effect of PreTHKS. 

o 3 0γ β−  is the third logit, representing categories 1 to 3 vs. category 4, for the 
same groups and again adjusted for the effect of PreTHKS. 

o The coefficient 1β  represents the effect of PreTHKS on THKSord. 

o The coefficient 2β  denotes the PreTHKS adjusted logit differences between 
CC = 1 and CC = 0 (for TV = 0). 

o The coefficient 3β  denotes the PreTHKS adjusted logit differences between 
TV = yes and TV =no (for CC = 0). 

o The coefficient 4β  is the adjusted difference in logit attributable to 
interaction between CC and TV (CC * TV). 

o The random school deviation is represented by 0iv . Note that we assume a 
single, fixed and  thus common PreTHKS slope over the level-2 units.  

o The interpretation of the coefficients is dependent on the coding of the 
variables used in the model. 

 

6.2.2.5 Setting up the analysis 

Using the data in tvsfpors.ss3, we consider the situation where students are nested 
within schools and fit a two-level model with the ordinal variable THKSord as 
outcome. We wish to examine the relationships between the outcome and the two 
intervention methods employed, simultaneously taking students' pre-intervention 
scores into account. To do so, we use the model described above with schools as the 
level-2 units.  
 
Use the File, Open Spreadsheet option to activate the display of an Open dialog box. 
Browse for the file tvsfpors.ss3 in the Examples\Ordinal folder. Select the file and 
click the Open button to return to the main SuperMix window, where the contents of 
the SuperMix system file are displayed. We are now ready to provide model 
specifications. 
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We use the SuperMix interface to provide the model specifications. From the main 
menu bar, select the File, New Model Setup option. The Configuration tab of the 
Model Setup dialog box is displayed by default.  

 

  

 
Start by selecting the ordinal outcome variable THKSord from the Dependent 
Variable drop-down list box. The type of outcome is specified as ordered using the 
drop-down list box in the Dependent Variable Type field. Once this selection is 
made, the Categories field is displayed. The School identification variable is used to 
define the hierarchical structure of the data, and is selected as the Level-2 ID from the 
Level-2 IDs drop-down list box. A title for the analysis is entered in the Title fields. 
A convergence criterion of 0.0001 is requested. By default, the maximum number of 
iterations allowed is 100. Default settings for all other options associated with this 
tab are used. Proceed to the Variables tab by clicking on this tab. 
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The Variables tab is used to specify the fixed and random effects to be included in 
the model. Start by selecting the explanatory (fixed) variables using the drop-down 
list box next to the first row in the Explanatory Variables box. After selecting all the 
explanatory variables, the random effect(s) at level 2 must be selected. In this case, 
we wish to allow only the intercept to vary randomly over the schools. By default, 
the intercept is assumed to vary randomly over higher levels of the hierarchy as 
indicated by the checked boxes for the Include Intercept options. 
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We opt to increase the number of quadrature points to be used during estimation. To 
do so, select the Advanced tab and change the Number of Quadrature Points field to 
25. We also request the use of a logistic link function from the Function model drop-
down list box. 
 
Before running the analysis, the model specifications have to be saved. Select the 
File, Save option, and provide a name for the model specification file, for example 
TVOS.mum. Run the analysis by selection the Run option from the Analysis menu. 
 

6.2.2.6 Discussion of results  

 Portions of the output file TVOS.out are shown below.  
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Program information and syntax 

 

 
At the top of the file, the syntax saved to the TVOS.mum file is shown. The first part 
states the selection of iteration control options, requests for Bayes residuals, and the 
specifications necessary to define the model fitted as an ordinal model with logistic 
link function. The second part of the syntax provides information on the structure of 
the data, the name and structure of the outcome variable, and the predictors included 
in the model. Note that this part now also includes information on the categories of 
the outcome variable and the link function selected. 
 
The next section contains a description of the model specifications. The use of a 
logistic response function (logit link function), with the assumption of a normal 
distribution of random effects is indicated. It is also noted that covariate and random 
effect means are subtracted from the thresholds, implying that a positive coefficient 
indicates a positive association between the outcome and the predictor in question. 
To add the covariate and random effect means instead of using the default subtract 
setting, the add option must be selected in the Model Terms field on the Advanced 
tab of the Model Setup dialog box.  
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Descriptive statistics 

After the observation counts, descriptive statistics for all variables included in the 
model are followed by a frequency table for the categories of the outcome variable.  

 

 

 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

394 

Fixed effects results 

The output describing the estimated parameters after convergence is shown next. 
Two iterations were required to obtain convergence, using 25 quadrature points per 
dimension. The likelihood function value at convergence as well as the deviance are 
also given, and may be used to compare a set of nested models. The estimates are 
shown in the column with heading Estimate, and correspond to the coefficients 

0 1 4, , ,β β β  in the model specification. Significant effects of PreTHKS and CC are 
observed. With the exception of the CC *TV interaction term, positive relationships 
between the predictors and the ordinal outcome variable are indicated by these 
results. We also note that the coefficient associated with the curriculum-based 
intervention (CC) is almost three times the size of the estimated coefficient for 
media intervention (TV).  
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The alternative parameterization, setting threshold = 0 is shown next. The estimates 
of 2γ  and 3γ  are 1.242 and 2.420 respectively – recall that for identification 
purposes 1γ  was set to zero. 
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Random effects results 

The last part of the output file contains information on the random effects and 
calculation of the intracluster correlation coefficient. The variation in intercept over 
schools is estimated at 0.0735, with the associated p-value of 0.055 indicating its 
statistical significance.  
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In the case of the fixed effects, a 2-tailed p -value is used, as the alternative 
hypothesis considered here is of the form 1 : 0H β ≠ . As variances are constrained 
to be elements of the interval [0, )+∞ , the p -values used for these effects are 1-
tailed. If the model is true, it is assumed that the level-1 error variance, 2

eσ , is equal 
to 2 / 3π  for the logistic link function, where π  represents the constant 3.141592654 
(see, e.g., Hedeker & Gibbons (2006), p. 157).  
 
Finally, the calculation of the intracluster correlation is shown. In this calculation it 
is assumed that the residual variation, 2

eσ , is equal to 2 / 3π . The value of 0.022 
indicates that almost all variation is attributable to students, rather than to the 
schools. 
 

6.2.2.7 Interpreting the output  

Model-based graphs 

Activate the Model Setup window by clicking on it. Using the Plot Equations for 
Outcome Variable dialog box that appears when the File, Model-based Graphs, 
Equations option is selected, we can graphically depict the trend in post-intervention 
scores as a function of pre-intervention scores, taking the type of intervention into 
account. The dialog box below shows the selection of the predictor PreTHKS. 
Grouping of plots by the categories of CC is requested, while marking of the plots 
by TV is indicated by the selection in the Mark column. Two graphs will thus be 
displayed on the same set of axes: one for each value of the indicator variable TV. 
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By default, all variables present in the model, but not selected for inclusion in the 
graph, will be assumed to have a value of 0. In the current situation, this means that 
CC*TV is kept constant at zero. In effect, the graphs are for students from schools 
where only one of the interventions was administered; students from schools where 
both were implemented would have a value of 1 on the variable CC*TV. 

 

 

 
Figure 6.3 shows slightly modified versions of the graphs obtained when the Plot 
button is clicked. For publication purposes, the line type associated with the value 
TV = 1 was changed to a dotted line. This was accomplished by clicking on the top 
line to activate the Plot Parameters dialog box and changing the line parameters so 
that the color is green and the style is dotted rather than solid. The plots show that 
the curriculum-based intervention had a larger effect on the post-intervention score: 
the intercept in the case where CC = 1 is appreciably higher than when CC = 0. In 
both graphs, the solid line indicates the absence of media-based intervention. The 
use of media-based intervention seems to have had a positive, albeit small, effect on 
the outcome. 
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Figure 6.3: Model-based graphs of THKSord by PreTHKS for groups 
 

Interpretation of fixed effect estimates 

The outcome variable has four categories, and there are thus 3 thresholds. The 
coefficient 1β , representing the effect of PreTHKS on THKSord, is estimated as 
0.4033. The PreTHKS adjusted logit differences between CC = 1 and CC = 0 

(keeping TV = 0) is estimated as 2 0.9238β
∧

= , in contrast with the PreTHKS adjusted 
logit differences between TV = yes and TV = no (keeping CC = 0) which is estimated 

as 3 0.2750β
∧

= . The coefficient 4β  denotes the adjusted difference in logit 
attributable to the interaction between CC and TV (CC * TV) and is estimated at 

0.4659− , which diminishes the combined effects of CC and TV.  
 

Logits for groups with no intervention 
 

The first logit for groups with no intervention, for category 1 vs. categories 2 to 4, is 

1 0.0885γ
∧

= − . The second logit for the same group, for categories 1 and 2 vs. 3 and 

4, can be calculated as 2 1.1534.γ
∧

=   The third and final logit for this group, for 
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categories 1 to 3 vs. 4, is 3 2.3319.γ
∧

=  All of the logits are adjusted for the effect of 
the pre-intervention score PreTHKS.  

Logits for groups with classroom curriculum intervention (CC = 1) 
 

Turning to the groups with classroom curriculum intervention (CC = 1), logits can 

be obtained in similar fashion: 1 2 0.0885 0.9238 1.0123γ β
∧ ∧

− = − − = −  

2 2 1.1534 0.9238 0.2296γ β
∧ ∧

− = − = , and 3 2 1.4081γ β
∧ ∧

− = . 

 
Logits for groups with media intervention (TV = 1) 
 

For the groups where media intervention was employed, the logits are: 

1 3 0.3635γ β
∧ ∧

− = − , 2 3 0.8784γ β
∧ ∧

− = , and 3 3 2.0569γ β
∧ ∧

− = . 

 

Estimated outcomes for groups: unit-specific results 

To evaluate the expected effect of the CC, TV, CC*TV, and PreTHKS variables we use 
the expression below: 

 ( )
 ( ) 2 3 4 1

THKSord
log CC TV (CC*TV) PreTHKS

1 THKSord
ij

c i i i ij
ij

P c

P c
γ β β β β
∧ ∧ ∧ ∧ ∧ ≤    = − + + +  − ≤  

 

The variable PreTHKS is treated as a continuous variable in this example, although it 
too is originally a scale score. In order to facilitate comparison of treatment groups, 
the mean PreTHKS score for groups can be used to obtain the logits. The mean 
PreTHKS scores for each of the four treatment groups were given in Table 6.3. This 
table is reproduced below. 
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Table 6.4: Mean pre-intervention scores 
 

Study condition Proportion 
CC = 0, TV = 0 2.152 
CC = 0, TV = 1 2.087 
CC = 1, TV = 0 2.050 
CC = 1, TV = 1 1.979 

 
The probabilities for the responses of typical subjects from the group with no 
intervention (TV = CC = 0) can be obtained using the modified equation 

 ( )
 ( ) [ ]
THKSord

log 0.4033(2.1520)
1 THKSord

0.8679.

ij
c

ij

c

P c

P c
γ

γ

∧

∧

 ≤
  = −
− ≤  

= −

 

Let  

 
 ( )
 ( )
THKSor

log
1 THKSor

ij
ijc

ij

P c

P c
η
∧  ≤

 =
− ≤  

. 

Similar equations for the groups with classroom curriculum intervention and media 
intervention respectively are then 

[ ]0.9238 0.4033(2.050)

1.7506
ijc c

c

η γ

γ

∧ ∧

∧
= − + +

= −
 

and 

[ ]0.2750 0.4033(2.087)

1.1167.
ijc c

c

η γ

γ

∧ ∧

∧
= − +

= −
 

When both intervention methods were employed and thus TV = CC =  CC*TV = 1, we 
have 
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[ ]0.9238 0.2750 0.4659 0.4033(1.979)

1.5310.
ijc c

c

η γ

γ

∧ ∧

∧
= − + − +

= −
 

In this example, the logistic link function was specified, and we can rewrite any  

formula of the form ijc c aη γ
∧

= −  in the alternative form 

 ( )
c

c

-a

-aTHKSord
1 1

ijc

ijcij
e eP c

e e

ηγ

ηγ

∧

≤ = =
+ +

. 

Table 6.5 contains the cumulative response probabilities obtained through 
substitution in the above formulae for the first three categories of the ordinal 
outcome THKSord.  

 
Table 6.5: Cumulative response probabilities for various groups and categories 

 
Category CC TV '

ijc cη γ
∧

= − xβ  Probability of response 

1 0 0 –0.9564 0.2776 
1 1 0 –1.8390 0.1372 
1 0 1 –1.2052 0.2306 
1 1 1 –1.6195 0.1653 
1 or 2 0 0 0.2855 0.5709 
1 or 2 1 0 –0.5972 0.3550 
1 or 2 0 1 0.0367 0.5092 
1 or 2 1 1 –0.3776 0.4067 
1, 2 or 3 0 0 1.4640 0.8121 
1, 2 or 3 1 0 0.5813 0.6414 
1, 2 or 3 0 1 1.2152 0.7712 
1, 2 or 3 1 1 0.8009 0.6902 

 
The probabilities reported in Table 6.5 are cumulative: for example, the probability 
of a response in either category 1 or 2 for the group with CC = TV = 0 is equal to 
0.5709. The probability of a response in category 1 is 0.2776, and therefore the 
probability of a response in category 2 is 0.5709 – 0.2776 = 0.2933. Similarly, the 
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estimated response probability of a category 3 response for a respondent from the 
same group is 0.8121 – 0.5709 = 0.2412. To obtain the category 4 response for a 
respondent from the first group, the value of the estimated response in categories 1, 
2, or 3 has to be subtracted from 1, so that the probability of a response in category 
4 for a typical respondent with CC = TV = 0 is 1 –  0.8121 = 0.1879. The cumulative 
probabilities for the first 3 categories of the ordinal outcome are plotted in Figure 
6.4.  

 
Figure 6.4: Cumulative response probabilities for categories 1 to 3 of THKSord 

 
The graph shows two groupings: one representing CC = 0, regardless of the value of 
TV; and the other CC = 1, again regardless of the value of TV. The smallest 
probability to fall in categories other than category 1 (normal) is for the combination 
CC = TV = 1. The fact that the plotted cumulative probability lines for CC = 1 and TV 
= 1 are close to the line for CC = TV = 1 suggests that the implementation of media 
intervention (TV = 1 if implemented) has less impact on the outcome than the use of 
a classroom curriculum (CC = 1 if implemented). 
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To obtain category probabilities, differences between the cumulative probabilities 
obtained above are calculated. In other words, 

( ) ( ) ( )THKSord THKSord THKSord 1ij ij ijP c P c P c
∧ ∧ ∧

= = ≤ − ≤ −  

The category probabilities are reported in Table 6.6 and are graphically displayed in  
Figure 6.5. 
 
A typical respondent from the control group (no intervention) was less likely to 
respond in categories 3 or 4 of the ordinal post-intervention outcome variable. For 
both this group and the group which was assigned to media intervention only, the 
most likely response was in category 2 and the least likely response in category 4. In 
contrast, groups that were subjected to the classroom curriculum intervention, with 
or without media intervention, were most likely to display a high level of knowledge 
(i.e., a response in categories 3 or 4), and least likely to respond in the first category. 
From this graph we conclude that the classroom curriculum intervention was key – 
groups subjected to the intervention tended to increase in knowledge over the study 
period. 
 

Table 6.6: Estimated unit-specific probabilities for THKSord categories 
 

Category CC TV ( )THKSordijP c
∧

=  
1 0 0 0.2776 
 1 0 0.1372 
 0 1 0.2306 
 1 1 0.1653 
2 0 0 0.2933 
 1 0 0.2178 
 0 1 0.2786 
 1 1 0.2414 
3 0 0 0.2413 
 1 0 0.2864 
 0 1 0.2620 
 1 1 0.2835 
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4 0 0 0.1879 
 1 0 0.3586 
 0 1 0.2287 
 1 1 0.3098 

 
 

 
Figure 6.5: Estimated category probabilities for THKSord 
 

Estimated outcomes for different groups: population-average results 

In the introduction to this section, we defined the latent response variable model as  

 ' '
(1) (1) (1)ij ij i ij ijy e= + +z b x β , 

making the assumption that 2. . .(0, )ije i i d σ: . For a probit link function 2 1eσ = , and 

for a logistic link function it is assumed that 2 2 / 3eσ = π , as indicated in the final 
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lines of the output file. Under the assumption that iv  and ije  are independently 
distributed, it follows that 

 2 ' 2.
ij iy ij v ij eσ = +σz zΦ  

Let  

 
2

2 .ijy
ij

e

d
σ

=
σ

 

The quantity ijd  is called the design effect. The estimated population-average 
probabilities (Hedeker & Gibbons, 2006) are obtained in a similar fashion as the 

unit-specific probabilities, but replacing ijcη
∧

 with 
*

/ijc ijc ijdη η
∧ ∧

= .  

 
From the output, we have ( )0var 0.074iu = , where 0iu  denotes the random intercept 

coefficient. In this case, '
ij =z 1  and hence, with 2 2 / 3eσ = π  for the logistic link,  

 2 21 0.074 (3.1416) / 3 3.3639.
ijyσ = × + =  

Therefore 

 3.3639 1.0225.
3.2899ijd = =  

To obtain the population-average probability estimates, we now replace the ijcη  

values calculated for the unit-specific case with 
*

/ijc ijc ijdη η
∧ ∧

= . 

 
We can compare these estimated population-average probabilities with the observed 
data for the four groups formed by the categories of TV and CC as shown in Table 
6.5 previously. Table 6.7 shows the estimated population-average probabilities. 
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A comparison of these probabilities with those reported in Table 6.5 shows little 
difference between the unit-specific and population-average category probabilities 
for treatment groups. The population-average category probabilities for the first two 
categories are slightly smaller than the corresponding unit-specific probabilities, 
while those for category 3 are slightly larger. The extent of differences between 
unit-specific and population-average results are highly dependent on the "scaling" 
induced by dividing the  ijcsη  by ijd . In the current example, 1.0112ijd =  and 
thus no large differences could be expected. To obtain category probabilities, 
differences between the cumulative probabilities may be calculated, as illustrated in 
the case of the unit-specific results.  
 

Table 6.7: Cumulative response probabilities for various groups and categories 
 

Category CC TV 
*

/ijc ijc ijdη η
∧ ∧

=  Probability of response 

1 0 0 –0.9564/1.0112 0.2797 
1 1 0 –1.8391/1.0112 0.1396 
1 0 1 –1.2052/1.0112 0.2330 
1 1 1 –1.6195/1.0112 0.1678 
1 or 2 0 0 0.2855/1.0112 0.5701 
1 or 2 1 0 –0.5972/1.0112 0.3565 
1 or 2 0 1 0.0367/1.0112 0.5092 
1 or 2 1 1 –0.3776/1.0112 0.4077 
1, 2 or 3 0 0 1.4640/1.0112 0.8097 
1, 2 or 3 1 0 0.5813/1.0112 0.6399 
1, 2 or 3 0 1 1.2152/1.0112 0.7689 
1, 2 or 3 1 1 0.8009/1.0112 0.6883 

 

6.3 Two-level ordinal analysis of NIMH data 

6.3.1 The data 

To illustrate the application of the mixed-effects ordinal logistic regression model to 
longitudinal data, we examined data collected in the NIMH Schizophrenia 
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Collaborative Study on treatment-related changes in overall severity. Specifically, 
Item 79 of the Inpatient Multidimensional Psychiatric Scale (IMPS; Lorr & Klett, 
1966) was used. In this study, patients were randomly assigned to receive one of 
four medications: placebo, chlorpromazine, fluphenazine, or thioridazine. Since 
previous analyses (Longford, 1993, and Gibbons & Hedeker, 1994) revealed similar 
effects for the three anti-psychotic drug groups, they were combined in the present 
analysis. Finally, again based on previous analysis, a square root transformation of 
time was chosen to linearize the relationship of the IMPS79 scores over time.  
 
Data for the first 10 observations are shown below in the form of a SuperMix 
spreadsheet file, named schizx.ss3. 
 

 

 
The variables of interest are: 
 

o ID indicates the subject (437 patients in total). 
o IMPS79 represents the original score on Item 79 of the Inpatient 

Multidimensional Psychiatric Scale. It was scored as: 1 = normal, or not at 
all ill; 2 = borderline mentally ill; 3 = mildly ill; 4 = moderately ill; 5 = 
markedly ill; 6 = severely ill; and 7 = among the most extremely ill. 

o IMPS79D is a recoded version of the same scale, but in binary form, where 
scores up to, but excluding 3.5 were coded 0, and scores of 3.5 or higher 
were coded 1. The value "0" is associated with measurements classified as 
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normal, borderline, mildly, or moderately mentally ill, while the value "1" 
was assigned to measurements corresponding to "markedly ill" through 
"most extremely ill." 

o IMPS79O is also a recoded version of the same scale, but with the 7 original 
categories reduced to four: 1 = normal or borderline mentally ill, 2 = mildly 
or moderately ill, 3 = markedly ill, and 4 = severely or among the most 
extremely ill. 

o DRUG indicates the treatment group, where 0 indicates the placebo patients, 
and 1 refers to the drug patients.  

o WEEK represents the time during the course of the study when a specific 
measurement was made, and ranges between 0 and 6. 

o SQRTWEEK is the square root of WEEK. This variable is generated within the 
SuperMix spreadsheet. For more information on data manipulation, please 
refer to Section 2.5. 

o WSQRTxDRUG is the product of the treatment group and the square root of 
WEEK. 

 
In this data file, each subject's data consist of seven lines, these being the repeated 
measurements on seven occasions. Notice that there are missing value codes (–9) for 
some subjects at specific time points. The data from these time points will not be 
used in the analysis, but data from these subjects at other time points where there are 
no missing data will be used in the analysis. Thus, for inclusion into the analysis, a 
subject's data (both the dependent variable and all model covariates being used in a 
particular analysis) at a specific time point must be complete. The number of 
repeated observations per subject then depends on the number of time points for 
which there are non-missing data for that subject. The specification of missing data 
codes will be illustrated in the model specification section to follow. 
 

6.3.1.1 Defining column properties 

Defining column properties for the ordinal data is recommended. We use the 
column of IMPS79O as an example. First, highlight the column of IMPS79O by 
clicking on its header. Then right click and select the Column Properties option as 
shown below to open the Column Properties dialog box. 
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The header of the Column Properties dialog box indicates the current variable name. 
Keep the default number of decimal places unchanged. Select the Categorical radio 
button to activate the grid field to enter the labels for each category as shown below. 
 

 

 
Click on the OK button and save the change to the data set by clicking on the File, 
Save option. 
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The outcome variable: univariate graphs 

As a first step, we take a look at the ordinal variable IMPS79O which is the potential 
dependent variable in this study.  

 
Pie chart 

To generate a pie chart for IMPS79O, first open the schizx.ss3 SuperMix spreadsheet. 
Next, select the File, Data-based Graphs, Univariate option to load the Univariate plot 
dialog box. Select the variable IMPS79O and indicate that a 3D Pie Chart is to be 
graphed as shown below.  
 

 

Click the Plot button to display the following pie chart.  
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Figure 6.6: Pie chart of IMPS79O values 
 

Note that most of the observations fall into the Severe illness category. Keep in 
mind that the pie chart takes all observations, regardless of the time of 
measurement, into account. As such, it is informative about the distribution of all 
observed values of the potential outcome, but does not provide any information on 
possible trends in illness level over time. 
 

Relationships between variables: bivariate bar chart 

It is hoped that the severity of the illness (IMPS79O) will decrease over the treatment 
period. Before considering fitting a model to these data, we would like to explore 
the relationship between IMPS79O and WEEK using a bivariate bar chart.  
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Bivariate bar chart 

 

A bivariate bar chart is accessed via the Data-based Graphs, Bivariate option on the 
File menu. The Bivariate plot dialog box is completed as below: select the outcome 
variable IMPS79O as the Y-variable of interest, and the predictor WEEK to be plotted 
on the X-axis. Check the Bivariate Bar Chart option, and click Plot. 
 

  
Figure 6.7: Bar chart of IMPS79O vs. WEEK 
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As shown above, most patients did not participate in the study at weeks 2, 4 and 5. 
At the beginning of the study (week 0), a large percentage of patients are markedly 
or severely ill. By the end of the study (week 6), most patients are reported as 
normal or moderate. 
 

6.3.2 An ordinal regression model with random intercept 

6.3.2.1 Introduction 

As discussed in Section 6.1, an ordinal variable is a categorical variable where there 
is a logical ordering to the categories. In most cases, treating an ordinal outcome as 
a continuous variable is inadvisable, due to the reasons discussed in Section 4.1. As 
in the case of a binary outcome variable, a link function is used  in order to take the 
ceiling and floor effects of the ordinal outcome into account. The available link 
functions in SuperMix include probit, logistic, complementary log-log and log-log. 
Detailed information on these link functions are given in section 4.1.1. 
 

6.3.2.2 The model 

Let the outcome variable be coded into c categories, where 1,2,...,c C= . In this 
example, the ordinal variable IMPS79O defines the severity of the illness in terms of 
four categories, and thus 4C = . As ordinal models utilize cumulative comparisons 
of the categories, define the cumulative probabilities for the C categories of the 

outcome Y as ( )
1

Pr
c

ijc ij ijk
k

P Y c p
=

= ≤ =∑ , where ijkp  represents the probability that 

the response of the jth measurement on patient i occurs in category k.  
 
The type of drug, time elapsed since start of treatment, and the interaction between 
drug taken and time elapsed are of interest as predictors. The logistic regression 
model with IMPS79O as outcome can then be written as  
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Level 1 model:   

( )0 1 2 3log DRUG SQRTWEEK WSQRT×DRUG
1

ijc
ij c i i i i i i i

ijc

P
y b b b b

P
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 = = − + + +    − 

, 

1 ; 1, 2, , 1ij n c C= , , = −   

Level 2 model:  
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The cumulative probability can be expressed by 

( )

( )

0 1 2 3

0 1 2 3

DRUG SQRTWEEK WSQRT×DRUG

DRUG SQRTWEEK WSQRT×DRUG1

c i i i i i i i

c i i i i i i i

b b b b

ijc b b b b

eP
e

γ

γ

 − + + + 

 − + + + 
=

+  

To obtain the probability for category c ,  

, , 1 ,ij c ij c ij cp P P+= −  

As shown above, the intercept 0ib  is estimated by a level-2 equation. It indicates 
that patient i's initial IMPS79O value is not only determined by the population 
average 0β , but also by the patient difference 0iv . In other words, patients may have 
different average intercepts, and the model makes provision for this eventuality. The 
slopes are assumed to be the same for all the patients, which implies that each 
patient's trend line is parallel to the population trend. 
 
The connection between an ordinal outcome variable y  with C categories and an 
underlying continuous variable *y  is  

*
1 , 1, 2,...,j jy c y c Cγ γ−= ↔ ≤ ≤ =  
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where it is assumed that 0γ = −∞  and Cγ = +∞ . In addition, 1γ  is usually set to 0 to 
avoid identification problems. 
 

6.3.2.3 Setting up the analysis 

Open the SuperMix spreadsheet schizx.ss3 and select the File, New Model Setup 
option.  
 

 

 
In the Configuration screen of the Model Setup window, enter a title for the analysis 
in the Title text boxes. Select ordered from the Dependent Variable Type drop-down 
list box. Select the outcome variable IMPS79O from the Dependent Variable drop-
down list box. Once this selection has been made, the Categories grid is displayed, 
with the distinct values of the categories shown. 
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We notice that the missing value –9 is also included as a category. The Missing 
Values Present drop-down list box is used to specify the values of missing data for 
both outcome and predictors. As a first step, set the value of the Missing Values 
Present drop-down list box to True. The appearance of the screen will change when 
this is done, and text boxes for the specification of the missing data codes are 
displayed. Start by entering the value –9 in the Missing Value for the Dependent Var 
text box. Do the same for all the predictors included in the model by entering –9 in 
the Global Missing Value text box. Finally, select the patient ID from Level-2 IDs 
drop-down list box to produce the Configuration screen seen above.  
 

 

 
Proceed to the Variables screen by clicking on this tab. The Variables tab is used to 
specify the fixed and random effects to be included in the model. Select DRUG, 
SQRTWEEK and WSQRTxDRUG as explanatory (fixed) variables using the E check 
boxes next to the variables names in the Available grid at the left of the screen. The 
Include Intercept check box in the Explanatory Variables grid is checked by default, 
indicating that an intercept term will automatically be included in the fixed part of 
the model. Next, specify the random effects at level 2 of the hierarchy. In this 
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example, we want to fit a model with random intercepts at level 2. By default, the 
Include Intercept check box in the L-2 Random Effects is checked, indicating the 
inclusion of a random intercept at this level in the model. 
 
The default link function for the ordinal outcome variable is the probit link function. 
To change it to the logistic link function corresponding to the model formulation 
above, click on the Advanced tab and select the logistic link function from the 
Function Model drop-down list box as shown below. Use 25 quadrature points. 
 

 

 
Before running the analysis, the model specifications have to be saved. Select the 
File, Save As option, and provide a name (SCHIZX1.mum) for the model 
specification file. Run the analysis by selecting the Run option from the Analysis 
menu.  
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6.3.2.4 Discussion of results 

Syntax 

The syntax corresponding to the model setup is given in the model specifications. 
These lines of SuperMix syntax are saved as a *.inp file with the same name as the 
model setup file (*.mum). At the top of the output file, the syntax lines are printed as 
shown below. 
 

 

 
The first part indicates that an ordinal outcome is analyzed, states the selection of 
iteration control options, does not request Bayes residuals, and contains all the 
specifications necessary to define the model fitted as an ordinal model with logistic 
link function. The second part of the syntax provides information on the structure of 
the data, the name and structure of the outcome variable, the missing values and the 
predictors included in the model. 
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Model and data description 

The next section of the output file contains a description of the hierarchical structure 
and model specifications. The use of a logistic response function (logit link 
function) with the assumption of a normal distribution of random effects is 
indicated. This is followed by a summary of the number of observations nested 
within each patient. As shown below, 437 patients with a total of 1603 observations 
are included in this study after listwise deletion. The number of observations per 
patient (level 2 unit) varies between 2 and 5. 
 

 

Descriptive statistics and starting values 

Next, the descriptive statistics for all the variables are given. Notice that the variable 
name WSQRTxDRUG is truncated to WSQRTxDR. This is because SuperMix only 
recognizes the first 8 characters of a variable name. 
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Descriptive statistics are followed by the starting values of parameters.  
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Fixed effects estimates 

The final results after 16 iterations are shown next. The estimates are shown in the 
column with heading Estimate, and correspond to the coefficients 0 1 3, , ,β β β  in 
the model specification. The standard error, z-value and p-value are also printed. 
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The variation in the intercept over the subjects is estimated as  3.7739, and from the 
associated p-value we conclude that there is significant variation in the (random) 
intercept between the patients included in this analysis. In the case of the fixed 
effects, a 2-tailed p-value is used, as the alternative hypothesis considered here is of 
the form 1 : 0H β ≠ . As variances are constrained to be elements of the interval 
[0, )+∞  and thresholds are constrained so that 1 2 3γ γ γ≤ ≤ , the p-values used for 
these effects are 1-tailed. The results indicate that the treatment groups do not differ 
significantly at baseline (the estimated DRUG coefficient is not significant). The 
placebo group seems to improve over time, as the SQRTWEEK coefficient is both 
significant and negative. Note that the interpretation of the main effects depends on 
the coding of the variable, and on the significance of the WSQRTxDR interaction 
which forms part of the model.  
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As noted before, it is assumed that 0γ = −∞  and Cγ = +∞ . For the present example, 

C = 4, and from the output we see that 1 5.8593γ
∧

= − , 2 2.8264γ
∧

= −  and 

3 0.7085.γ
∧

= −  These values are used in combination with the coefficients of DRUG, 
SQRTWEEK, and WSQRTxDR to calculate estimated outcomes for different groups of 
patients. 
 

Intraclass correlation (ICC) 

Below the estimate the intracluster correlation (ICC) is given. The residual variance 
for the logistic link function is assumed to be 2 / 3π . 
 

 

 
The ICC in this model refers to the intra-person correlation. It is reported as 0.534, 
which is fairly high. Generally, the shorter the interval between the repeated 
measurements, the higher the ICCs will be. 
 

6.3.2.5 Interpreting the output 

Estimated outcomes for groups: unit-specific probabilities 

To evaluate the expected effect of the treatment group and the square root of time of 
treatment, while allowing for the interaction between treatment and the square of 
time, we use the expression below: 
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( )1 2 3

ˆ
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P
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 = − + +    − 

 

or, in the notation introduced in Section 6.3.2.2,  

( )

log
1
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When c = 1, we find that, for a patient from the control group (DRUG = 0, 
SQRTWEEK = WSQRTxDR = 0),  

1

1

1
1

1

1

log 5.8593
1
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Similarly, the probabilities that a typical patient from the control group responded in 

a specific category at the start of the study are obtained by using 2 2 8264.γ
∧

= − , and 

3 0 7085.γ
∧

= − . 

 
The cumulative probabilities we calculated are 
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Thus, the estimated category probabilities we have for such a group (category 1 to 
4) are obtained as 

1

2

3

4

ˆ 0.0028 0 0.0028
ˆ 0.0559 0.0028 0.0531
ˆ 0.3299 0.059 0.2740
ˆ 1 0.3299 0.6701.

ij

ij

ij

ij

p
p
p
p

= − =

= − =

= − =

= − =

 

For this group of patients (DRUG = 0) at the starting week, the expected percentages 
of patients in each of the categories are as follows: 0.3% of the patients are normal 
or borderline mentally ill; 5.3% of the patients are mildly or moderately ill; 27.4% 
are markedly ill and 67% are severely or extremely ill. Similarly, we can calculate 
the estimated percentages for both groups at all the time points as shown in Table 
6.8. 
 
The contents of Table 6.8 can be graphically represented as shown in Figures 6.8 
and 6.9. It clearly shows that the numbers of markedly and severely ill patients 
decrease dramatically over time. The improvement for the drug patients is larger 
than the placebo patients. 
 
Table 6.8: Estimated % for both groups at 7 time points  
 
 Drug patients (drug = 1) Placebo patients (drug = 0) 

severity normal moderate marked severe normal moderate marked severe 
week 0 0.30% 5.61% 28.39% 65.70% 0.28% 5.31% 27.40% 67.01% 
week 1 0.65% 11.25% 40.99% 47.11% 2.01% 27.84% 48.11% 22.04% 
week 2 0.89% 14.76% 45.02% 39.34% 4.43% 44.62% 39.84% 11.10% 
week 3 1.13% 18.00% 47.16% 33.71% 7.99% 56.32% 29.43% 6.26% 
week 4 1.38% 21.13% 48.21% 29.28% 12.84% 62.51% 20.87% 3.79% 
week 5 1.65% 24.17% 48.50% 25.69% 19.00% 63.96% 14.63% 2.41% 
week 6 1.94% 27.13% 48.24% 22.69% 26.32% 61.79% 10.29% 1.60% 
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Figure 6.8: Estimated percentage of patients over time (treatment group) 

 
Figure 6.9: Estimated percentage of patients over time (control group) 
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6.3.3 A 2-level random intercept model and trend model 

In this section, we fit a model with random intercept and slope. To do this, the level-
1 model is unchanged; only the level-2 model is modified. 
 

6.3.3.1 The model 

Level 1 model:  

( )0 1 2 3log DRUG SQRTWEEK WSQRT×DRUG
1

ijc
ij c i i i i i i i

ijc
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y b b b b
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 = = − + + +    − 
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    1 ; 1, 2, , 1ij n c C= , , = −   
 
Level 2 model:  
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As shown above, the slope of the time variable 2ib  is now estimated by a level-2 
equation containing both a fixed and a random effect. It indicates that patients are 
now not only assumed to have different intercepts, but may also exhibit different 
responses to the treatment over time.  
 

6.3.3.2 Setting up the analysis 

Use the File, Open Spreadsheet option to re-open the previously used spreadsheet 
schizx.ss3 from the Examples\Ordinal folder. Next, use the File, Open Existing 
Model Setup option to locate and open the syntax file SCHIZX1.mum. Click on File, 
Save as to save the model setup in a new file, such as SCHIZX2.mum. Next, we 
change the string in the Title 1 text box on the Configuration screen (optional). 
Request a crosstabulation of the variable SQRTWEEK by the response variable 
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IMPS79O by selecting the yes option from the Perform Crosstabulation drop-down 
list box, followed by the selection of SQRTWEEK as the Crosstab Variable. 
 

 

 
Proceed to the Variables tab, and check the 2 check box for SQRTWEEK to select it 
as a level-2 random variable as shown below. 
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Keep all the other settings unchanged. Save the changes to the file SCHIZX2.mum 
and click the Analysis, Run option to produce the output file SCHIZX2.out.  
 

6.3.3.3 Discussion of results 

Crosstabulation 

The following portion of the output is a crosstabulation of the seven distinct values 
of the variable SQRTWEEK by the four categories of the outcome variable IMPS79O. 
We note that there are relatively few observations for the third, fifth and sixth 
weeks. For example, for week 5 (SQRTWEEK = 2.24), measurements on only 9 of 
the 437 patients are available. Looking down the columns (SQRTWEEK) we see the 
severity of symptoms (IMPS79O) declining.  
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Fixed effect results 

The final results after 23 iterations are listed below. While the values of the 
estimated coefficients differ from those in the random-intercept-only model, the 
overall picture remains very similar. The decline in severity over time noticed in the 
crosstabulation is captured by the significant fixed effect coefficient of –0.88295 for 
SQRTWEEK. 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

433 

 

 

 

Random effects results 

Note that the estimated coefficient for the random SQRTWEEK slope is highly 
significant, indicating that patients not only start at different points but follow 
different paths during the treatment period.  
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6.3.3.4 Interpreting the output 

Estimated outcomes for groups: unit-specific results 

To evaluate the expected effect of the treatment group and the square root of time of 
treatment, while allowing for the interaction between treatment and the square root 
of time, we use the expression below: 

( )0 1 2 3

ˆ
ˆ ˆ ˆ ˆˆlog DRUG SQRTWEEK WSQRT×DRUGˆ1

ijc
c i i i i i i i

ijc

P
b b b b

P
γ

 
 = − + + +    − 

 

so that 

 
( )

7.3793 0.0553 DRUG 0.8841 SQRTWEEK

1.6940 WSQRT×DRUG
ijc c i i

i

η γ
∧ ∧

= − + × + ×

+ ×
 

As illustrated in the previous example, by substituting the values for DRUG, 
SQRTWEEK and WSQRTxDRUG, the results shown in Table 6.9 can be obtained. 
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Table 6.9: Estimated unit-specific results for random intercept & slope model 
 

 Placebo patients (drug = 0) Drug patients (drug = 1) 
severity normal moderate marked severe normal moderate marked severe 
week 0 0.06% 2.96% 26.90% 70.08% 0.07% 3.13% 27.90% 68.91% 
week 1 0.15% 6.87% 43.81% 49.17% 0.86% 29.42% 55.32% 14.40% 
week 2 0.22% 9.61% 50.03% 40.15% 2.47% 51.90% 39.98% 5.81% 
week 3 0.29% 12.32% 53.77% 33.62% 5.42% 68.72% 23.37% 2.49% 
week 4 0.36% 15.09% 55.99% 28.55% 10.27% 74.85% 13.62% 1.26% 
week 5 0.45% 17.94% 57.12% 24.49% 17.38% 73.94% 7.99% 0.69% 
week 6 0.54% 20.84% 57.44% 21.17% 26.72% 68.08% 4.80% 0.40% 

 
We can again represent the results from the above table graphically, as shown in 
Figures 6.10 and 6.11. The graphs tell us the same story as the previous model: 
patients from the treatment group showed more improvement over time than 
patients from the control group. While a very small proportion of treatment patients 
were still diagnosed as being severely ill at the end of the treatment period (0.42% 
according to table 6.9), 20% of the control group were still classified as being 
severely ill by week 6. 

 

 
     Figure 6.10: Estimated percentage of patients over time (treatment group) 
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Figure 6.11: Estimated percentage of patients over time (treatment group) 
 

Estimated time trend variance 

When we consider the heterogeneity in responses across time, we notice that the 
estimated variance in the time trend is 

1

2 2 2(1.29774) ( 0.57054) 2.0096vσ = + − = . The 
estimates for the time trends are -0.88295 for SQRTWEEK and -1.69416  for 
WSQRTxDR respectively. Thus the estimated trends for the placebo and drug groups 
are -0.88295 and -0.88295 -1.69416 = -2.57711. Thus the 95% confidence interval 
of the time trend for the placebo group is ( )-0.88295 1.96 2.0096± ×  

( )-3.6615,1.896 .=  Similarly, the confidence interval for the drug group is 

( )-5.3556, 0.2014 .  Notice that both intervals are fairly large and include negative 
and positive slopes, which reflects the wide heterogeneity in trends. The estimated 
correlation value is –0.402, which is moderately large. This indicates that the 
patients who are initially less severely ill improve at a smaller rate. The more 
severely ill patients improve at a greater rate. 
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7 Models for nominal outcomes 

7.1 Models for the NHIS data 
In statistics, the kinds of significance tests and model fitting procedures that are 
appropriate depend on the level of measurement of the variables concerned. A 
widely accepted classification scheme, proposed by Stevens (1946), is listed below 
and consists of four levels of measurement: 
 

o nominal (also categorical or discrete) 
o ordinal 
o interval 
o ratio 

 
Interval and ratio variables are usually grouped together as continuous variables. 
 
In the case of nominal variables there are no "less than" or "greater than" relations 
among the categories of the variable, and operations such as addition or 
multiplication do not exist. 
 
Examples of nominal variables are  
 

o Cancer Type (1 = breast, 2 = lung, 3 = brain, 4 = leukemia, 5 = liver, 6 = 
colon, 7 = other),  

o Smoking Status (1 = never smoked, 2 = former smoker, 3 = current smoker),  
o Preference for U.S. President (1 = Democrat, 2 = Republican, 3 = 

Independent),  
o Type of Sweetener (1 = sugar, 2 = saccharin, 3 = aspartame, 4 = other),   
o Pain Reliever (1 = Acetaminophen,  2 = Aspirin, 3 = Ibuprofen, 4 = 

Ketoprofen, 5 = Naproxen, 6 = other). 
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In many research situations, the underlying variable type is continuous. However, to 
ensure anonymity of respondents, information is obtained by categorizing variables. 
For example: 
 

o Annual Income (1 = not employed, 2 = less or equal to $20,000, 3 = more 
than $20,000 but less than or equal to $50,000, 4 = more than $50,000 but 
less than or equal to $100,000, 5 = more than $100,000) 

o Age when diagnosed (1 = not applicable, 2 = younger than 25 years, 3 =  25 
years or older but less than 50 years, 4 = 50 years or older but less than 70 
years, 5 = 70 years and older). 

 
In both the cases above, the available data values are coded 1, 2, 3, 4 and 5. 
Arithmetic operation with these codes will not provide accurate estimates of the 
actual age and income characteristics and in both cases the first category makes 
"less than" and "more than" comparisons less feasible. 
 
In this chapter we illustrate the analysis of a nominal outcome variable by fitting a 
three-level model to health related data. 
 

7.1.1 The data 

The data set comes from the data library of the National Health Interview Survey 
(NHIS). The NHIS is a national longitudinal health survey. During 2002, background 
data and data on the health conditions of a sample of 28,737 participants were 
obtained. The 2002 sample was stratified into 64 strata and into 601 PSUs. Using 
this data, we created a subset consisting of 57 strata (the level-3 units), 399 PSUs 
(the level-2 units) and 6445 participants. A partial list of the data is given below in 
the form of a SuperMix spreadsheet file, named nih_recoded.ss3. 
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A description of the variables is as follows:  
 
o CSTRATM is the stratum used as level-3 ID (57 strata). 
o CPSUM is the primary sampling unit (PSU) and is used as level-2 ID (399 

clusters). 
o PATWT is the participant design weight. 
o PASTVIS is the value of the nominal variable for the number of visits to a 

medical doctor during the past 12 months (1 = none or unknown, 2 = 1 to 2, 3 = 
3 to 5, 4 = 6 medications and more).  

o NUMMED is the number of medications. 
o GENDER, where 0 = Female and 1 = Male. 
o USETOBAC indicates whether a participant smoked cigarettes or not, where 0 = 

no and 1 = yes. 
o PRIMCARE, where 0 = none and 1 = participant has primary care. 
o INJURY indicates whether a participant suffered from an injury or not (0 = no, 1 

= yes). 
o BLODPRES, where 0 = blood pressure not measured and 1 = blood pressure 

measured. 
o URINE, where 0 = no urine tested, 1 = tested. 
o XRAY, where 0 = no X rays taken and 1 = X ray taken. 
o EXERCISE, where 0 = no exercise and 1 = participant does exercise. 
o RACER indicates the ethnicity of a participant where 1 = White, 2 = Black and 3 

= Other. 
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o AGER indicates in which age category a participant belongs. Coded as follows: 1 
= Under 15, 2 = 15 to 24, 3 = 25 to 44, 4 = 45 to 64, 5 = 65 to 74, 6 = 75 and 
older. 

o AGE1 to AGE5 are five dummy variables coded as follows: 
 
Table 7.1: Dummy variables 
 

Age AGE1 AGE2 AGE3 AGE4 AGE5 
Under 15 1 0 0 0 0 
15 to 24 0 1 0 0 0 
25 to 44 0 0 1 0 0 
45 to 64 0 0 0 1 0 
65 to 74 0 0 0 0 1 
75 and older 0 0 0 0 0 

 

7.1.2 The model 

7.1.2.1 A general multilevel nominal model 

In the nominal case we need to consider the values corresponding to the unordered 
multiple categories of the response variable. We thus assume that the C response 
categories are coded as 1, 2,3,...,C . 

 
Let ( )| , ,ijkc ijk c ic ijcP P y c= = β υ υ  denote the probability that a response occurs in 

category c, conditional on a ( )1p×  vector of fixed regression parameters cβ , the 

( )1m×  vector of level-2 random effects ijcυ  and the ( )1r×  vector of level-3 random 
effects icυ . It is further assumed that the level-2 random effects ijcυ  are independent 

and identically distributed (i.i.d.) as a ( )(2),N 0 Φ  random variable. Uncorrelated 

with ijcυ , the level-3 random effects are i.i.d. ( )(3),N 0 Φ . The scalar ijky  denotes the 

value of the nominal variable associated with level-1 unit k, 1, 2, , ijk n=  , nested 
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within level-2 unit j, 1, 2, ij n=  , which in turn is nested within the i-th level-3 
unit, where 1,2, ,i N= L . The probabilities ijkcP  are computed as 

( )
( )

( )
1

1

| , ,

exp
, 1,2, , 1

1 exp

ijkc ijk c ic ijc

ijkc
C

ijkc
h

P P y c

c C
η

η
−

=

= =

= = −
+∑

β υ υ



 

where 

( ) ( )2 3ijkc ijk c ijc icijk ijkη ′ ′ ′= + +x β z υ z υ  

Note that ijk′x , ( )2ijk′z  and ( )3ijk′z  are design vectors for the explanatory variables and 
the level-2 and level-3 random effects respectively. 
 

7.1.2.2 Random intercept model with two explanatory variables 

For the nihs_recoded.ss3 data set considered earlier, let PASTVIS denote the 
outcome variable. Assume further that GENDER and EXERCISE are the only 
predictors and that only intercepts are allowed to vary randomly across level-3 and 
level-2 units. The corresponding estimated probability model is given by 

( ) ( )
( )

3

1

exp
PASTVIS , 1,2,3

1 exp

ijkc
k

ijkh
h

P c c
η

η
=

= = =
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where  

0 1 1GENDER EXERCISEijkh h h k h k ijh ihη β β β υ υ= + × + × + +  

and where PASTVISk , GENDER k  and EXERCISEk  denote values of the variables 
for client k nested within unit ( ),i j . Note that for PASTVIS the number of categories 
is 4C = . 
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Remarks: 

The probability ( )PASTVIS 4kP =  is obtained as ( )
3

1
1 PASTVISk

c
P c

=

− =∑ . In the 

formulation above, we used the last category as the so-called reference category. 
 

SuperMix allows the user to select the first or the last category as the reference 
category. If the first category is selected as reference category, then  

( ) ( )
( )

4

2

exp
PASTVIS , 2,3, 4.

1 exp

ijkc
k

ijkh
h

P c c
η

η
=

= = =
+∑

 

In this case ( ) ( )
4

2
PASTVIS 1 1 PASTVISk k

c
P P c

=

= = − =∑ . 

 

7.1.3 A random intercept model with fourteen predictors 

7.1.3.1 Preparing the data 

The model to be fitted to the data is contained in nihs_recoded.ss3. This file was 
created from the SPSS data file nihs_recoded.sav as follows. 

 
Use the File, Import Data File option to activate the display of an Open dialog box. 
Browse for the file nihs_recoded.sav in the Examples\Nominal folder. Select the file 
and click the Open button to display nihs_recoded.ss3. 

7.1.3.2 Exploring the data 

To obtain some insight into the distributional properties and possible relationships 
between variables, it is useful to present these properties graphically using the Data-
based Graphs option. Prior to making visual presentations, it is a good idea to 
assign labels to the categories of the nominal and ordinal variables. To illustrate, 
right click on the PASTVIS header and select the Column Properties option to display 
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the Column Properties dialog. Select the Nominal or Ordinal option to obtain the list 
of values assigned to the categories of PASTVIS. 
 

 

 
Enter the labels None, 1 to 2, 3 to 5 and 6 and more as shown below and click OK. 

 

 
Category labels can be assigned to the variables GENDER and AGER in a similar 
way. For example, right-click on the AGER header and enter labels as shown below. 
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Remember to use the File, Save option to permanently store the labeling 
information. From the main menu bar, select the File, Data-based Graphs, Bivariate 
option. 

 

 

 
By clicking on the Bivariate tab of the pop-up menu, the Bivariate plot dialog box is 
invoked. Select PRIMCARE as the Y variable and PASTVIS as the X variable. 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

445 

 

 
Next, click the Bivariate Bar Chart radio button and then the Plot button to obtain the 
bivariate bar chart of PRIMCARE vs PASTVIS. The graph below shows that there is 
an increase in the use of primary care with the number of visits to a medical doctor. 
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Figure 7.1: Bivariate bar chart of PRIMCARE vs PASTVIS 
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To investigate the relationship between the variables BLODPRES and AGER, select 
BLODPRES as the Y variable and AGER as the X variable. 
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BLODPRES vs. AGER

 
Figure 7.2: Bivariate bar chart of BLODPRES vs AGER 
 

From Figure 7.2 it is evident that it is much more likely that blood pressure will be 
measured for patients older than 45 than for younger patients. 
 

7.1.3.3 Setting up the analysis 

From the main menu bar, select the File, New Model Setup option. In this example, 
only the Configuration, Variables and Advanced tabs of the Model Setup window are 
used. By default, the Configuration tab is displayed first. 
 
Start by providing titles for the analysis in the Title 1 and Title 2 text boxes. Next, 
select the outcome variable PASTVIS from the Dependent Variable drop-down list 
box and indicate the type of outcome as nominal using the Dependent Variable Type 
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drop-down list box. Select CPSUM and CSTRATM as the level-2 and level-3 ID 
variables and choose means & (co)variances as the Write Bayes Estimates option. 
Note that the current data set contains no missing values. 

 

 

 
The Variables tab is used to specify the fixed and random effects to be included in 
the model. Start by selecting the explanatory (fixed) variables, using the check 
boxes in the Available grid. The image below shows the completed selection of all 
predictors. 
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By default, the inclusion of a fixed intercept coefficient and random intercepts at 
level 2 and level 3 is assumed. As these selections correspond to the model we 
intend fitting to the data, no further changes are made on this tab. Click on the 
Advanced tab and request adaptive quadrature as the Optimization Method and enter 
the number 8 as the Number of Quadrature Points.  
 
Before running the analysis, save the model specification using the File, Save option 
from the main menu bar. Provide a name for the model specification file, for 
example NHIS1.mum, and then run the analysis using the Analysis, Run option. 
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7.1.3.4 Discussion of results 

The command syntax generated by the graphical user interface is saved to the file 
NIHS1.inp. This file can be edited by using the File, Open Syntax File option. For 
example, the predictors GENDER, BLODPRES, URINE and XRAY can be removed, 
after which the syntax file can be saved as NIHS2.inp. To run NIHS2.inp, use the 
Analysis, Run option as before. 
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Model and data description 

 

The first part of the output file gives a description of the model specifications. This 
is followed by a data summary of the number of observations nested within each 
subject.  



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

451 

 

Descriptive statistics and starting values 

The data summary is followed by descriptive statistics for all the variables included 
in the model.  
 

 

 
Each category of the nominal outcome variable is denoted as 
PASTVIS , 1,2,3, 4.i i =  From the output it can be seen that the distribution of 
respondents over these categories are 6.9%, 36.8%, 28.6%, and 27.7% respectively. 
The age distribution is given in Table 7.2. 
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Table 7.2: Age distribution of respondents 
 

Age Percentage 
Younger than 15 19.7 
15 to 24 6.4 
25 to 44 22.8 
45 to 64 26.7 
65 to 74 11.6 
75 and older 12.8* 

 
*: calculated as 100 – (19.7+6.4+22.8+26.7+11.6) 
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The estimated parameters for the model, assuming no random effects, are reported next. 
For each response code i  versus code 4, 1, 2,3,i =  there are 14 parameter estimates. 
Only the estimates for response code 1 versus response code 4 are displayed. 
Comparing these estimates with those obtained when allowance is made for the 
hierarchical structure of the data, a considerable difference is apparent. 
 

Fixed effects estimates and fit statistics 

The final results obtained using adaptive quadrature are given next. Using 8 
quadrature points, 5 iterations were required to reach convergence. The deviance 
statistic ( 2 ln L− ) allows the user to compare the current model with other nested 
models.  
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A study of the p -values associated with the parameter estimates indicates that the 
estimated GENDER, INJURY, URINE, and XRAY coefficients are not significant, 
regardless of the values of the category of the outcome variable. 

 

 

 

Random effect estimates 

The last part of the output file shows the variance estimates for the level-2 and 
level-3 random effects. Both effects are highly significant. 
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7.1.3.5 Interpreting the output 

Model-based graphs 

The Model-based Graphs option is available via the File menu if either the output 
window or the Model Setup window is active. 
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Select the Equations option to open the Plot Equations dialog box. Select NUMMED 
as the predictor, BLODPRES as the Group variable, and Mark each plot by the 
categories of PRIMCARE. 
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Click Plot to obtain the plot of the logit of PASTVIS against NUMMED for category 1 
versus category 4. 

 

  
Figure 7.3: Plot of Prob(PASTVIS) vs. NUMMED 
 

Similar plots are obtained for category 2 vs. 3 and category 3 vs. 4 by clicking the 
slider (not shown) beneath the graphical displays in Figure 7.3. Figure 7.3 shows 
smaller probabilities for the category Primary Care (lower of the lines) compared to 
the category none (uppermost lines) of the variable PRIMCARE. 
 

Confidence intervals for EB estimates 
In addition to the estimate of the regression coefficients in the fixed part of the 
model and the estimates of the variances of the random intercept coefficients, we 
also obtain estimates for the unique deviations from the estimated population 
intercept coefficients at levels 2 and 3. These estimates, also known as empirical 
Bayes residuals, are written to NIHS1_res.bay2 and NIHS1_res.bay3. these files can 
be imported into SuperMix as *.ss3 spreadsheet files. Using the File, Model-Based 
Graphs, Confidence Intervals option, a graphical display of 95% confidence 
intervals can be obtained for both level-2 and level-3 units.  
 
In the 95% Confidence Intervals for EB Estimates dialog box shown below, the 
variable CSTRATM (level-3 ID) is selected. Click Plot to obtain a visual presentation 
of the confidence intervals. 
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Each confidence interval is calculated as 

00 1.96 ii vv σ
∧

± , where  0v iσ  is the square root 

of the variance of 0iv . Figure 7.4 shows that the estimated deviances from  0β  
exhibit a reasonable amount of variation across the level-3 units. It also indicates 
substantial variation in the estimated EB variances across the level-3 units. 
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Figure 7.4: 95% Confidence intervals for level-3 EB estimates 
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To obtain the list of lower and upper confidence values and of the estimated EB 
residuals, double-click with the left mouse button anywhere in the graph area. 

 

 
From the display above, it follows that the 95% confidence interval for unit 3, for 
example, is given by (–2.087, –1.101). 

 
 
Estimated unit-specific probabilities 

The estimated regression coefficients given in the adaptive quadrature portion of the 
output provide the information necessary to compute unit-specific probabilities for a 
typical participant that is associated with each possible combination of the predictor 
variables. For example, consider a typical female patient (GENDER = 0) that 
received 3 medications (NUMMED = 3), has primary care (PRIMCARE = 1), had no 
injuries (INJURY = 0), did not have a blood pressure or urine test (BLODPRES = 
URINE = 0), does not exercise (EXERCISE = 0), and is in the age group 25 to 44 
(AGE3 = 1). 
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For response code 1 vs. code 4: 

1 1.5004 0.3320(NUMMED ) 0.0395(GENDER ) 1.0176(PRIMCARE )
....1.0945(AGE1 ) 1.3539(AGE2 ) 0.9306(AGE3 )
0.7572(AGE4 ) 0.1136(AGE5 )

1.5004 3(0.3320) 1(1.0176) 1(0.9306)
2.5834

ijk ijk ijk ijk

ijk ijk ijk

ijk ijk

η
∧

= − − − −
+ + +
+ +
= − − − +
= −

 

so that 1exp 0.0755.ijkη
∧  = 

 
 

 
For response code 2 vs. 4, we find that 

 2 0.3737 3(0.2360) 1(0.9167) 1(0.6972)
0.5538

ijkη
∧

= − − +
= −

 

and thus 2exp 0.5748.ijkη
∧  = 

 
  

 
For response code 3 vs. code 4 

3 0.3440 3(0.0718) 1(0.3004) 1(0.2070)
0.0352

ijkη
∧

= − − +
=

 

and thus 3exp 1.0358.ijkη
∧  = 

 
  

Using these values, it follows that 

 

( )

0.0755
1 0.0755 0.5748 1.0358

0.0281.

Prob respondent not seen doctor previously

=
+ + +

=
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The next two tables contain a selection of unit-specific probabilities for the four 
categories of PASTVIS for females (GENDER = 0). 
 

Table 7.3: Unit-specific probabilities for females with XRAY = no, INJURY = no, 
URINE = no, and BLODPRES = no 
 

NUMMED PRIM 
CARE 

EXER 
CISE 

AGE ETA1 ETA2 ETA3 PROB1 PROB2 PROB3 PROB4 

  none   no no < 15 –0.406 1.393 0.628 0.088 0.532 0.248 0.132 
  none   no no 25:44 –0.570 1.071 0.551 0.091 0.469 0.279 0.161 
  none   no no >= 75 –1.500 0.374 0.344 0.055 0.356 0.345 0.245 
  none   no yes < 15 0.347 1.776 0.953 0.130 0.541 0.238 0.092 
  none   no yes 25:44 0.183 1.454 0.876 0.135 0.482 0.270 0.113 
  none   no yes >= 75 –0.748 0.757 0.669 0.085 0.384 0.351 0.180 
  none   yes no < 15 –1.424 0.476 0.328 0.057 0.380 0.327 0.236 
  none   yes no 25:44 –1.587 0.154 0.251 0.056 0.319 0.351 0.274 
  none   yes no >= 75 –2.518 –0.543 0.044 0.030 0.215 0.386 0.370 
  none   yes yes < 15 –0.671 0.859 0.653 0.088 0.408 0.332 0.173 
  none   yes yes 25:44 –0.835 0.537 0.576 0.088 0.348 0.361 0.203 
  none   yes yes >= 75 –1.765 –0.160 0.369 0.049 0.246 0.417 0.288 
  three  no no < 15 –1.402 0.685 0.413 0.052 0.418 0.319 0.211 
  three  no no 25:44 –1.566 0.363 0.336 0.052 0.355 0.346 0.247 
  three  no no >= 75 –2.496 –0.334 0.129 0.028 0.244 0.387 0.341 
  three  no yes < 15 –0.649 1.068 0.738 0.080 0.446 0.321 0.153 
  three  no yes 25:44 –0.813 0.746 0.661 0.081 0.384 0.353 0.182 
  three  no yes >= 75 –1.744 0.049 0.454 0.046 0.276 0.414 0.263 
  three  yes no < 15 –2.420 –0.232 0.112 0.030 0.264 0.373 0.333 
  three  yes no 25:44 –2.584 –0.554 0.035 0.028 0.214 0.386 0.372 
  three  yes no >= 75 –3.514 –1.251 –0.172 0.014 0.133 0.390 0.463 
  three  yes yes < 15 –1.667 0.151 0.437 0.048 0.298 0.397 0.256 
  three  yes yes 25:44 –1.831 –0.171 0.360 0.047 0.245 0.417 0.291 
  three  yes yes >= 75 –2.761 –0.868 0.153 0.024 0.158 0.440 0.378 

 
From these tables we conclude that the proportion of female patients, regardless of 
age group, that indicated no prior visits to a medical practitioner (PASTVIS = 1) is 
generally low. Females who exercise have a lower probability of having several past 
visits when compared to those who do not exercise. 
 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

462 

Table 7.4: Unit-specific probabilities for females with XRAY = no, INJURY = no, 
URINE = no, and BLODPRES = yes 
 

NUMMED PRIM 
CARE 

EXER 
CISE AGE ETA1 ETA2 ETA3 PROB1 PROB2 PROB3 PROB4 

  none   No no < 15 –0.096 1.712 0.839 0.093 0.567 0.237 0.102 
  none   No no 25:44 –0.260 1.390 0.762 0.097 0.506 0.270 0.126 
  none   No no >=75 –1.191 0.693 0.555 0.060 0.396 0.345 0.198 
  none   No yes < 15 0.657 2.095 1.164 0.135 0.570 0.225 0.070 
  none   No yes 25:44 0.493 1.773 1.088 0.142 0.512 0.258 0.087 
  none   No yes >=75 –0.438 1.076 0.880 0.092 0.420 0.345 0.143 
  none   Yes no < 15 –1.114 0.795 0.539 0.062 0.421 0.326 0.190 
  none   Yes no 25:44 –1.278 0.473 0.462 0.062 0.359 0.355 0.224 
  none   Yes no >=75 –2.208 –0.224 0.255 0.034 0.250 0.403 0.313 
  none   Yes yes < 15 –0.361 1.178 0.864 0.095 0.444 0.324 0.137 
  none   Yes yes 25:44 –0.525 0.856 0.787 0.096 0.383 0.358 0.163 
  none   Yes yes >=75 –1.456 0.159 0.580 0.056 0.280 0.426 0.239 
  three  No no < 15 –1.092 1.004 0.624 0.057 0.460 0.315 0.169 
  three  No no 25:44 –1.256 0.682 0.547 0.057 0.396 0.346 0.200 
  three  No no >=75 –2.187 –0.015 0.340 0.032 0.281 0.401 0.286 
  three  No yes < 15 –0.339 1.387 0.949 0.086 0.482 0.311 0.120 
  three  No yes 25:44 –0.503 1.065 0.872 0.088 0.421 0.347 0.145 
  three  No yes >=75 –1.434 0.368 0.665 0.052 0.312 0.420 0.216 
  three  Yes no < 15 –2.110 0.087 0.323 0.034 0.304 0.384 0.278 
  three  Yes no 25:44 –2.274 –0.235 0.246 0.032 0.249 0.403 0.315 
  three  Yes no >=75 –3.204 –0.932 0.039 0.016 0.159 0.420 0.404 
  three  Yes yes < 15 –1.357 0.470 0.649 0.054 0.335 0.401 0.210 
  three  Yes yes 25:44 –1.521 0.148 0.572 0.053 0.279 0.427 0.241 
  three  Yes yes >=75 –2.452 –0.549 0.365 0.028 0.186 0.464 0.322 

 
Estimated population-average probabilities 

The population-average probabilities are obtained by dividing the ETA1, ETA2 and 
ETA3 values given in Tables 7.3 and 7.4 by the square root of the corresponding 
design effects. For the intercepts-only model, this quantity is obtained as 

 ( ) ( ) ( ) ( )00 0var var var / var , 1, 2,3.c ij ic ijk ijkd v v e e c
∧

 = + + =   
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For the logistic model it is assumed that  

( )
2

var 3.290.
3ijke π

= =  

Therefore 

( )1 4.707 1.009 3.290 / 3.290

2.737

1.6545.

d = + +

=

=

 

Similarly, 

( )2 3.237 0.921 3.290 / 3.290

2.264

1.5046

d = + +

=

=

 

and 

( )3 1.077 0.848 3.290 / 3.290

1.585

1.2590.

d = + +

=

=

 

Using these values, we obtain the population-average probabilities for the four 
categories of PASTVIS for a female respondent. Summaries of a selected number of 
population-average probabilities are given in Tables 7.5 and 7.6 below. 
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Table 7.5: Population-average probabilities for females with XRAY = no, INJURY 
= no, URINE = no, and BLODPRES = no 
 

NUMMED 
PRIM 
CARE 

EXER 
CISE AGE ETA1 ETA2 ETA3 PROB1 PROB2 PROB3 PROB4 

  none   No no < 15 –0.245 0.926 0.499 0.131 0.424 0.277 0.168 
  none   No no 25:44 –0.344 0.712 0.438 0.134 0.385 0.293 0.189 
  none   No no >= 75 –0.907 0.248 0.273 0.101 0.320 0.329 0.250 
  none   No yes < 15 0.210 1.180 0.757 0.162 0.427 0.280 0.131 
  none   No yes 25:44 0.111 0.966 0.696 0.165 0.389 0.297 0.148 
  none   No yes >= 75 –0.452 0.503 0.532 0.128 0.331 0.341 0.200 
  none   Yes no < 15 –0.860 0.317 0.260 0.103 0.335 0.317 0.244 
  none   Yes no 25:44 –0.960 0.102 0.199 0.103 0.299 0.329 0.269 
  none   Yes no >= 75 –1.522 –0.361 0.035 0.074 0.236 0.351 0.339 
  none   Yes yes < 15 –0.405 0.571 0.519 0.130 0.346 0.328 0.195 
  none   Yes yes 25:44 –0.504 0.357 0.457 0.131 0.310 0.343 0.217 
  none   Yes yes >= 75 –1.067 –0.106 0.293 0.096 0.251 0.374 0.279 
  three  No no < 15 –0.847 0.455 0.328 0.098 0.359 0.316 0.228 
  three  No no 25:44 –0.946 0.241 0.267 0.098 0.321 0.329 0.252 
  three  No no >= 75 –1.509 –0.222 0.102 0.071 0.256 0.354 0.320 
  three  No yes < 15 –0.392 0.710 0.586 0.123 0.369 0.326 0.182 
  three  No yes 25:44 –0.491 0.496 0.525 0.124 0.332 0.342 0.202 
  three  No yes >= 75 –1.054 0.032 0.360 0.091 0.271 0.376 0.262 
  three  Yes no < 15 –1.462 –0.154 0.089 0.073 0.269 0.344 0.314 
  three  Yes no 25:44 –1.562 –0.368 0.028 0.072 0.236 0.351 0.341 
  three  Yes no >= 75 –2.124 –0.831 –0.136 0.049 0.179 0.359 0.412 
  three  Yes yes < 15 –1.007 0.101 0.347 0.094 0.285 0.364 0.257 
  three  Yes yes 25:44 –1.107 –0.114 0.286 0.093 0.251 0.375 0.281 
  three  Yes yes >= 75 –1.669 –0.577 0.122 0.065 0.195 0.392 0.347 
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Table 7.6: Population-average probabilities for females with XRAY = no, INJURY 
= no, URINE = no, and BLODPRES = no 
 
NUMMED PRIM 

CARE 
EXER 
CISE AGE ETA1 ETA2 ETA3 PROB1 PROB2 PROB3 PROB4 

  none   No no < 15 –0.058 1.138 0.667 0.135 0.445 0.278 0.143 
  none   No no 25:44 –0.157 0.924 0.605 0.138 0.406 0.295 0.161 
  none   No no >= 75 –0.720 0.460 0.441 0.105 0.343 0.336 0.216 
  none   No yes < 15 0.397 1.392 0.925 0.165 0.446 0.279 0.111 
  none   No yes 25:44 0.298 1.178 0.864 0.169 0.408 0.298 0.126 
  none   No yes >= 75 –0.265 0.715 0.699 0.132 0.351 0.346 0.172 
  none   Yes no < 15 –0.673 0.529 0.428 0.108 0.358 0.324 0.211 
  none   Yes no 25:44 –0.772 0.314 0.367 0.108 0.320 0.338 0.234 
  none   Yes no >= 75 –1.335 –0.149 0.202 0.079 0.257 0.366 0.299 
  none   Yes yes < 15 –0.218 0.783 0.686 0.134 0.366 0.332 0.167 
  none   Yes yes 25:44 –0.317 0.569 0.625 0.136 0.329 0.348 0.186 
  none   Yes yes >= 75 –0.880 0.106 0.461 0.101 0.270 0.386 0.243 
  Three  No no < 15 –0.660 0.667 0.496 0.101 0.382 0.321 0.196 
  Three  No no 25:44 –0.759 0.453 0.434 0.102 0.343 0.337 0.218 
  Three  No no >= 75 –1.322 –0.010 0.270 0.075 0.278 0.367 0.280 
  Three  No yes < 15 –0.205 0.922 0.754 0.126 0.390 0.329 0.155 
  Three  No yes 25:44 –0.304 0.708 0.693 0.128 0.352 0.347 0.173 
  Three  No yes >= 75 –0.867 0.244 0.528 0.096 0.291 0.386 0.228 
  Three  Yes no < 15 –1.275 0.058 0.257 0.077 0.292 0.356 0.275 
  Three  Yes no 25:44 –1.374 –0.156 0.196 0.076 0.257 0.366 0.301 
  Three  Yes no >= 75 –1.937 –0.619 0.031 0.053 0.198 0.380 0.368 
  Three  Yes yes < 15 –0.820 0.313 0.515 0.098 0.305 0.374 0.223 
  Three  Yes yes 25:44 –0.919 0.098 0.454 0.098 0.271 0.386 0.245 
  Three  Yes yes >= 75 –1.482 –0.365 0.290 0.070 0.213 0.410 0.307 

 

7.1.4 A random intercept model with ten predictors 

7.1.4.1 Setting up the analysis 

In the previous example, we included 14 possible predictors of PASTVIS in the fixed 
part of the model. The output indicated that the variables GENDER, INJURY, URINE 
and XRAY did not contribute significantly to explaining the variation in PASTVIS 
outcomes.  
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To run the model without these fixed effects, use the File, Open Syntax File option 
and select the command syntax previously saved to the file nihs1.inp. Delete the 
variables GENDER, INJURY, URINE and XRAY from the Predictors paragraph and  
save the modified syntax file as nihs2.inp. To run this syntax file, select the Run 
option from the Analysis menu. 
 

 

 

7.1.4.2 Interpreting the output 

Fit statistics 
Only a portion of the output file NIHS2.out is shown below. Recall that the deviance 
statistic for the previous model was 14334.43, with 48 free parameters. For the 
current model, the deviance statistic is equal to 14356.54 and the number of free 
parameters is equal to 36. To test whether the removal of GENDER, INJURY, URINE 
and XRAY made a significant difference to the model fit, we use the fact that the 
difference in deviance statistics for two nested models follows a 2χ -distribution 
with degrees of freedom equal to the difference in the number of parameters 
estimated. 
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The 2χ -value obtained for this test is 14356.34 – 14334.43 = 21.91, with 12 degrees 
of freedom. Since the associated p -value equals 0.0385, the 2χ -value is significant 
at the 5% level, but not at the 1% level of significance. We therefore conclude that, 
based on the 2χ -difference test, we do not have a definitive answer to the question 
of whether the 4 predictors should remain in the model or not. A summary of the 
Akaike and Schwarz criteria is shown in Table 7.7. 
 

Table 7.7: Akaike and Schwarz fit criteria for two nested models   
  

Fit statistic 14 predictors 10 predictors 
Akaike 14430.43 14428.54 
Schwarz 14755.44 14672.30 
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Each of these criteria states that the model with the smallest value is the model to be 
selected. Based on this decision rule, we conclude that the model without the four 
predictors should be used, since it is more parsimonious and very little information 
regarding the explanation of variation in PASTVIS is lost. 

 

 
The next portion of the output contains estimates of the variances of the level-2 and 
level-3 random effects for each response code relative to the reference code. From 
the output it is evident that there are highly significant deviances from the estimated 
population  intercepts at both level-2 and level-3. 
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Odds ratios and 95% confidence intervals for the odds ratios 

An odds ratio of 1 indicates the event under study is equally likely in both the 
outcome category of interest and in the reference category. An odds ratio greater 
than 1 indicates that the event is more likely to occur in the category of interest. 
 
The intercept coefficient is the expected log-odds that a participant in the present 
study indicated no past visits (PASTVIS = 1) relative to the category PASTVIS = 4 (6 
or more visits), given that the remaining predictors are held constant at zero. The 
estimated conditional expected log-odds is –1.4156, corresponding to an odds ratio 
of exp(–1.4156)=0.2428. This implies that a qualifying participant (a participant 
with NUMMED = 0, GENDER = 0, …, AGE5 = 0) has 0.2427 times the odds of having 
had no previous visits, as opposed to 6 or more visits.  
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The 95% confidence interval for the odds ratio is obtained by first computing a 95% 
confidence interval for the intercept coefficient. This confidence interval is given by 

 0 01.96 . .std errorβ β
∧ ∧ ±  

 
 

From the output, it follows that this interval is 

 ( )
( )
1.4161 1.96 0.2377; 1.4161 1.96 0.2377

1.8822; 0.9500 .
− − × − + ×

= − −  

Using these values, we obtain the 95% confidence interval for the odds ratio as 

 ( )( )
( )
exp 1.8822 ;exp( 0.9500)

0.1523;0.3867 .
− −

=
 

The odds ratios and confidence intervals for response codes 1, 2 and 3 versus 4 are 
given as part of the output for this model, as shown below. 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

471 

 

 

 
 
 

 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

472 

8 Models for grouped- and discrete-time survival 
data 

8.1 Introduction 

 
Models for grouped-time survival data are useful for analysis of failure time data 
when subjects are measured repeatedly at fixed intervals in terms of the occurrence 
of some event, or when determination of the exact time of the event is only known 
within grouped intervals of time. Additionally, it is often the case that subjects are 
observed nested within clusters (i.e., schools, firms, clinics), or are repeatedly 
measured in terms of recurrent events. In this case, use of grouped-time models that 
assume independence of observations (Thompson, 1977; Allison, 1982; Prentice & 
Gloeckler, 1978) is problematic since observations from the same cluster or subject 
are usually correlated.  
 
For data that are clustered and/or repeated, models including random effects provide 
a convenient way of accounting for association in correlated survival data. In terms 
of continuous-time survival data, several authors have developed survival analysis 
models including random effects that are usually assumed to be distributed as a 
gamma distribution. These models are often termed frailty models or survival 
models including heterogeneity, and recent review articles describe many of these 
models (Pickles & Crouchley, 1995; Hougaard, 1995).  
 
Several authors have noted the relationship between ordinal regression models 
(using complementary log-log and logistic link functions) and survival analysis 
models for grouped and discrete time. Hedeker, Siddiqui, and Hu (2000) described a 
generalization of an ordinal random-effects regression model to handle correlated 
grouped-time survival data. This model accommodates multivariate normally-
distributed random effects, and additionally, allows for a general form for model 
covariates.  
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Assuming a proportional, or partial proportional, hazards or odds model, a 
maximum marginal likelihood solution is implemented using multi-dimensional 
quadrature to numerically integrate over the distribution of random-effects.  
 
In this chapter, we explore various survival analysis models using the TVSFP data 
discussed in Sections 3.3, 4.2, and 6.2. Two analysis approaches are considered for 
these data in the examples to follow. The first treats survival time as a set of 
dichotomous indicators of whether the event occurred for time periods up to the 
period of the event or censoring. This analysis, shown in Section 8.4, uses the data 
set mentioned above. The second approach treats survival time as an ordinal 
outcome, which is either right-censored or not. The same data, but in different 
format, is used for this second analysis (see Section 8.6).  
 

8.2 Choosing between binary and ordinal outcome models 

8.2.1 The data for a binary approach 

An analysis of a data set where students are clustered within schools is used to 
illustrate features of random-effects analysis of clustered grouped-time survival 
data. 
 
As described in previous chapters, the TVSFP study was designed to test 
independent and combined effects of a school-based social-resistance curriculum 
and a television-based program in terms of tobacco use prevention and cessation. In 
previous chapters the focus was on the pre- and post-intervention knowledge of 
students of the dangers of smoking. Here, we focus on actual usage of tobacco 
products and on subsequent data collected from the respondents.  
 
As mentioned previously, schools were randomized to one of four study conditions: 
(a) a social-resistance classroom curriculum (CC); (b) a media (television) 
intervention (TV); (c) a combination of curriculum and TV conditions; and (d) a no-
treatment control group. These conditions form a 2 x 2 factorial design of CC (yes or 
no) by TV (yes or no). 
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The outcome variable of interest in this chapter is the response the question "Have 
you ever tried a cigarette?." Students were assessed at 4 occasions: 
 

o pre-intervention (January 1986, also referred to as Wave A) 
o post-intervention (April 1986, i.e. Wave B) 
o year follow-up (April 1987, i.e. Wave C) 
o year follow-up (April 1988, i.e. Wave D) 

 
As the intervention procedures were implemented following the pretest, we focus in 
the analyses to follow on the three post-intervention time points and include only 
those students who had not answered yes to this question at pretest. Of the original 
1,600 respondents, 1,556 are included in the data considered here. Thus, our 
analysis examines the degree to which the intervention prevented or delayed 
students from initiating smoking experimentation. Because the intervention was also 
aimed at smoking cessation for individuals who had initiated smoking, here we are 
examining only a part of the intervention aims. 
 
The first few lines of the SuperMix spreadsheet SMKBCD2.ss3 used in this section are 
shown below. Note that there is a maximum of 3 observations associated with each 
student – not all students have data at all 3 occasions. 
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The variables of interest are: 
 

o School indicates the school a student is from. 
o Class identifies the classroom to which a student belongs. 
o Student represents the student identification number.  
o Event indicates occurrence of the event (1 indicating "yes" and 0 "no.").  
o TimeC is an indicator variable indicating the first follow-up occasion after 

the post-intervention measurement occasion. It assumes a value of 1 if a 
measurement was made at the first follow-up occasion, and 0 otherwise. 

o TimeD is the indicator variable for the second follow-up occasion. It assumes 
a value of 1 if a measurement was made at the second follow-up occasion, 
and 0 otherwise. 

o SexM is an indicator variable for gender, with "1" indicating male 
respondents, and "0" female respondents. 

o CC is a binary variable indicating whether a social-resistance classroom 
curriculum was introduced, with 0 indicating "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with 
a "1" indicating the use of media intervention, and "0" the absence thereof.  

 
The post-intervention measurement, which is the first of the three measurement 
occasions in this data set, serves as the reference cell. In terms of the indicator 
variables TimeC and TimeD it would be a measurement for which TimeC =  TimeD = 0. 
 

In addition to these variables, SMKBCD2.ss3 includes a number of interaction terms: 
 

o CCTV was constructed by multiplying the variables TV and CC, and 
represents the CC by TV interaction. 

o SexTC denotes the SexM by TimeC interaction. 
o SexTD denotes the SexM by TimeD interaction. 
o CCTC denotes the interaction between classroom curriculum intervention CC 

and TimeC. 
o CCTD denotes the interaction between CC and TimeD. 
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o TVTC denotes the interaction between media intervention TV and TimeC. 
o TVTD denotes the interaction between TV and TimeD. 
o CCTVTC represents the interaction between the CC by TV interaction at the 

TimeC. 
o CCTVTD represents the interaction between the CC by TV interaction at the 

TimeD. 
 
In all, there were 1556 students included in the analysis of smoking initiation. Of 
these students, approximately 40% ( n  = 634) answered yes to the smoking question 
at one of the three post-intervention time points, while the other 60% ( n  = 922) 
either answered no at the last time point or were censored prior to the last time 
point.  
 
Consider a level-2 model, with schools as the level-2 units. In general, for 

1, ,i N=   N level-2 units, containing 1, , ij n=   level-1 units (subjects or multiple 
failure times) the concept of a censoring or event indicator can be expressed as 
follows. First, we assume that the assessment time takes on discrete positive values 

1, 2, ,t m=   representing time points or intervals and that each ij unit is observed 
until time ijt . The censor/event indicator ijδ  is coded depending on what happens at 
time ijt : 
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o an event occurs ( )1ij ijt t and δ= =  

o the observation is censored ( )0ij ijt t and δ= =  
 
The term censoring is used when a unit is observed at ijt , but not at 1ijt + (and we 
know that the event has not occurred up to time ijt ). 

 
As mentioned previously, the dichotomous variable EVENT indicated the occurrence 
of an event. Occurrence of an event was recorded at three time points (WaveB, 
WaveC, and WaveD), though some subjects dropped out of the study and were not 
measured at all three time points. To model the time until the event as the outcome 
variable in a binary analysis of the data, person-time indicators are created (Singer 
& Willett, 1993). For this, the number of records for each person depends on the 
timing of the event or censoring for that person. For example, if there were two 
follow-up points, the two person-time indicators T1 and T2 would be coded as 
follows: 
 

o T1 = 1: event occurred at T1 (or in interval between T0 and T1) 
o T1 = 0: event did not occur at T1 (or in interval between T0 and T1) and T1 

was the subject's last measured time point 
o T1 = 0 and T2 = 1: event did not occur at T1 but did occur at T2 (or in the 

interval between T1 and T2) 
o T1 = 0 and T2 = 0: individual was censored at T2 (the subject did not 

experience the event at either T1 or T2) 
 
Note that for the first two scenarios above, subjects would contribute a single record 
in the data set (for the T1 indicator), whereas they would contribute two records (one 
for each person-time indicator T1 and T2) for the latter two scenarios. These 
indicators would represent the dependent variable in the analysis, akin to the 
variable named EVENT in our TVSFP data.   
 
For the TVSFP data, there were three follow-up occasions, and thus three person-
time indicators are necessary to describe the occurrence of event/censoring. The 
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three person-time indicators form the EVENT variable in the data set, and the timing 
of the event/censoring is represented by the two variables TimeC and TimeD in the 
data set. The coding of the person-time indicators (T1, T2, T3) that form the EVENT 
variable are given in Table 8.1.  
 

Table 8.1: Three time points with censoring 
 

Outcome Up to 3 records per person 
Censor at T1 T1 = 0 
Event at T1 T1 = 1 
Censor at T2 T1 = 0; T2 = 0 
Event at T2 T1 = 0; T2 = 1 
Censor at T3 T1 = 0; T2 = 0; T3 = 0 
Event at T3 T1 = 0; T2 = 0; T3 = 1 

Table 8.2: Coding of time and event indicators for binary TVSFP analysis 
 

EVENT records Time indicators Outcome description 
TimeC TimeD  

T1 =0 0 0 Censor at T1 
T1 = 0  

T2 = 0 
0 
1 

0 
0 

No event at T1 
Censor at T2 

T1 = 0  
T2 = 0  
T3 = 0 

0 
1 
0 

0 
0 
1 

No event at T1 
No event at T2 
Censor at T3 

T1 =1 0 0 Event at T1 
T1 = 0 
T2 = 1 

0 
1 

0 
0 

No event at T1 
Event at T2 

T1 = 0 
T2 = 0 
T3 = 1 

0 
1 
0 

0 
0 
1 

No event at T1 
No event at T2 

Event at T3 
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Note that each person would contribute from one to three records in the data set 
depending on their outcome. For example, for the current data, the EVENT records 
and their corresponding time indicators are coded as shown in Table 8.2. 
 
The breakdown of cigarette onset for gender and condition subgroups is presented in 
Table 8.3. Percentages given in the table are calculated relative to the totals for that 
subgroup at the time of response. At Wave B (post-intervention time point; TimeC = 
0 and TimeD = 0), 130 females (SexM = 0) and 156 males (SexM = 1) reported an 
event (Event = 1), while 105 females and 83 males were censored  (Event = 0). These 
censored subjects did not experience the event at Wave B and were not measured at 
subsequent waves. The total numbers of females and males that provided data at 
Wave B were 814 and 742 respectively. The totals at Wave C (TimeC =1) are only 
579 and 503 females and males, respectively because the numbers of Wave B event 
and censored subjects are removed from the Wave C totals. For example, the total 
number of females at Wave C equals 814 (the number at Wave B) – 130 (females 
experiencing the event at Wave B) – 105 (censored females at Wave B) = 579. The 
male total of 503 is obtained in the same way. Of the 579 females, 117 experienced 
the event at Wave C and 154 were censored at Wave C. Similar calculations for 
Wave D (TimeD =1) yield the total of 308 females ( = 579 – 117 – 154), where 79 
females experienced the event and 229 did not and were censored at this last time 
point. Regarding the differences between males and females, it can be seen that the 
proportion of males who experienced the event is relatively similar across the three 
waves. Alternatively, females were initially lower than males (16% versus 21% at 
Wave B) but increasingly experienced the event across the waves. At the end, the 
total proportion of males who experienced the event is 41.5% (156 + 89 + 63 of 
742), and similarly it is 40.0% for females (130 + 117 + 79 of 814). Thus, the initial 
gender difference is largely gone by the end of the study.         
 
In terms of the invention groups, the differences do not appear to be very large. If 
anything, there is some suggestion that control subjects have lower rates of the 
event, but this difference is not striking.   
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Table 8:3: Onset of cigarette experimentation across three time points 
 

 TimeB TimeC TimeD 
with event censored total with event censored total with event censored total 

Males 156 
(21.0) 

83 
(11.2) 

742 89 
(17.7) 

134 
(26.6) 

503 63 
(22.5) 

217 
(77.5) 

280 

Females 130 
(16.0) 

105 
(12.9) 

814 117 
(20.2) 

154 
(26.6) 

579 79 
(25.6) 

229 
(74.4) 

308 

Control 66 
(16.5) 

60 
(15.0) 

401 53 
(19.3) 

69 
(25.1) 

275 34 
(22.2) 

119 
(77.8) 

153 

CC only 75 
(19.1) 

27 
(6.9) 

392 53 
(18.3) 

61 
(21.0) 

290 49 
(27.8) 

127 
(72.2) 

176 

TV only 71 
(17.3) 

54 
(13.2) 

410 60 
(21.1) 

79 
(27.7) 

285 38 
(26.0) 

108 
(74.0) 

146 

CC & TV 74 
(21.0) 

47 
(13.3) 

353 40 
(17.2) 

79 
(34.1) 

232 21 
(18.6) 

92 
(81.4) 

113 

 
In terms of clustering, these 1556 students were from 28 schools with between 13 
and 151 students per school ( n  = 56, S.D. = 38) Thus, the data are highly 
unbalanced with large variation in the number of clustered observations. 
 

8.2.2 The data for an ordinal approach 

The ordinal analysis illustrated in this chapter is again based on the TVSFP data. As 
shown in the previous section, one can also fit grouped-time survival models using 
dichotomous indicators of event/censoring across the study time points. To do so, 
requires additional data manipulation. The data set used for the ordinal approach 
differs from that previously discussed, and is represented by the SuperMix 
spreadsheet file SMKCCLC.ss3. The first 10 records of this data set are shown 
below. 
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The variables of interest are: 
 

o School indicates the school a student is from. 
o Class identifies the classroom to which a student belongs. 
o Student represents the student identification number.  
o SmkOnset indicates the time at which an event occurred. It assumes a value 

of 1 for a WaveA measurement (i.e., the event occurred at Wave A), 2 for a 
WaveB measurement, 3 for a WaveC measurement, and 4 for a WaveD 
measurement. 

o Event is an indicator variable indicating whether the subject experienced the 
event or was censored. A value of 1 indicates that the student did experience 
the event (i.e., onset of cigarette experimentation) at one of the time points, 
while a value of 0 indicates that the subject was censored and never 
experienced the event (i.e., no onset of cigarette experimentation) at any 
time point that they were assessed at.   

o SexM is an indicator variable for gender, with "1" indicating male 
respondents, and "0" female respondents. 

o CC is a binary variable indicating whether a social-resistance classroom 
curriculum was introduced, with 0 indicating "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with 
a "1" indicating the use of media intervention, and "0" the absence thereof.  
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o CC*TV was constructed by multiplying the variables TV and CC, and 
represents the CC by TV interaction. 

 

Survival data as ordinal outcomes 

Assume 4 time points with no intermittent censoring and let y  denote the ordinal 
outcome variable. Let us first consider subjects who initiated smoking at some point 
in the study. For these subjects, the variable Event will be coded as 1 and the coding 
of the SmkOnset variable will be as follows. 
 
SmkOnset: 

o 1:ijy =  Student first started to smoke at t = 1. 

o 2 :ijy =  Student did not smoke at t = 1, but first smoked at t = 2. 

o 3:ijy =  Student did not smoke at t = 1 or 2, but first smoked at t = 3. 

o 4 :ijy =  Student did not smoke at t = 1, 2, or 3, but first smoked at t = 4. 

 
Similarly, subjects who were censored would have the variable Event coded as 0, 
and the following codes for the SmkOnset variable. 
 

SmkOnset: 
o 1:ijy =  Student did not smoke at  t = 1 and no data beyond t = 1. 

o 2 :ijy =  Student did not smoke at t = 1 or 2, and no data beyond t = 2. 

o 3:ijy =  Student did not smoke at t = 1, 2, or 3, and no data beyond  t = 3 
(i.e., no data at t = 4). 

o 4 :ijy =  Student did not smoke at t = 1, 2, 3, or 4. 

 
Here, the phrase "did not smoke" is more precisely "did not answer yes to the 
question have you ever smoked a cigarette." 
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Table 8.4: Three time points with censoring 
 

Outcome Ordinal dep. Variable Event indicator 

Censor at 1T  1 0 
Event at 1T  1 1 
Censor at 2T  2 0 
Event at 2T  2 1 
Censor at 3T  3 0 
Event at 3T  3 1 
Censor at 4T  4 0 
Event at 4T  4 1 

 
Table 8.4 shows how values are assigned to ijy , and the relationship between the ijy  
outcomes and the event indicator.  
 

8.3 The models 

8.3.1 Binary case: a 2-level model 

In the binary case, the survival time of individual i  at occasion j  is treated as a set 
of dichotomous observations indicating whether or not an individual failed in each 
time unit until a person either experiences the event or is censored. Thus, each 
survival time is represented as a 1ijt ×  vector of zeros for censored individuals, 
while for individuals experiencing the event the last element of this 1ijt ×  vector of 
zeros is changed to a one. These multiple person-time indicators are then treated as 
distinct observations in a dichotomous regression model. In the case of clustered 
data, a random-effects dichotomous regression model is used. This method has been 
called the pooling of repeated observations method by Cupples (1985). It is 
particularly useful for handling time-dependent covariates and fitting non-
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proportional hazards models because the covariate values can change across each 
individuals' ijt  time points. 

 
For this approach, define ijtp  to be the probability of failure in time interval t, 
conditional on survival prior to t: 

Pr |ijt ij ijp t t t t = = ≥   

Similarly, 1 ijtp−  is the probability of survival beyond time interval t, conditional on 
survival prior to t. The proportional hazards model is then written as  

( ) '
0log log 1 ijt t ijt ij ip α  ′− − = + +  x β z v  

and the corresponding proportional odds model is 

( ) '
0log 1ijt ijt t ijt ij ip p α  ′− = + +  x β z v  

where now the covariates x can vary across time and so are denoted as .ijtx  
Augmenting the model intercept, which we will denote 01α , the remaining intercept 
terms 0tα ( )2, ,t m=   are obtained by including as regressors 1m −  time indicators 
representing deviations from the first time point. Because the covariate vector x now 
varies with t, this approach automatically allows for time-dependent covariates, and 
relaxing the proportional hazards assumption only involves including interactions of 
covariates with the 1m −  time point dummy codes. It is further assumed that the 
random effects vector has a ( )(2),0 ΦN  distribution. 

 
In the examples to follow, two random intercept models are fitted to the data 
described in Section 8.2.2. The type of intervention (CC and/or TV), the gender of 
the student and the interactions between gender and time (SexTC and SexTD) are 
included as fixed effects, along with indicators of the time of assessment (TimeC and 
TimeD). 
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8.3.2 Ordinal case: 2-level model 

Let ijy  denote an ordinal outcome variable that takes on discrete positive values 
1, 2, ,t m=  . In previous examples we assumed that ijy  has C  categories or 

distinct values, however here to be consistent with the survival analysis notation we 
will use m to represent the number of ordinal categories. The subscript ( , )i j  
denotes subject j , 1, 2, ij n=   nested within level-2 unit i , 1, 2, ,i N=  . In the 
present context the level-1 units j  indicates students and the level-2 unit i  indicates 
schools. Note, that as another example of this type of model, one could have 
multiple failure times nested within individuals. 
 
Let ijδ  denote the censor/event indicator, then 1ijδ =  if the event occurs and 0ijδ =  
if an observation is censored. In survival analysis each ij  is observed until time ijt  
and if an event occurs ijt t=  and 1ijδ = . If the observation is censored at ijt t=  then 

0ijδ = .  

 
In the case of censoring it is assumed that a unit is observed at ijt  but not at 1ijt + . As 
described in Hedeker, Siddiqui & Hu (2000), if events occur within continuous time 
intervals (i.e., grouped-time), for example, a student initiates smoking 
experimentation in the past year, use of the complementary log-log link for an 
ordinal outcome is equivalent to a proportional hazards model in continuous time. 
Therefore, the grouped-time proportional hazards mixed model can be written as: 

( ) ' 'log log 1 γ − − = + + ijt t ij ij iP x β z v  

where ijx  is a vector of explanatory variables and ijz  a vector of random effects. 
Typically, the elements of ijz  are a subset of ijx . For example, the elements of ijz  
might correspond to the intercept and age, whereas ijx  would include these two 
terms plus any additional model covariates. It is assumed that the random effects iv  
are from a normal distribution with mean zero and covariance matrix (2)Φ . 
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ij tP  denotes the probability that an event takes place up to and including the interval 
designated at time ijt .  Thus, ij tP  represents a cumulative probability of failure, 
whereas ij tp  is the interval-specific failure probability. Also, tγ  represent threshold 
values, and in the present context these reflect the baseline hazard (i.e., the hazard 
when all covariates equal 0). These threshold parameters are akin to the intercept 
parameters 0tα  in the dichotomous version of the model. The plus sign following tγ  
means that a positive regression coefficient for a covariate indicates an increased 
hazard (i.e., the event occurs sooner) as values of the covariate increase. 
 

8.4 Example: A proportional hazards model- Binary case 

8.4.1 Introduction 

The first model fitted to the data will use the binary case and is of the form 

( ) 01 02 03 1 2

3 0

log log 1 ( ) ( ) ( ) ( )

( ) .

α α α β β

β

 − − = + + + + 
+ +

ijt ij ij ij j

j i

p TimeC TimeD SexM CC

TV v
 

In the current model specification, the baseline hazard is a function of the model 
intercept and the coefficients for the time indicators. Specifically, the baseline 
hazard estimate at the first time point equals the estimated model intercept, the 
baseline hazard estimate at the second time point is the sum of the model intercept 
and the estimated coefficient for the TimeC indicator, the baseline hazard at the third 
time point is the sum of the model intercept and the estimated coefficient for the 
TimeD indicator. Thus, two of these baseline hazard estimates involve sums of the 
estimated parameters.  
 

8.4.2 Setting up the analysis 

Start by selecting the New Model Setup option on the File menu to open the Model 
Setup window. Enter (optional) titles in the Title 1 and Title 2 text boxes. Select the 
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binary outcome variable Event from the Dependent Variable drop-down list box. 
The variable School, which defines the units within which students are nested, is 
selected as the Level-2 ID from the Level-2 IDs drop-down list box.  
 

 

 
Next, click on the Variables tab of the Model Setup window. TimeC, TimeD, SexM, 
CC, and TV are specified as the predictors (explanatory variables) of the fixed part of 
the model by checking the corresponding boxes in the E column of the Available 
grid on the Variables screen. By default, it is assumed that the intercept is allowed to 
vary randomly over the level-2 units (i.e., the schools), as indicated by the checked 
box in the Include Intercept field. 
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To specify the number of quadrature points and link function (Function Model), we 
proceed to the Advanced screen by clicking on the Advanced tab. Select 
complementary log-log as the Function Model in order to yield the proportional 
hazards model. Note that the default Number of Quadrature Points of 10 is replaced 
by 25. Here, more quadrature points are used because it is thought that the School 
effect on the student outcomes (i.e., the clustering effect) is likely to be small, 
resulting in a near-zero random effect variance parameter. In such cases, for 
computational purposes it is beneficial to use a relatively larger number of 
quadrature points. 
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This step completes the model set-up. Use the File, Save option to save the model 
setup to a file named smkbcd1.mum. Next, use the Analysis, Run option on the main 
menu bar to run the analysis. 
 

8.4.3 Discussion of results 

Data summary 

The portion of the output file shown below indicates that there are 28 schools. 
Nested within these level-2 units are 3226 measurements (note: this is not equal; to 
the number of students because of the creation of person-time indicators in this 
binary version of the survival analysis model). A summary of the number of level-1 
observations per level-2 unit is also given. 
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Descriptive statistics  

This is followed by descriptive statistics for all the variables. Except for the 
intercept term, the variables are all dichotomous. The proportions of subjects 
assigned a value of 0 or 1 are 0.80347 and 0.19653 respectively. In approximately 
20% of the person-time indicators, an event occurred. 
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Fixed effects estimates 

Parameter estimates are given in the next part of the output. The effect of SexM is 
positive and indicates that boys have a slightly, but non-significant, increased 
hazard (i.e., a shorter time to the first occurrence), relative to girls. The coefficients 
associated with the TimeD indicator variable is significant at a 5% level. In contrast, 
the corresponding TimeC coefficient is not significant. These indicate that the 
baseline hazard does not significantly change between Waves B and C, however 
there is significant change between Waves B and D as relatively more students 
experiment with smoking at Wave D. Finally, the effects of the intervention 
variables CC and TV are not seen to be statistically significant, though the direction 
of their effects is positive (i.e., increased hazard relative to the control group).   
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Intraclass correlation (ICC)  

The last part of the output contains an estimate of the intracluster correlation. This 
estimate indicates a very modest school effect, and we also note that the random 
effect variance term is not significant. From this, we conclude that the time until the 
occurrence of an event does not vary significantly across schools. However, from a 
design point of view, because schools were randomized to the intervention 
conditions in this study, one can argue that the clustering attributable to schools is 
an important part of the model regardless of its significance.   
 

 

 

8.4.4 Interpreting the output 

Estimated unit-specific probabilities 

We now use the estimated coefficients from the fitted model 

01 02 03 1 2 3log log(1 ( ) ( ) ( ) ( ) ( )

1.6564 ( )0.0399 ( )0.3103 ( )0.0574

( )0.0449 ( )0.0213

ij ij ij j jijt

ij ij ij

j j

p TimeC TimeD SexM CC TV

TimeC TimeD SexM
CC TV

α α α β β β
∧ ∧ ∧ ∧ ∧ ∧ ∧ − − = + + + + +  

= − + + +

+ +
 

and the inverse cumulative log-log link function  
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( ) 1 exp[ exp( )]P z z= − −  

to calculate the probability of Event = 1 at various time points and for different 
covariate values.   
 
At the first time point (Wave B), 0= =ij ijTimeC TimeD , and thus the relevant part 
of the fitted model (see above) is 

01 1 2 3log log(1 ) ( ) ( ) ( )

1.6564 ( )0.0574 ( )0.0449 ( )0.0213

ij j jijt

ij j j

p SexM CC TV

SexM CC TV

α β β β
∧ ∧ ∧ ∧ ∧ − − = + + +  

= − + + +
 

For female students (SexM = 0) from the control group (CC = TV =  0) the probability 
of smoking experimentation (Event = 1) at the point of post-intervention can be 
expressed as 

 

[ ]( 1 , ) 1 exp exp( 1.6564)
0.1737.

= = − − −

=

P Event atWaveB female

 
 
For male students in the control group adding the intercept with the  SexM estimate 
together yields  z = –1.6564 + 0.0574 = –1.599, and so 

  

[ ]( 1 , ) 1 exp exp( 1.599)
.1830.

= = − − −

=

P Event atWaveB male

 
 
Results for all groups are summarized in Table 8.5. The probability of smoking 
experimentation at the time of post-intervention is larger for males than for females. 
The results also indicate an increased probability of failure with an increase of time. 
In the current model, it is assumed that the ratio of the estimated hazards over time 
will be constant for two individuals with the same values on the covariates. To 
check whether the effect of gender is dependent on time, and thus to check on the 
proportional hazards assumption, interactions with time indicators should be 
included in the model.  
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Table 8.5: Unit-specific probabilities for groups 
 

Gender CC TV 

 
WaveB 

(TimeC = 0, 
TimeD = 0) 

 

WaveC 
(TimeC = 1, 
TimeD = 0) 

WaveD 
(TimeC = 0, 
TimeD = 1) 

Female 0 0 0.1737 0.1801 0.2291 
 1 0 0.1809 0.1876 0.2383 
 0 1 0.1771 0.1836 0.2335 
 1 1 0.1844 0.1912 0.2428 

Male 0 0 0.1830 0.1897 0.2409 
 1 0 0.1905 0.1975 0.2505 
 0 1 0.1865 0.1933 0.2454 
 1 1 0.1942 0.2012 0.2551 
 

Table 8.6 shows the differences between the estimated unit-specific probabilities 
and the observed proportions for each of the 24 subgroups formed by crossing all 
predictors currently in the model.  
 
Looking at the direction of the differences, we note that for females all the estimated 
probabilities are larger in size than the observed ratios at WaveB, but consistently 
lower than the observed ratios at the next two time points, with the exception of the 
situation where TimeD = CC = TV = 1. It seems as if the model is overestimating the 
probabilities of failure at the first time point, but underestimating probabilities at the 
last time of measurement. However, the pattern for males is almost the opposite. At 
the first wave, only one estimated probability is larger than the observed proportion, 
at WaveC this is true for 2 of the four cells, and at WaveD for three of the four cells. 
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Table 8.6: Differences between unit-specific probabilities and observed 
proportions 

 

Gender CC TV 
Difference at 

WaveB 
(estimated – 
observed) 

Difference at 
WaveC 

(estimated – 
observed) 

Difference at 
WaveD 

(estimated – 
observed) 

Female 0 0 0.0227 –0.0419 –0.0179 
 1 0 0.0149 0.0016 –0.0117 
 0 1 0.0091 –0.0174 –0.0875 
 1 1 0.0204 –0.0058 0.0568 

Male 0 0 –0.0150 –0.0073 –0.0361 
 1 0 0.0165 –0.0025 0.0625 
 0 1 –0.0275 0.0303 0.0064 
 1 1 –0.0678 0.0613 0.0710 
 

This trend could be the result of a gender effect (which we know to be non-
significant in the current model) or from an interaction between gender and time. 
While only TimeD had a significant estimated coefficient, this apparent trend leads 
us to conclude that testing of the assumption of proportional hazards is appropriate. 
Specifically, the interaction between gender and the time of measurement will be 
explored. 
 

Estimated population-average probabilities 

Table 8.5 contains the estimated unit (school) specific probabilities. To obtain 
population-average probabilities, the estimated ijz  – values are divided by the 

square root of the design effect. For the current example, we know that 
2

vσ
∧

=0.0028, 
and that the underlying variance (i.e., level-1 variance) associated with the 
complementary log-log link is 2 2 / 6σ π=  (see Agresti, 2002, pp. 248-250). The 
design effect follows as   
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2

2

0.0028 / 6 1.0017.
/ 6

d π
π

∧ +
= =  

Since 1.0d
∧

≈ , the estimated population-average probabilities for this model would 
thus be interchangeable with the unit-specific probabilities. 
 

8.5 Example: Checking the proportional hazards 
assumption in a binary model 

8.5.1 Introduction 

In a proportional hazards model such as the model fitted previously, it is assumed 
that the hazard function for an observation in the analysis depends on the values of 
the covariates and the value of the baseline hazard. This implies that the ratio of the 
estimated hazards over time will be constant for two individuals with the same 
values on the covariates. To test the validity of this assumption using the current 
data, interactions with time indicators are included in the model. Doing so allows us 
to check whether the impact of the covariates in the model are dependent on time.  
 
The  model fitted to the data is of the form 

01 02 03 1 2

3 4 5 0

log log(1 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ,

α α α β β

β β β

 − − = + + + + 
+ + + +

ijt ij ij ij j

j ij ij i

p TimeC TimeD SexM CC

TV SexTC SexTD v
 

and includes two interaction terms: SexTC represents the SexM by TimeC interaction, 
while SexTD represents the SexM by TimeD interaction. Thus, in this model, 1β  
represents the gender effect at Wave B, while 4β  and 5β indicate how the gender 
effect varies at Waves C and D, respectively, relative to Wave B. Linear transforms 
will be used to obtain the specific gender effects at Wave C ( 1 4β β+  ) and Wave D 
( 1 5β β+  ). The baseline hazard would be as shown in Table 8.7, while the two 
linear transforms used in the model are described in Table 8.8. 
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Table 8.7: Definition of baseline hazard 
 

Intercpt TimeC TimeD 

1 1 0 
1 0 1 

 
Table 8.8: Description of linear transforms 

 

Intercpt TimeC TimeD SexM CC TV SexTC SexTD 

0 0 0 1 0 0 1 0 
0 0 0 1 0 0 0 1 

 

8.5.2 Setting up the analysis 

Using the same data as in the previous example, start by selecting the Open Existing  
Model Setup option on the File menu to open the model setup file named 
smkbcd1.mum. Next, click on the Variables tab and add SexTC and SexTD to the list 
of predictors  by checking the corresponding boxes in the E column of the Available 
grid on the Variables screen.  
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To complete the model setup, we use the Linear Transforms option to enter the 
information given in Table 8.8. This will provide estimates of the gender effect at 
Waves C and D. The screen below shows the values entered for the first transform. 
To enter the first linear transform, click Add Transform and enter the name of the 
transform, in this case Sex at TimeC in the Linear transform text field. Next, enter the 
value 1 next to the variables SexM and SexTC in the Explanatory Variables field. The 
screen below shows the values entered for the first transform. 
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Values for the second transform are entered in the same way. All other input 
remains the same. Use the File, Save option to save the model setup to a file named 
smkbcd2.mum. Next, use the Analysis, Run option on the main menu bar to run the 
analysis. 
 

8.5.3 Discussion of results 

Fixed effects estimates 

Parameter estimates are given in the next part of the output. The effect of SexM is 
positive and highly significant, indicating that boys have a significantly increased 
hazard (i.e., a shorter time to the first occurrence), relative to girls at Wave B (i.e., 
the post-intervention time point). The coefficients associated with the TimeC and 
TimeD indicator variables and the interaction terms SexTC and SexTD are also 
significant at a 5% level. The latter two indicate that the gender difference at Waves 
C and D, respectively, are different than the gender difference at Wave B. Recall the 
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deviance statistic for the first model was 3187.20. The addition of the two predictors 
SexTC and SexTD have led to a decrease of 8 in this statistic, at the cost of predicting 
an additional 2 parameters. This 2χ  statistic is significant at a 5% level, and we 
conclude that the addition of the interaction terms have contributed significantly to 
the overall explanation of variation in the outcome variable. Thus, the proportional 
hazards assumption is rejected for the gender effect. 

 

 
 

Intraclass correlation (ICC) and transforms 

The last part of the output contains an estimate of the intracluster correlation. We 
see little change here compared to the results of the model without interaction terms. 
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Finally, a summary of the transforms (given in transposed form) is given followed 
by a significance test for each transform. These two transforms indicate the gender 
effect at Waves C and D, respectively. Notice that neither is significant. Thus, 
whereas there was a significant gender effect at Wave B, with boys having increased 
hazard of cigarette experimentation, this difference is no longer significant at the 
subsequent Waves.     
 
In combination with the intercept and time indicator estimates, these provide  
estimates of the hazard. Specifically, the hazard estimates for the three study time 
points for girls (i.e., when SexM = 0) are –1.7841, –1.7841 + 0.2605, –1.7841 + 
0.5357, and –1.7841 + 0.3058, –1.7841 + 0.2605 – 0.1461, –1.7841 + 0.5357 – 
0.1518 for boys (i.e., when SexM = 1). As shown in the next section, these can be 
converted to the probability scale using the inverse of the complementary log-log 
function.  
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8.5.4 Interpreting the output 

Estimated unit-specific probabilities 

We now use the estimated coefficients from the fitted model 



01 01 02 03 1 2 3

4 5

log log(1 ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1.7841 ( )0.2605 ( )0.5357 ( )0.3058

( )0.0465 ( )0.0209 (

ij ij ij j jijt

ij ij

ij ij ij

j j

p TimeC TimeD SexM CC TV

SexTC SexTD
TimeC TimeD SexM

CC TV SexTC

α α α α β β β

β β

∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

 − − = + + + + +  

+ +

= − + + +

+ + − )0.4518 ( )0.4576ij ijSexTD−
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and the inverse cumulative log-log link function ( ) 1 exp[ exp( )]P z z= − −  to calculate 
the probability of smoking experimentation across the three waves for boys and 
girls.  
 
In order to calculate the probabilities, we set the values of CC and TV to the mean 
values as observed in the sample, i.e. 0.4823 and 0.4771 respectively. Note that 
these values can be found in the descriptive statistics section of the output file. 
Alternatively, if we had not done so, but set these predictors to zero, this would have 
implied that all estimated probabilities were for the groups where CC = TV = 0 (i.e., 
the control group). 
 
We again start by calculating the probabilities at Wave B (post-intervention). For all 
respondents, this implies that 0= =ij ijTimeC TimeD , and thus the relevant part of the 
fitted model (see above) is 

log log(1 ) 1.7841 ( )0.3058 (0.4823)0.0465 (0.4771)0.0209

1.7517 ( )0.3058

ijijt

ij

p SexM

SexM

∧ − − = − + + +  
= − +

 

For female students (SexM = 0) the probability of smoking experimentation at the 
point of post-intervention can be expressed as 

 

[ ]( 1 , ) 1 exp exp( 1.7517)
0.1593.

= = − − −

=

P Event atWaveB female

 
and for male students 

 

[ ]( 1 , ) 1 exp exp( 1.7517 0.3058)
0.2099.

= = − − − +

=

P Event atWaveB male

 
Results for all waves are summarized in Table 8.9. 
 
The probability of smoking experimentation at the time of post-intervention is larger 
for males than for females. This was reflected by the significant main effect of SexM 
in the analysis. However, this gender difference changes across time, as indicated by 
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the significant gender by time interaction terms, as females exhibit relatively higher 
rates of smoking experimentation at the latter two waves. 
 

Table 8.9: Unit-specific probabilities for gender groups across waves 
 

Gender 

 
WaveB 

(TimeC = 0, 
TimeD = 0) 

 

WaveC 
(TimeC = 1, 
TimeD = 0) 

WaveD 
(TimeC = 0, 
TimeD = 1) 

Female 
(SexM = 0) 
 

0.1593 0.2016 0.2565 

Male 
(SexM = 1) 
 

0.2099 0.1768 0.2248 

 

Estimated population-average probabilities 

Table 8.9 contains estimated unit (school) specific probabilities. These are 
sometimes referred to as conditional estimates, conditional on the school effects. In 
other words, they are estimates controlling for the effect of school on the individual 
student outcomes. To obtain population-average probabilities, adjusted ijz  – values 
are used in the computation of the probabilities.  
 
For the current example the design effect is equal to 

 
2

2

0.0023 / 6 1.0014.
/ 6

d π
π

∧ +
= =  

The estimated population-average probabilities are obtained in a similar fashion as 

the unit-specific probabilities, but with replacing  ikz
∧

 by /ik ikz d
∧

. For this 

example, due to the fact that 1.000d
∧

≈ , the estimated unit-specific and population-
average probabilities are, for all purposes, identical. 
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Table 8.10 shows the estimated population-average probabilities for all of the 24 
subgroups. These probabilities were calculated using the observed data values on all 
included predictors. 
 

Table 8.10: Population-average probabilities for all groups 
 

Gender CC TV 

 
WaveB 

(TimeC = 0, 
TimeD = 0) 

 

WaveC 
(TimeC = 1, 
TimeD = 0) 

WaveD 
(TimeC = 0, 
TimeD = 1) 

Female 0 0 0.1547 0.1960 0.2496 
 1 0 0.1615 0.2043 0.2598 
 0 1 0.1577 0.1997 0.2542 
 1 1 0.1646 0.2081 0.2645 

Male 0 0 0.2040 0.1718 0.2187 
 1 0 0.2126 0.1792 0.2278 
 0 1 0.2079 0.1751 0.2227 
 1 1 0.2166 0.1826 0.2320 

 
With the interaction terms included in the model, the trend in the differences 
between the estimated probabilities and observed proportions have disappeared to a 
large extent. The differences between estimated probabilities and observed 
proportions are slightly smaller for the larger model when results of Tables 8.11 and 
8.6 are compared. We conclude that there is evidence of an interaction between the 
gender of respondents and the time of measurement, and that it would not be 
appropriate for these data to assume that the ratio of the estimated hazards over time 
will be constant for the two gender groups. 
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Table 8.11: Difference between estimated probabilities and observed proportions 
of failure for all subgroups 

 

Gender CC TV 
Difference at 

WaveB 
(estimated – 
observed) 

Difference at 
WaveC 

(estimated – 
observed) 

Difference at 
WaveD 

(estimated – 
observed) 

Female 0 0 –0.0012 0.0100 –0.0004 
 1 0 –0.0065 0.0033 –0.06117 
 0 1 0.0068 –0.0223 0.0072 
 1 1 0.0006 0.0111 0.0785 

Male 0 0 0.0307 –0.0282 0.0307 
 1 0 –0.0113 0.01622 –0.0112 
 0 1 0.0099 –0.0219 –0.0542 
 1 1 –0.0454 0.0426 0.0470 

 

8.6 Example: Survival analysis model for an ordinal 
outcome 

8.6.1 Introduction 

In this section, the re-formatted form of the data, as captured in smkcclc.ss3 is used 
to fit a model to the data with the ordinal variable SmkOnset as outcome.  
The model fitted to the data is of the form 

1 2 3 0log log(1 ) ( ) ( ) ( ) .γ β β β − − = + + + + ijt t ij j j iP SexM CC TV v  
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8.6.2 Setting up the analysis 

Using the data in the SuperMix spreadsheet SMKCCLC.ss3, we start by selecting the 
New Model Setup option on the File menu to open the Model Setup window. Enter 
(optional) titles in the Title 1 and Title 2 text boxes. Select the ordinal outcome 
variable SmkOnset from the Dependent Variable drop-down list box. Note that when 
the variable is selected, the Categories field is populated with values 1 through 4. In 
these data, the value "1" represents missing data because this value indicates failure 
or censoring at Wave A (i.e., the pre-intervention time point). As previously noted, 
the intent was to focus on the post-intervention time points only (i.e., Waves B, C, 
and D). Indicate this by setting the Missing Values Present field to true, and entering 
the value "1" in the Missing value for the Dependent Var field. The Categories field 
now shows the remaining three categories only. The variable School, which defines 
the units within which students are nested, is selected as the Level-2 ID from the 
Level-2 IDs drop-down list box. The completed dialog box is shown below. 
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Click on the Variables tab of the Model Setup window. SexM, CC, and TV are 
specified as the predictors (explanatory variables) of the fixed part of the model by 
checking the corresponding boxes in the E column of the Available grid on the 
Variables screen. By default, it is assumed that the intercept is allowed to vary 
randomly over the level-2 units, as indicated by the checked box in the Include 
Intercept field. 
 

 

 
To specify the number of quadrature points, link function (Function Model), and 
right censoring, we proceed to the Advanced screen by clicking on the Advanced 
tab. Change Model Terms from subtract to add (so that the model terms are added to 
the thresholds as specified in the ordinal version of the survival analysis model) and 
select complementary log-log as the Function Model (to yield a proportional hazards 
model). Note that the default Number of Quadrature Points of 10 is replaced by 8. 
Only 8 quadrature points were used here since the values of the estimated 
parameters and 2 ln L−  statistic remain unchanged, up to 5 decimal places, for this 
or a larger number of quadrature points. Finally, we indicate that Right Censoring is 
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to be included and that the variable for this is Event (which is coded 0 = censor and 
1 = event).   

 

 
Use the File, Save option to save the model setup to a file named smkccd1.mum. 
Next, use the Analysis, Run option on the main menu bar to run the analysis. 
 

8.6.3 Discussion of results 

Selected portions of the output file smkccd1.out are shown below. 
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Data summary and descriptive statistics 

The portion of the output file shown below indicates that there are 28 schools, with 
1556 students nested within these. This is followed by descriptive statistics for all 
the variables. Note that all three predictor variables are dichotomous in nature. 
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Fixed effects estimates 

This is followed by the results for the model specified, but without any random 
effects. In this format, none of the included predictors are significant. It will be 
interesting to compare these results with those obtained once the hierarchical 
structure of the data has been taken into account.  
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Parameter estimates are given in the next part of the output. Taking the hierarchical 
structure into account and allowing for the intercept to vary randomly over the 
schools had little effect on the significance level of the 3 covariates: all are still non-
significant. We note that the three thresholds, which represent the cumulative 
baseline hazard, are estimated as –1.6564, –0.9431, and –0.4313 respectively. An 
alternative parameterization is also given. Here, the first threshold has been set to 
zero and as a result, the intercept and second and third threshold estimates are 
calculated as –1.6564, 0.7133, and 1.2251 respectively. 
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Random effects estimates and intraclass correlation (ICC) 

 

 

 
The last part of the output shows the estimates of the random effects and an estimate 
of the intracluster correlation. There is no evidence of significant random variation 
in the intercept over the schools ( p = 0.8120). The intracluster correlation 
coefficient shown is based on the use of the complementary log-log link function for 
these data, which results in a residual variance of  2 / 6π  (see Agresti, 2002). 
 

8.6.4 Interpreting the output 

Comparing binary and ordinal models 

When the number of measurement occasions is not too large, the binary outcome 
model utilizing dummy variables to represent the measurement occasions can be 
useful in fitting survival analysis models. Additionally, the binary model easily 
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allows relaxation of the proportional hazards assumption for model covariates 
through inclusion of interaction terms with the time point indicators. Finally, though 
not illustrated here, the binary model can also handle time-dependent covariates in 
the same manner as the covariate by time interactions. When the number of 
occasions is very large, however, the number of time point indicators that must be 
created for the binary model, and the resulting size of the data set, can get very large 
and unwieldy. In this case, the ordinal outcome model such as the model discussed 
in this section is perhaps the better analysis option (though covariates must follow 
the proportional hazards assumptions and time-dependent covariates are not 
allowed). If the complementary log-log link function is selected (i.e., the model is 
specified as a proportional hazards model), the binary and ordinal outcome models 
yield identical estimates for parameters that do not depend on time (Laara & 
Matthews, 1985). This is shown in Table 8.12. The regression coefficients are 
exactly the same for Male, CC, and TV. This is also true of their standard errors and 
so the p -values for both sets are identical. However, the intercept and threshold 
parameters, which do represent time-related information, are not the same with the 
exception of the first intercept. The reason for this is that the intercepts in the binary 
model represent the interval-specific baseline hazard, whereas their corresponding 
threshold parameters in the ordinal model represent the cumulative baseline hazard 
across the time intervals. These are only equivalent only for the first time interval 
and thereafter diverge in value and meaning. Finally, it should be mentioned that if 
one uses the logit link, in place of the complementary log-log link, the estimates (of 
the parameters not involving time) from the binary and ordinal models are not 
equivalent, though similar.  
 
Notice also that the likelihood values for the two representations are identical, as are 
the AIC values. The Schwarz values are not the same because the numbers of 
observations in the two representations are different. That is, because the binary-
case data set consists of multiple person-time indicators for each outcome, the 
numbers of observations in the binary-case data set is inflated, relative to the ordinal 
case. 
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Table 8.12: Comparison of results of binary and ordinal outcome models 
 

Term Binary outcome 
(EVENT) 

Ordinal outcome 
(SmkOnset) 

 
Wave B baseline hazard 
binary 01α   or ordinal 1γ  

–1.6564 –1.6564 

Wave C baseline hazard 
binary 01 02α α+  or ordinal 2γ  

–1.65654+0.0399 = –
1.6165 –0.9431 

Wave D baseline hazard 
binary 01 03α α+  or ordinal 3γ  

–1.6564 +0.3103 = –1.3461 –0.4313 

Male 1β  0.0574 0.0574 

CC 2β  0.0449 0.0449 

TV 3β  0.0213 0.0213 

2ln L−  3187.38817 3187.38817 

AIC 3201.38817 3201.38817 

Schwarz 3243.94116 3238.83729 

No. of parameters 7 7 
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9 Syntax 

9.1 Introduction and notes 
SuperMix syntax files can be generated either through the interface or by inputting 
the commands in Notepad and then saving it as an *.inp file. The structures of the 
syntax files and the interfaces vary slightly for the different types of outcome 
variables.  

 

When syntax is generated through the interface, the commands are generated and 
saved to a *.inp file. When the input file is constructed or edited outside the 
interface, the following guidelines should be kept in mind: 
 

o All commands start with a keyword and conclude with a semi-colon.  
o There is no specific required order in which commands have to be given, 

with the exception of the MODELS and OPTIONS commands, which must 
always be the first two lines in the input file.  

o Lines may be left blank between commands.  
o Commands and keywords are not case-sensitive, but variable names are. 
o When data is imported to an ss3 file, a mum or inp file can be created.  
o If an inp (syntax file) contains variable names that exceeds 16 characters, 

these names are truncated and only the first 16 characters are displayed in 
the output file. 

o When variable names contain blank(s) or arithmetic symbols, quotation 
marks are needed. Examples are “%Fat”, “CC*TV” and “VISIT 1” etc.  

o Line length is restricted to 128 characters in the syntax (.inp) file, but a 
command can continue over several lines. For example, the list of predictor 
names when there are a large number of predictors in the model.   

 
For new users, generating the syntax file through the interface is highly 
recommended.  
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

517 

In this chapter, the dialog boxes, with corresponding syntax, are first discussed for 
continuous outcomes and then for other outcome variable types. When a dialog box 
that has been illustrated in one case is also used for another type of outcome 
variable, the image or screenshot will not be repeated, and the user is referred to the 
original image. Finally, each of the commands is explained in detail, in alphabetical 
order.  
 

9.2 Syntax file for continuous outcomes 

9.2.1 Structure 

The basic structure of the syntax file for the continuous outcome is as given below, 
and the required commands are indicated.  
 

 Model = Continuous; Required 
 Options; Required 
 Link = name of the link function; Optional 
 Distribution = name of the distribution; Optional 
 Varnames = names of the variables used in the model; Required 
 Title1 = job title; Optional 
 Title2 = job title; Optional 
 DataFile = name of the system data file with data to be analyzed; Required 
 Level2ID = name of the variable identifying level-2 units; Optional 
 Level3ID = name of the variable identifying level-3 units; Optional 
 Dependent = name of the outcome variable; Required 
 MeansTable = name of the variable to generate a means by outcome table; Optional 
 Dependent_Miss = missing value for the outcome variable; Optional 
 Global_Miss = global missing value; Optional 
 Predictors = names of predictors in the fixed part of the model; Required 
 L1Random = names of the level-1 random effects; Optional 
 L2Random = names of the level-2 random effects; Optional 
 L3Random = names of the level-3 random effects; Optional 
 ErrStart = starting value(s) of the error variance(s) ; Optional 
 FixStart = starting value(s) for the parameters in the fixed part of the model; Optional 
 Cov2Start = starting value(s) for the level-2 random effects (co)variance(s); Optional 
 Cov3Start = starting value(s) for the level-3 random effects (co)variance(s); Optional 
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 AutoStart = starting values for the autocorrelation terms; Optional 
 FixPatType = free or user-defined patterns for the fixed parameters; Optional 
 FixPat = patterns for the fixed parameters; Optional 
 Cov2PatType = free or user-defined level-2 covariance structure; Optional 
 Cov2Pat = pattern of the level-2 random coefficient covariance matrix; Optional 
 Cov3PatType = free or user-defined level-3 covariance structure; Optional 
 Cov3Pat = pattern of the level-2 random coefficient covariance matrix; Optional 
 AutoCor = the autocorrelation terms; Optional 
 ErrorForm = the autocorrelated error form for the time series analysis; Optional 
 TimeVar = name of the 'time' variable; Optional 
 Weight1 = level-1 weight variable; Optional 
 Weight2 = level-2 weight variable; Optional 
 Weight3 = level-3 weight variable; Optional 
 TransformNames = names of the linear transformations; Optional 
 Transf_Start = name of a linear transformation; Optional 
 FixTransf = list of values; Optional 
 Cov2Transf = list of values; Optional 
 Cov3Transf = list of values; Optional 
 Transf_End = name of the linear transformations given in Transf_Start; Optional 

 
Not all of the available commands have to be included in the input file.  
 

9.2.2 Interface with corresponding syntax 

9.2.2.1 The Configuration tab 

The fields on the Configuration tab include the DEPENDENT, DEPENDENT_MISS, 
GLOBAL_MISS, LEVELnID, MEANSTABLE, MODEL, OPTIONS, and TITLEn commands. 
The Configuration tab for count outcomes is structured in the same way. 
 
The required commands are listed as shown below. Corresponding explanations of 
these commands are given in  Section 9.7.  
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Figure 9.1(a): Configuration tab for continuous and count outcomes – required 
fields 

 

Besides the required commands as shown above, a number of options are also available. 
The optional fields are shown in the following image. 

 

LEVEL2ID = <selected 
column>; 
 
LEVEL3ID = <selected 
column>;  
 
MODEL = Continuous/count 
<list of options>; 

DEPENDENT = <selected 
column>;  

If [true] then define 
DEPENDENT_MISS and/or 
GLOBAL MISS 
DEPENDENT_MISS = <real 
number>; 

GLOBAL_MISS = <real 
number>; 

*OUTPUT = <selection>; 
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Figure 9.1(b): Configuration tab for continuous and count outcomes – optional 
fields 
 

9.2.2.2 The Variables tab 

The Variables tab is identical for all types of outcome variables, with the exception 
of the ordered outcome. The LnRANDOM and PREDICTORS commands are defined 
through this tab. 
 
The syntax associated with this tab is shown below. The commands are explained in 
Section 9.7.  

 

TITLE1 = <string>; 
 
TITLE2 = <string>; 
 
*BAYES = MEANS; or  
 BAYES = COV_MEANS; 
 
*CONVERGE = <real 
number>; 

*MAXITER = <integer>; 

If [YES] then 
MEANSTABLE = 
<selected column> 
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Figure 9.2: The Variables tab for continuous / count / nominal / binary outcomes 
 

9.2.2.3 The Starting Values tab 

The ERRSTART, COVnPAT, and FIXSTART commands are defined through the 
Starting Values tab. The Starting Values tab for the count outcome is the same as for 
the continuous outcome, except that the ERRSTART command is not available for 
count outcomes. 
 
The syntax associated with this tab is shown below. The Starting Values commands 
are explained in Section 9.7. 
 

PREDICTORS = 
<selected list>; 

L2RANDOM = <selected 
list>; 

L3RANDOM = <selected 
list>; 
Include intercept in 
list of Explanatory 
Variables 
Include intercept in 
list of L-3 Random 
Effects 
 

Include intercept in 
list of L-2 Random 
Effects 
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Figure 9.3: The Starting Values tab for continuous / count outcomes 
 

9.2.2.4 The Patterns tab 

The Patterns tab is the same for all outcomes. The COVnPATTYPE and FIXPATTYPE 
commands are defined here. 
 
The syntax associated with the Patterns tab is shown below. Each command is 
explained in detail in Section 9.7. 
 

FIXSTART = <list of 
real numbers>; 

COV2START = <list of 
real numbers>; 

COV3START = <list of 
real numbers>; 

ErrStart = <value>; 
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Figure 9.4: The Patterns tab for continuous / ordered / count / nominal / binary 
outcomes 

9.2.2.5 The Advanced tab 

The general part of the Advanced tab, which is the same for all outcomes, is used to 
set up the weight variables at different levels of the model. The other fields on the 
tab vary according to the type of outcome variable. The AUTOCOR, AUTOSTART, 
ERRORFORM, DISTRIBUTION, TIMEVAR, and WEIGHTn commands are defined 
through the Advanced tab. 
 

FIXPATTYPE = free / user-
defined; 
If [user-defined] then 
FIXPAT = <list of integer 
values>; 
 

COV2PATTYPE = free / 
correlated /  unidimensional 
/ independent /user-defined; 
If [user-defined] then 
COV2PAT = <list of integer 
values>; 
 

COV3PATTYPE = free / 
correlated /  unidimensional 
/ independent /user-defined; 
If [user-defined] then 
COV3PAT = <list of integer 
values>; 
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Figure 9.5(a): The Advanced tab for the normal distribution 
 

When either the gamma or inverse Gaussian distribution is selected, an additional 
SCALE command is activated as shown below. 

 

If [DISTRIBUTION = nor;] 
then for AUTOCOR = fixed/all 
TIMEVAR = <selected column>; 

DISTRIBUTION = nor / gam / 
invg; 

WEIGHT3 = <selected column>; 
 

WEIGHT2 = <selected column>; 
WEIGHT1 = <selected column>; 
AUTOSTART = <number>; 

ERRORFORM = AR1 / MA1 / 
ARMA11 / NS_AR1 / NS_MA1 / 
General; (one of these) 

AUTOCOR = none / fixed / 
all; (one of these) 

WEIGHTING = <choice>; 
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Figure 9.5(b): The Advanced tab for the gamma and inverse Gaussian 
distribution 
  

The corresponding syntax associated with this tab is shown above. Each command 
is explained in detail in Section 9.7. 

9.2.2.6 The Linear Transforms tab 

The Linear Transforms tab includes the COVnTRANSF, FIXTRANSF, TRANSF_END, 
TRANSF_START, and TRANSFORMNAMES commands. 
 
The syntax associated with this tab is shown below. All the commands are explained 
in Section 9.7.  
 

If [DISTRIBUTION = 
gam / invg;] then 
SCALE = none / 
deviance / Pearson; 
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Figure 9.6: The Linear Transforms tab for continuous / count outcomes 
 

9.3 Syntax file for ordered outcomes 

9.3.1 Structure 

The basic structure of the syntax file for an ordered outcome variable is as given 
below, and the required commands are indicated. Most of the commands are the 
same as the ones for the continuous outcome. The different/new ones are listed 
below in bold face.  
 

 Model = Ordered; Required 
 Options; Required 
 Link = name of the link function; Required 
 ThRandom2 = specify random thresholds at level-2 (yes or no); Optional 
 ThRandom3 = specify random thresholds at level-3 (yes or no); Optional 
 Varnames = names of the variables used in the model; Required 
 Title1 = first job title; Optional 
 Title2 = second job title; Optional 
 DataFile = name of the system data file with data to be analyzed; Required 

FIXTRANSF = <value>; 
 

*TRANSFORMNAMES = 
<string>; 
TRANSF_START = <string>; 
 ... 

   
 
COV2TRANSF = <value>; 
 
COV3TRANSF = <value>; 
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 Level2ID = name of the variable identifying level-2 units; Optional 
 Level3ID = name of the variable identifying level-3 units; Optional 
 Dependent = name of the outcome variable; Required 
 Categories = list of distinct values of the outcome variable; Required 
 Crosstab = name of the variable to generate cross-tabulation with the 
 outcome variable; Optional 
 Dependent_Miss = missing value for the outcome variable; Optional 
 Global_Miss = global missing value; Optional 
 Predictors = names of the predictors in the fixed part of the model; Required 
 L2Random = names of the level-2 random effects; Optional 
 L3Random = names of the level-3 random effects; Optional 
 FixStart = starting value(s) for the parameters in the fixed part of the model; Optional 
 Cov2Start = starting value(s) for the level-2 random effects (co)variance(s); Optional 
 Cov3Start = starting value(s) for the level-3 random effects (co)variance(s); Optional 
 ThresholdStart = starting values for the threshold parameters; Optional 
 FixPatType = free or user-defined patterns for the fixed parameters; Optional 
 FixPat = patterns for the fixed parameters; Optional 
 Cov2PatType = free or user-defined level-2 covariance structure; Optional 
 Cov2Pat = pattern of the level-2 random coefficient covariance matrix; Optional 
 Cov3PatType = free or user-defined level-3 covariance structure; Optional 
 Cov3Pat = pattern of the level-2 random coefficient covariance matrix; Optional 
 Interactions = number of predictor*threshold interactions; Optional 
 Censor = name of the censor variable; Optional 
 Weight1 = level-1 weight variable; Optional 
 Weight2 = level-2 weight variable; Optional 
 Weight3 = level-3 weight variable; Optional 
 TransformNames = names of the linear transformations; Optional 
 Transf_Start = name of a linear transformation; Optional 
 FixTransf = list of values; Optional 
 Cov2Transf = list of values; Optional 
 Cov3Transf = list of values; Optional 
 ThreshTransf = list of values for thresholds for the specified  
 transformation; Optional 
 FixbyThresh = list of values for the threshold interactions; Optional 
 Transf_End = name of linear transformation specified in Transf_Start; Optional 

 
Not all of the available commands have to be included in the input file.  
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9.3.2 Interface with corresponding syntax 

9.3.2.1 The Configuration tab 

The Configuration tab for ordered outcomes is shown below. The DEPENDENT, 
DEPENDENT_MISS, GLOBAL_MISS, LEVELnID, and TITLEn commands are the same 
as for the continuous case, which is discussed in Section 9.2. The different or new 
commands included for the ordered outcome on this tab are the MODEL, 
CATEGORIES, and CROSSTAB commands. 
 
Detailed information on these commands is given in Section 9.7. 
 

 
Figure 9.7: The Configuration tab for ordered / nominal / binary outcomes  
 
 
 
 
 
 

If [YES] then 
CROSSTAB = <dependent 
selected> by 
<crosstab variable 
selected>;  

   
 

 

MODEL = ordered/ 
nominal/ binary <list 
of options>; 
 
CATEGORIES = <list of 
values>; 
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9.3.2.2 The Variable tab 

The Variable tab includes the LnRANDOM and PREDICTORS commands as discussed 
in Section 9.2.2.2 for the continuous outcome. The only difference for the ordered 
outcome is that no option to include the intercept as an explanatory variable is 
provided, as shown below. 
 

 
Figure 9.8: The Variables tab for ordered outcomes 

9.3.2.3 The Starting Values tab 

Besides the ERRSTART, COVnPAT, and FIXSTART commands, which are the same as 
the commands for the continuous outcome, the THRESHOLDSTART command is 
defined through this tab. 
 
The syntax associated with this tab is shown below. Command syntax is explained 
in Section 9.7.  
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Figure 9.9: The Starting Values tab for ordered outcomes 

9.3.2.4 The Patterns tab 

The Patterns tab for the ordered outcome is identical to that for continuous 
outcomes, which is discussed in Section 9.2.2.4.  

9.3.2.5 The Advanced tab 

The general settings for weights, which includes the WEIGHTn ( 1, 2,3n = )command, 
are the same as on the Advanced tab for the continuous outcome. Fields used in the 
case of ordered outcomes, corresponding to the CENSOR, INTERACTIONS, LINK 
commands and  METHOD, MODELTERMS, and NQUADPTS keywords, are illustrated 
below. The syntax associated with this tab is shown below. The syntax commands 
are discussed in Section 9.7.  

THRESHOLDSTART = 
<list of values>; 
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If YES then 
INTERACTIONS = <integer 
number>; 
 

If INCLUDE is selected 
then CENSORVAR = 
<selected column>; 
 

*NQUADPTS = <integer>; 
*LINK = <choice>; 

*METHOD = MAP / ADAP / 
NADAP; 
 

*THRANDOM2 = <choice>; 
 *THRANDOM3 = <choice>; 
 

*MODELTERMS = add / 
subtract 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9.10: The Advanced tab for ordered outcomes  

9.3.2.6 The Linear Transforms tab 

Besides the COVnTRANSF, FIXTRANSF, TRANSF_END, TRANSF_START, and 
TRANSFORMNAMES commands, which are the same as for continuous outcomes, 
two new commands, FIXBYTHRESH and THRESHTRANSF, are defined here for 
ordered outcomes. 
 
The syntax associated with this tab is shown below. Command syntax is explained 
in Section 9.7. 
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Figure 9.11: The Linear Transforms tab for ordered outcomes 
 

9.4 Syntax file for nominal outcomes 

9.4.1 Structure 

The basic structure of the syntax file for a nominal outcome variable is as given 
below, and the required commands are indicated. Most of the commands are the 
same as the ones for the continuous outcome. The different/new ones are listed 
below in bold face.  
 

 Model = Nominal; Required 
 Options = list of options; Required 
 Link = name of the link function; Required 
 Varnames = names of the variables used in the model; Required 
 Title1 = job title; Optional 
 Title2 = job title; Optional 
 DataFile = name of the system data file with data to be analyzed; Required 
 Level2ID = name of the variable identifying level-2 units; Optional 
 Level3ID = name of the variable identifying level-3 units; Optional 

FIXBYTHRESH = <list of 
values>; 
 
THRESHTRANSF = <list of 
values>; 
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 Dependent = name of the outcome variable; Required 
 Categories = list of distinct values of the outcome variable; Required 
 Crosstab = name of the variable to generate cross-tabulation with the  
 outcome variable; Optional 
 Dependent_Miss = missing value for the outcome variable; Optional 
 Global_Miss = global missing value; Optional 
 Predictors = names of the predictors in the fixed part of the model; Required 
 L2Random = names of the level-2 random effects; Optional 
 L3Random = names of the level-3 random effects; Optional 
 FixStart = starting value(s) for the parameters in the fixed part of the model; Optional 
 Cov2Start = starting value(s) for the level-2 random effects (co)variance(s); Optional 
 Cov3Start = starting value(s) for the level-3 random effects (co)variance(s); Optional 
 FixPatType = free or user-defined patterns for the fixed parameters; Optional 
 FixPat = patterns for the fixed parameters; Optional 
 Cov2PatType = free or user-defined level-2 covariance structure; Optional 
 Cov2Pat = pattern of the level-2 random coefficient covariance matrix; Optional 
 Cov3PatType = free or user-defined level-3 covariance structure; Optional 
 Cov3Pat = pattern of the level-2 random coefficient covariance matrix; Optional 
 Weight1 = level-1 weight variable; Optional 
 Weight2 = level-2 weight variable; Optional 
 Weight3 = level-3 weight variable; Optional 
 TransformNames = names of the linear transformations; Optional 
 Transf_Start = name of a linear transformation; Optional 
 FixTransf = list of values; Optional 
 Cov2Transf = list of values; Optional 
 Cov3Transf = list of values; Optional 
 Transf_End = name of the linear transformation given in Transf_Start; Optional 

 
Not all of the available commands have to be included in the input file.  
 

9.4.2 Interface with corresponding syntax 

The Configuration tab for nominal outcome variables is identical to that of ordered 
outcomes, which is discussed in Section  9.3.2.1. The Variable tab, which includes 
both the LnRANDOM and PREDICTORS commands, is the same as for continuous 
outcomes, as discussed in Section 9.2.2.2.  



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

534 

 

9.4.2.1 The Starting Values tab 

The FIXSTART and COVnSTART commands are the same as for a continuous 
outcome, except that starting values for the predictors and random effects are 
requested in terms of categories versus a reference (first or last) category. This tab is 
shown below.  

 

 
Figure 9.12: The Starting Values tab for nominal outcomes 
 

9.4.2.2 The Patterns tab 

The Patterns tab for the nominal outcome is used for specifying the COVnPATTYPE 
and FIXPATTYPE commands as shown below.  
 
Each field of the Patterns tab is explained in detail in Sections 9.7.5, 9.7.6, 9.7.17, 
and 9.7.18.  
 

FIXSTART = <list 
of real numbers>; 

COV2START = <list 
of real numbers>; 

COV3START = <list 
of real numbers>; 
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Figure 9.13: The Patterns tab for nominal outcome variables  

9.4.2.3 The Advanced tab 

The general settings of weights, which includes the WEIGHTn commands, are the 
same as for continuous outcomes, while the METHOD and NQUADPTS commands 
are the same as for ordered outcomes. The unique field for the nominal outcome is 
the the REFCAT keyword on the OPTIONS command. 
 
The syntax associated with this tab is shown below. Command syntax is explained 
in Section 9.7. 
 

FIXPATTYPE = free / user-
defined; 
If [user-defined] then 
FIXPAT = <list of integer 
values>; 
 

COV2PATTYPE = free / 
correlated / unidimensional 
/ independent /user-defined; 
If [user-defined] then 
COV2PAT = <list of integer 
values>; 
 

COV3PATTYPE = free / 
correlated / unidimensional 
/ independent /user-defined; 
If [user-defined] then 
COV3PAT = <list of integer 
values>; 
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Figure 9.14: The Advanced tab for nominal outcomes  

 

9.4.2.4  The Linear Transforms tab 

The Linear Transform tab includes the same commands as for the continuous 
outcome, these being the COVnTRANSF, FIXTRANSF, TRANSF_END, 
TRANSF_START, and TRANSFORMNAMES commands. The appearance of this tab is 
slightly different from the one for the continuous outcome, as shown below. 

 

*METHOD = MAP / ADAP / 
NADAP; 

*NQUADPTS = <integer>; 

*OPTIONS REFCAT = 
<choice>; 
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Figure 9.15: The Linear Transforms tab for nominal outcomes  
 

9.5 Syntax file for count outcomes 

9.5.1 Structure 

The basic structure of the syntax file for the count outcome is as given below, and 
the required commands are indicated. Most of the commands are the same as the 
ones for the continuous outcome. The different/new ones are listed below in bold 
face.  
 

 Model = Count; Required 
 Options; Required 
 Distribution = name of the distribution; Required 
 Scale = scaling method; / Dispersion = value of the dispersion parameter; Optional 
 Varnames = names of the variables used in the model; Required 
 Title1 = job title; Optional 
 Title2 = job title; Optional 
 DataFile = name of the system data file with data to be analyzed; Required 

FIXTRANSF = <value>; 
 

*TRANSFORMNAMES = 
<string>; 
TRANSF_START = <string>; 
  

   
 
COV2TRANSF = <value>; 
 
COV3TRANSF = <value>; 
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 Level2ID = name of the variable identifying level-2 units; Optional 
 Level3ID = name of the variable identifying level-3 units; Optional 
 Dependent = name of the outcome variable; Required 
 MeansTable = name of the variable to generate a means by outcome table; Optional 
 Dependent_Miss = missing value for the outcome variable; Optional 
 Global_Miss = global missing value; Optional 
 Predictors = names of the predictors in the fixed part of the model; Required 
 L2Random = names of the level-2 random effects; Optional 
 L3Random = names of the level-3 random effects; Optional 
 FixStart = starting value(s) for the parameters in the fixed part of the model; Optional 
 Cov2Start = starting value(s) for the level-2 random effects (co)variance(s); Optional 
 Cov3Start = starting value(s) for the level-3 random effects (co)variance(s); Optional 
 FixPatType = free or user-defined patterns for the fixed parameters; Optional 
 FixPat = patterns for the fixed parameters; Optional 
 Cov2PatType = free or user-defined level-2 covariance structure; Optional 
 Cov2Pat = pattern of the level-2 random coefficient covariance matrix; Optional 
 Cov3PatType = free or user-defined level-3 covariance structure; Optional 
 Cov3Pat = pattern of the level-2 random coefficient covariance matrix; Optional 
 Offset = name of the offset (exposure) variable; Optional 
 Weight1 = level-1 weight variable; Optional 
 Weight2 = level-2 weight variable; Optional 
 Weight3 = level-3 weight variable; Optional 
 TransformNames = names of the linear transformations; Optional 
 Transf_Start = name of a linear transformation; Optional 
 FixTransf = list of values; Optional 
 Cov2Transf = list of values; Optional 
 Cov3Transf = list of values; Optional 
 Transf_End = name of the linear transformation given in Transf_Start; Optional 

 
Not all of the available commands have to be included in the input file.  
 

9.5.2 Interface with corresponding syntax 

The Configuration, Variables, Starting Values, Patterns and Linear Transformations 
tabs for count outcomes are identical to those for continuous outcomes, which are 
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discussed in Section 9.2. The only tab that will be discussed in this section is the 
Advanced tab for the count outcome. 
 

9.5.2.1 The Advanced tab 

The general settings for weights, which includes the WEIGHTn commands, are the 
same as the Advanced tab for the continuous outcome. The METHOD and 
NQUADPTS keywords are the same as the ones in the Advanced tab for the ordered 
outcome. The unique fields for the count outcome are the SCALE and OFFSET 
commands when Poisson distribution is selected, and the DISPERSION and OFFSET 
commands when the negative binomial distribution is selected. The syntax 
associated with this tab is shown below. Command syntax is explained in Section 
9.7.  
 

 
Figure 9.16: The Advanced tab for count outcomes – Poisson distribution 

 
When the negative binomial distribution is selected, the Advanced tab with 
corresponding commands is as shown below. 
 

*METHOD = MAP / ADAP / 
NADAP; 

*NQUADPTS = <integer>; 
DISTRIBUTION = POI / 
NBIN;  
If [DISTRIBUTION = 
POI;] 
SCALE = none / deviance 
/ Pearson; 

*OFFSET = <variable 
name>; 
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Figure 9.17: The Advanced tab for count outcomes – negative binomial 
distribution  
 

9.6 Syntax file for binary outcomes 

9.6.1 Structure 

The basic structure of the syntax file for the binary outcome is as given below, and 
the required commands are indicated. Most of the commands are the same as the 
ones for the continuous outcome. The different/new ones are listed below in bold 
face.  
 

 Model = Binary; Required 
 Options; Required 
 Link = name of the link function; Required 
 Distribution = name of the distribution; Required 
 Scale = scaling method; Optional 
 Ntrials = variable contains the number of trials (binomial); Optional 
 Varnames = names of the variables used in the model; Required 
 Title1 = job title; Optional 

DISTRIBUTION = POI / 
NBIN;  
If [DISTRIBUTION = 
NBIN;] 
DISPERSION = <value>; 
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 Title2 = job title; Optional 
 DataFile = name of the system data file with data to be analyzed; Required 
 Level2ID = name of the variable identifying level-2 units; Optional 
 Level3ID = name of the variable identifying level-3 units; Optional 
 Dependent = name of outcome variable; Required 
 Categories = list of distinct values of the outcome variable; Required 
 Crosstab = name of variable to generate cross-tabulation with outcome  
 variable; Optional 
 Dependent_Miss = missing value for the outcome variable; Optional 
 Global_Miss = global missing value; Optional 
 Predictors = names of the predictors in the fixed part of the model; Required 
 L2Random = names of the level-2 random effects; Optional 
 L3Random = names of the level-3 random effects; Optional 
 FixStart = starting value(s) for the parameters in the fixed part of the model; Optional 
 Cov2Start = starting value(s) for the level-2 random effects (co)variance(s); Optional 
 Cov3Start = starting value(s) for the level-3 random effects (co)variance(s); Optional 
 FixPatType = free or user-defined patterns for the fixed parameters; Optional 
 FixPat = patterns for the fixed parameters; Optional 
 Cov2PatType = free or user-defined level-2 covariance structure; Optional 
 Cov2Pat = pattern of the level-2 random coefficient covariance matrix; Optional 
 Cov3PatType = free or user-defined level-3 covariance structure; Optional 
 Cov3Pat = pattern of the level-2 random coefficient covariance matrix; Optional 
 Weight1 = level-1 weight variable; Optional 
 Weight2 = level-2 weight variable; Optional 
 Weight3 = level-3 weight variable; Optional 
 TransformNames = names of the linear transformations; Optional 
 Transf_Start = name of a linear transformation; Optional 
 FixTransf = list of values; Optional 
 Cov2Transf = list of values; Optional 
 Cov3Transf = list of values; Optional 
 Transf_End = name of the linear transformation given in Transf_Start; Optional 

 
Not all of the available commands have to be included in the input file.  
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9.6.2 Interface with corresponding syntax 

The Configuration tab for the binary outcome is the same as for the ordinal outcome 
(see Section 9.3.2.1). The Variables, Patterns, Starting Values, and Linear 
Transforms tabs are the same as the continuous case, and are discussed in Section 
9.2. The only unique tab is the Advanced tab for the binary outcome. 
 

9.6.2.1 The Advanced tab 

The general settings for weights, which include the WEIGHTn commands, are the 
same as for the continuous outcome. The DISTRIBUTION, LINK, and SCALE 
commands and METHOD and NQUADPTS keywords were all discussed previously. 
The unique field for the binary outcome is the NTRIALS command. The syntax 
associated with this tab is shown below. Command syntax is explained in Section 
9.7.  

 
Figure 9.18: The Advanced tab for binary outcomes  

*NQUADPTS = <integer> 
DISTRIBUTION = ber / 
bin; 

*METHOD = MAP / ADAP / 
NADAP; 
 

*LINK = <choice>; 

SCALE = none / deviance 
/ Pearson; 
 If [DISTRIBUTION = bin;] 
then 
NTRIALS = <varname>; 
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9.7 Commands 

9.7.1 AUTOCOR command 

 
The AUTOCOR command is used to specify the inclusion of autocorrelated level-1 
errors. This is an optional command for the continuous outcome, and presently only 
available for 2-level models. 
 

Syntax: 
 

AUTOCOR = <keywords>;   
 

Valid keywords are as follows: 
 
NONE In this case no autocorrelation terms are considered. 
FIXED Fixed autocorrelation terms are considered in such a case. The 

ErrorForm command will be included to complete this selection. 
ALL When the ALL keyword is used, all the autocorrelation terms will 

be estimated. The ErrorForm command will be included to 
complete this selection. 

 
Example: 

 
AutoCor = NONE; 

 

9.7.2 AUTOSTART command 

 
The AUTOSTART command is used to specify the starting values for the 
autocorrelation terms. This is an optional command for the continuous outcome, 
and presently only available for 2-level models.  
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Syntax: 
 

AUTOSTART = <values>;   
 

The values must be between –0.999 and 0.999 inclusive. 
 
Example: 

 
AUTOSTART = 0.75; 

 

9.7.3 CATEGORIES command 

 
The CATEGORIES command is used to specify each of the distinct values of the 
outcome variable. This is a required command for models with ordinal, nominal 
and binary outcomes. These values are automatically generated by the GUI. 
 

Syntax: 
 

CATEGORIES = <list of integer values>;   
 
Examples: 

 
Categories = 1 2 3 4 5; 
Categories = 0 1; 

 

9.7.4 CENSOR command 

 
The CENSOR command is used to define the censor variable, which is coded 0 for 
censor, 1 for event. This is an optional command for use with ordinal outcomes. 
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Syntax: 
 

CENSOR = <variable name>;   
 
Example: 

 
CENSOR = cen_var; 

 

9.7.5 COVnPAT command 

 
The COVnPAT commands are used to place constraints on the covariance matrices of 
random coefficients on the different levels of the model. We denote these 
covariance matrices by (1)Φ , (2)Φ , and (3)Φ  or, in general, by ( ) , 1, 2,3.n nΦ =   

 
One COVnPAT command is allowed for each level of the hierarchy. If, for instance, 
a 3-level linear model with random components on all three levels of the hierarchy 
is to be fitted, up to three COVnPAT commands may be included in the syntax file. 
 
Note that on level 1 (continuous outcome), only structures pertaining to the diagonal 
elements of the level-1 random effects covariance matrix are permissible. The use of 
COVnPAT commands is optional. 
 

Syntax: 
 

COVnPAT= <keywords>; 
 
Valid keywords are as follows: 
 
DIAG In this case the covariance matrix of random parameters on level 

n of the model will be constrained to be a diagonal matrix. 
TOEPLITZ The covariance matrix on levels 2 or 3 will be constrained to be 

of the form of a so-called Toeplitz matrix, that is 
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INTRA The covariance matrix of random parameters on levels 2 or 3 will 
be constrained to have an intra-class structure, that is 
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MA1 Constrains the covariance matrix on level n to be similar to that 
of a time series process of order MA1. The form of the covariance 
matrix will then be 
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0 0
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USER_SPECIFIED  
To constrain the elements of the covariance matrix to be of a form other 
than those discussed above, the user may specify this required structure 
with the COVnPAT command. This can be done by entering a lower-
triangular matrix with the required structure on the COVnPAT command. 
If, for example, the covariance matrix corresponding to the LnRANDOM 
command  

 
  LnRANDOM = X1 X2 X3 X4; 
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is to be constrained, it can be accomplished by following a row-wise 
numbering convention for the lower triangular elements of the 
covariance matrix as shown below. 

 
1 
2  3 
4  5  6 
7  8  9  10 

  
The elements to be fixed are then replaced with "0". If, for example, the 
matrix is constrained to be diagonal, the command to be used is as 
follows: 

 
COVnPAT = 1 
                    0  3 
                    0  0  6 
                    0  0  0  10;  

 
The structure as specified indicates that there are four parameters to be 
estimated (i.e. numbers 1, 3, 6 and 10, corresponding to the variances) 
and six fixed parameters (corresponding to the covariances), indicated by 
0. The values which the fixed parameters are to be set equal to can be 
supplied using the COVnVAL command. If the COVnVAL command is 
omitted, the fixed parameters will be constrained to be equal to zero, as 
the initial structure of all covariance matrices is assumed to be diagonal 
at the start of the iterative procedure. 

 
The following conventions apply to the use of the COVnPAT command: 
 

o Any line of input may not exceed 127 characters. Thus, if a large COVnPAT 
matrix is entered, a row of the lower-triangular matrix may be continued on 
the next line of the syntax file if the number of characters in that row of the 
matrix exceeds 127 characters. 
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o If elements of the covariance matrix to be estimated are constrained to be 
equal in value, the number assigned to those elements must be the same. 

o As with all other commands in the syntax file, the command should end with 
a semi-colon that may be placed directly after the last element of the matrix 
as specified or on the next line of the syntax file. 

o The matrix specified must have the same number of elements as implied by 
the LnRANDOM command. That is, if there are p variables listed in the 
LnRANDOM command, a total number of  ½  p (p + 1) elements must be 
entered. 

o In order to assign initial values to elements of the covariance matrix on level 
n or to set fixed elements of the matrix to user specified values, the 
COVnPAT command must be used in conjunction with the COVnVAL 
command. 

 
Examples: 

 
1. In the case of an MA1 process, for example, the command will be as follows: 

 
COVnPAT = 1 
                    2  1 
                    0  2  1 
                    0  0  2  1; 

 
From this structure it follows that there are only two parameters to be estimated 
(numbers 1 and 2) while all other parameters are constrained to be equal to zero, 
unless otherwise specified using the COVnVAL command (see Section 9.7.7 for 
information on the COVnSTART command). 

 
2. It is permissible to constrain diagonal elements of the level-n covariance matrix 

to be fixed through the use of the COVnPAT command.  
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The following commands, for example, are permissible: 
 

COVnPAT = 1 
                    2  0 
                    3  2  0 
                    0  0  2  0; 
 
COVnPAT = 0 
                    2  0 
                    3  2  0 
                    0  0  2  0; 

 
Note that 0-values indicate that the corresponding elements remain fixed at 
the values specified in the COVnSTART paragraphs. 

 

9.7.6 COVnPATTYPE command 

 
The COVnPATTYPE commands are used to specify specific structures for the 
covariance matrices of the random effects on the different levels of the hierarchy. 
This is an optional command. 
 
Note that on level 1 (continuous case), only structures pertaining to the diagonal 
elements of the level-1 random effects covariance matrix are permissible. 
 

Syntax: 
 

COVnPATTYPE = <keywords>; 
 
Valid keywords are as follows: 
 
CORRELATED This is the default option. In this case the covariance matrix of 

random parameters on level n of the model will be constrained to 
be a symmetric matrix. 
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INDEPENDENT The covariance matrix on levels 2 or 3 will be constrained to be 
independent, that is 

1

2
(n)

0 0
0 0
0 0 0
0 0 n

γ
γ

γ

 
 
 Φ =
 
 
 

L
L
O
L  

UNIDIMENSIONAL When the UNIDIMENSIONAL keyword is used, the covariance 
matrix of random parameters on levels 2 or 3 is replaced by a 
scalar, expressed as a linear combination of the random effects. 

 
o Unidimensional selected at level 3 

 (3) 1 1 2 2 ... ,ψ ψ ψΦ = + + +i i r irv v v  

  where 1 2, , ...,ψ ψ ψ r  are unknown parameters to be 
estimated. 

o Unidimensional selected at level 2 

 (2) 1 1 2 2 ... ,θ θ θΦ = + + +ij ij q ijqv v v  

  where 1 2, , ...,θ θ θq  are unknown parameters to be 
estimated. 

 
USER-DEFINED To constrain the elements of the covariance matrix to be of a 

form other than those discussed above, the user may specify this 
required structure through use of the USER-DEFINED keyword 
together with the COVnPAT command. This can be done by 
entering a lower-triangular matrix with the required structure, 
using the COVnPAT command.  

 
The following convention applies to the use of the COVnPATTYPE command: 
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o As with all other commands in the input file, the command should end with 
a semi-colon that may be placed directly after the last element of the matrix 
as specified or on the next line of the input file. 

 
Examples: 

 
Cov2PatType = Correlated; 
Cov2PatType = User-Defined; 
Cov3PatType = Independent; 

 

9.7.7 COVnSTART command 

 
COVnSTART commands may be used to provide either initial values for elements of 
the covariance matrix on level n of the model or to provide values for elements 
fixed through the use of keywords of the COVnPAT command. Note that the use of 
COVnSTART commands is optional. 
 
One COVnSTART command is allowed for each level of the hierarchy. If, for 
instance, a 3-level linear model with random coefficients on all three levels of the 
hierarchy is to be fitted, up to three COVnSTART commands may be included in the 
syntax file. 
 
The values to be used for the elements of the covariance matrix must be entered in 
the form of a lower-triangular matrix. The number of values entered must be the 
same as the number of elements implied by the relevant LnRANDOM command. If 
there are p variables listed in the LnRANDOM command, ½ p (p + 1) values must be 
entered. If a large number of values is entered, a row of the lower-triangular matrix 
may be continued on the next line of the syntax file if the number of characters in 
that row of the matrix exceeds 127 characters. The command must end with a semi-
colon, which may be entered on the last line of the values given or on the next line 
of the syntax file. 
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Syntax: 
 

COVnSTART = <values specified by user>;  
 

Examples: 
 

COV2START = 1.00 
                     0.32  0.85 
                     0.63  0.62  0.78 
                     0.19  0.00  0.25  0.99; 

 
The above command can also be written as  
 

COV2START = 1 0.32 0.85 0.63 0.62 0.78 0.19 0.00 0.25 0.99; 
 

If an accompanying COVnPAT command is not used, these values will function as 
starting values for the level-n covariance matrix. When good starting values for the 
elements of this covariance matrix are known, the use of the command as shown 
could decrease the number of iterations required to obtain convergence. 
 
When the command 
  

COVnPAT = DIAG; 
 
is used together with the COVnSTART command given in the previous example, the 
values specified on the diagonal of the lower-triangular matrix will be used as initial 
values for the parameters which are to be estimated. The off-diagonal elements of 
the covariance matrix will then be constrained to be equal to the values of the off-
diagonal elements of the matrix given above. 
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9.7.8 COVnTRANSF command 

 
The COVnTRANSF command is used together with the TRANSF_START and 
TRANSF_END commands to specify values corresponding to elements of the level-2 
and level-3 random effect covariance matrices that are used to test linear contrasts. 
It is an optional command for all the types of the outcome variables. 
 

Syntax: 
 

COVnTRANSF = <values>;  
 

Example: 
 
Suppose a specific model has two level-2 random effects, and that we wish to test 
the null hypothesis 

 0 (2) (2)1,1 2,2
: ,   =   Φ ΦH  

that is, 

 0 (2) (2)1,1 2,2
: .H    − =   Φ Φ 0  

 
This is accomplished by using the command 

 
COV2TRANSF = 1 0 –1;  

 

9.7.9 CROSSTAB command 

 
The purpose of the CROSSTAB command is to select a categorical variable to be 
cross-tabulated with the outcome variable. A ( )C K×  frequency table is produced, 
where C  denotes the number of distinct values of the outcome variable and K  the 
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number of distinct values of the variable selected in the CROSSTAB command. It is 
an optional command for the ordered, nominal and binary outcomes. 
 

Syntax: 
 

CROSSTAB = <variable name>;  
 

Example: 
 

CROSSTAB = week; 
 

9.7.10 DATAFILE command 

 
The DATAFILE command is used to specify the name of the data file (space-
delimited text file) to be analyzed, and is automatically generated if the multilevel 
model specifications are built via the dialog boxes. Note that the data file does not 
refer to the *.ss3 file, but refers to the *.dat file which is generated when the data 
analysis is run using a *.mum file. The DATAFILE command is a required command. 
 

Syntax: 
 

DATAFILE = <file name>; 
 
where <file name> denotes the complete name (including folder name) of the data 
file. The folder name may be omitted if the data file and SuperMix syntax file are in 
the same folder. 
 

Example: 
 
The command shown below is used to set up the model by using the DAT file 
reisby.dat, located in the continuous folder. 
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DATAFILE = 'C:\SUPERMIX\CONTINUOUS\REISBY.DAT'; 
 

9.7.11 DEPENDENT command 

 
The DEPENDENT command is used to select the name of the outcome variable(s). 
Since variable names are case sensitive, spelling, etc. of the names of the outcome 
variables must be the same as that used in the data spreadsheet (*.ss3 file). The 
DEPENDENT command is a required command. 
 

Syntax: 
 

DEPENDENT = <outcome variable(s)>; 
 
In the case of a multivariate model, more than one outcome variable may be listed in 
the DEPENDENT command. Response variables may be entered in any order. This 
command is presently only available for normally distributed continuous outcomes. 
 

Examples: 
 
In the DEPENDENT command below, the outcome variable is indicated as the 
variable Y1: 

 
  DEPENDENT = Y1; 

 
The DEPENDENT command for a multivariate model (continuous outcomes only), in 
which 6 response variables are listed, would look like this: 

 
DEPENDENT = Math1 Math2 Math3 Eng1 Eng2 Eng3; 
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9.7.12 DEPENDENT_MISS command 

 
The DEPENDENT_MISS command may be used to specify a code assigned to 
missing values on the outcome variable(s) only. The consequence of using the 
DEPENDENT_MISS command is that only records with outcome variable values 
equal to the code assigned through the DEPENDENT_MISS command will be 
removed from the analysis. The DEPENDENT_MISS command is an optional 
command. 
 

Syntax: 
 

DEPENDENT_MISS = <value>; 
 
Any positive or negative value may be used. Only one value is allowed in this 
command. All records containing data values equal to the code specified in this 
command will subsequently be removed from the analysis. 
 

Example: 
 
Consider the observations 
 

 Outcome variable        Predictor variables 
   99          1  10  14.5   48.7 
      7.7          3  12  13.7   53.2 
   6.5   4  11  12.6   999 

      8.3   2  15  18.1   55.4 
  

 
and the command 
 

DEPENDENT_MISS = 99; 
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If the code 99 is identified as the code for missing data values on the dependent 
variables, this will imply that all the values for case 1 will be deleted, and all the 
values for cases 2, 3, and 4 will be retained. 
 
If, additionally, the code 999 is specified (GLOBAL_MISS = 999, see Section 9.7.21) 
as the code for missing data values on all the variables included in the analysis, the 
third record as given above will be deleted from the data set to be analyzed. The 
second and fourth observations will be retained. 
 
This is accomplished by using both the DEPENDENT_MISS and GLOBAL_MISS 
commands as follows: 

 
DEPENDENT_MISS = 99; 
GLOBAL_MISS = 999;  

 
Note that if only the DEPENDENT_MISS command is used, the value of 999 for the 
last predictor variable for the third observation will be considered valid data and 
will be used as such in the analysis. 

 

9.7.13 DISTRIBUTION command 

 
The DISTRIBUTION command includes different distributions for each type of 
outcome variable. The keywords and the distribution names (given in parentheses) 
for different outcomes are shown below.  
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Table 9.1: List of distributions and associated keywords 
 

outcome variable 
 type 

default  
distribution 

other available  
distribution(s) 

Continuous nor (normal) gam (gamma) invg (inverse 
Gaussian) 

Ordered mul (multinomial) – – 
Nominal mul (multinomial) – – 

Count poi (Poisson) nbin (negative 
binomial) – 

Binary ber (Bernoulli) bin (binomial) – 
 
The DISTRIBUTION command is a required command for count and binary 
outcomes. 
  

Syntax: 
 

DISTRIBUTION = <keywords the distribution>; 
 

Examples: 
 

DISTRIBUTION = NOR; 
DISTRIBUTION = poi; 

 

9.7.14 ERRORFORM command 

 
The ERRORFORM command is used to specify the autocorrelated error form for the 
time series analysis. It is an optional command for continuous outcomes and is 
presently only available for 2-level models. 
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Syntax: 
 

ERRORFORM = <keyword>; 
 
The available keywords for different error forms are listed below. 
 
AR1 The first-order autoregressive disturbance of order 1, or AR(1) 

process, has the following error variance matrix 

2 1

2

(1)

1 2 3

γ γρ γρ γρ
γρ γ γρ γρ

γρ γρ γρ γ

−

−

− − −

 
 
 =  
  
 

Φ

L
L

M M M M M
L

t

t

t t t

 

 The keyword AR1 refers to the stationary AR(1) process, which is 
the autoregressive process with 1ρ < . 

NSAR1 The keyword NSAR1 refers to the non-stationary AR(1) process. 
MA1 The moving average process of order 1 is obtained by using the 

MA1 keyword. In order to constrain the covariance matrix on 
level n to be similar to that of a time series process of order MA1, 
The form of the covariance matrix will then be 

(1)

0 0
0

0 0

0 0

γ β
β γ β

β γ

β γ

 
 
 
 =
 
 
 
 

Φ

L
L
L

O O O O O
L

 

ARMA11 The mixed process, ARMA, is more complicated since it is a 
mixture of the AR and MA forms. For the ARMA(1, 1) process, 

1 1t t t ty yγ ε θε− −= + −  
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9.7.15 ERRSTART command 

 
The ERRSTART command is used to specify starting values for the level-1 error 
covariance matrix. It is an optional command, used only for the normally 
distributed continuous outcome. 
 

Syntax: 
 
ERRSTART = <values>; 

 
Example: 

  
ERRSTART = 0.85; 

 

9.7.16 FIXBYTHRESH command 

 
The FIXBYTHRESH command is used together with the TRANSF_START and 
TRANSF_END commands, which define linear transformations. FIXBYTHRESH 
allows the users to test a null hypothesis of the type '

0 :H =C γ 0  involving 
threshold interaction terms.  It is an optional command for ordered outcomes. 
 

Syntax: 
 

FIXBYTHRESH = <value(s)>; 
 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

561 

Example: 
 

Transf_Start= t; 
FixTransf= 0 0 0 0; 
Cov2Transf= 0 0 0; 
Cov3Transf= 0 0 0; 
ThreshTransf= 0 0; 
FixbyThresh= 1 0 –1 0; 
Transf_End= t; 

 

9.7.17 FIXPAT command 

 
To specify a patterned structure for the vector of fixed parameters, the FIXPAT 
command may be used, with or without an additional FIXSTART command (see 
Section 9.7.19). Use of this command is optional.  
 

Syntax: 
 

FIXPAT = <list of numbers>; 
 
where <list of numbers> denotes a list of positive integers separated by blank spaces. 
The number of values entered must equal the number of predictors in the model. 

 
Examples: 

 
1. Constraining fixed effects to be equal: 
  

FIXPAT = 1 1 3 3 5 6; 
 

This statement specifies that the vector of six parameters in the fixed part of the 
model are constrained as follows: BETA1 = BETA2; BETA3 = BETA4  while 
BETA5 and BETA6 are estimated freely. In the command shown above, the actual 
numbers correspond to the order of the parameter in question: "1" denotes the 
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first parameter, "3" the third and "5" and "6" the fifth and sixth of the parameters 
in the fixed part of the model.  
 

2. Fixing fixed effects to user-specified values: 
 

FIXPAT = 0 0 3; 
 

If '0' values are in the list of numbers, then the FIXPAT command should be used 
in conjunction with the FIXSTART command.  If, for example, FIXSTART = 10 
2.5 0.15; then BETA1 and BETA2 are fixed at their initial values (10 and 2.5 
respectively) while BETA3 is estimated freely, using a starting value of 0.15. 

 

9.7.18 FIXPATTYPE command 

 
The FIXPATTYPE command is used to specify that all the parameters in the fixed 
part of the model are free to be estimated, or that parameter estimation will be user-
defined using the FIXPAT command. The FIXPATTYPE command is an optional 
command. 
 

Syntax: 
 

FIXPATTYPE = <keywords>; 
 
Valid keywords are as follows: 
 
FREE This is the default setting for the FIXPATTYPE command.  
USER-DEFINED Allows the user to fix specific elements (see FIXPAT command) 

of the vector β  of fixed parameters to values specified by the 
FIXSTART command and/or to constrain elements to be equal. 
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The following convention applies to the use of the FIXPATTYPE command: 
 

o The command should end with a semi-colon. 
 
Example: 
 

FIXPATTYPE  = User-Defined; 
 

9.7.19 FIXSTART command 

 
It is also possible to provide initial values for the fixed parameters in the model to 
be analyzed. This may be achieved with the FIXSTART command, which allows the 
user to provide starting values for these parameters. Use of this command is 
optional. 
 

Syntax: 
 

FIXSTART = <as specified by user>; 
 
The number of values entered using this command must be equal to the number of 
fixed parameters to be estimated. There is no specific format in which the values 
have to be entered.  
 

Example: 
 
The commands 
 

FIXSTART = 0.151 0.355 0.654;   
FIXSTART = 0.151  
                  0.355 
                  0.654; 
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and 
FIXSTART = 0.151  0.355 
                 0.654 
                 ;  

 
are all permissible. If the first of these commands is used and the number of 
characters in the user-specified string exceeds 127 characters, the next line of the 
syntax file should be used. 
 

9.7.20 FIXTRANSF command 

 
The FIXTRANSF command is used together with the TRANSF_START and 
TRANSF_END commands to specify a linear hypothesis of the form '

0 : =C γ 0H , 
invoking elements of the fixed parameters. It is an optional command for all the 
types of outcome variables. 
 

Syntax: 
 

FIXTRANSF = <list of values equal to number of fixed parameters>;  
 

Example: 
 
Suppose the vector β  of fixed parameters has four elements and we wish to test the 
hypothesis  

 0 1 2 3: 0.5 0.5 ,β β β+ =H  

that is, 

 1 2 30.5 0.5 0.β β β+ − =  
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Then, the FIXTRANSF command will be: 
 

FIXTRANSF = 0.5  0.5  –1.0  0; 
 

9.7.21 GLOBAL_MISS command 

 
The GLOBAL_MISS and commands may be used when missing data is present in the 
raw data file. The GLOBAL_MISS command allows the user to specify a numerical 
value, which will represent a missing value on any of the variables used in the 
analysis. This command may also be used in conjunction with the 
DEPENDENT_MISS command, as described in Section 9.7.12. Note that use of the 
GLOBAL_MISS command is optional. 
 

Syntax: 
 

GLOBAL_MISS = <value>; 
 
Any positive or negative value may be used. Only one value is allowed in this 
command. All records with data values equal to the code specified in this command 
will subsequently be removed from the analysis. 
 

Examples: 
 
Valid examples of the use of this command include the following: 
 

GLOBAL_MISS = 99; 
GLOBAL_MISS = –998.0; 
GLOBAL_MISS = 0; 
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9.7.22 INTERACTIONS command 

 
The INTERACTIONS command allows the user to enter the number of predictors that 
are multiplied with the thresholds to form interactions. It is an optional command 
for the ordered outcome variables. 
 

Syntax: 
 

INTERACTIONS = <number>; 
 
The number refers to a positive integer. The maximum value is equal to the number 
of predictors in the model. 
 

Example: 
 
Suppose that there are 4 predictors: AGE, GENDER, WEIGHT and BLODPRES. 
Further assume that the outcome variable has 3 categories, so that there are 2 
threshold parameters to be estimated, denoted as THRESH1 and THRESH2. SuperMix 
also prints out an alternative parameterization denoted as intcept and THRESH2 by 
assuming THRESH1 = 0. The command 

 
INTERACTIONS = 2; 

 
instructs the program to estimate the interaction terms AGE*THRESH2 and 
GENDER*THRESH2. 

 
To ensure the estimability of the interaction coefficients, there are no interactions 
with the first threshold or, equivalently, the intercept. If the predictors were selected 
in the order BLODPRES, WEIGHT, AGE, GENDER, the interactions terms would be 
given by BLODPRES *THRESH2 and WEIGHT *THRESH2. 
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9.7.23 LEVELnID command 

 
The LEVELnID command(s) are used to indicate the variable(s) identifying the units 
on the different levels of the hierarchy.  
 
If the model specified by the user is a level-2 model, the command LEVEL2ID is 
required. Likewise, if a level-3 model is to be considered, the LEVEL2ID and 
LEVEL3ID commands are required in the input file.  
 
Variables listed in the LEVELnID commands must be included in the spreadsheet 
(*.ss3 file). Variable names are case sensitive, therefore the spelling and case in 
which they are given need to correspond to that given in the spreadsheet. LEVELnID 
command(s) are required command(s). 
 

Syntax: 
 

LEVELnID = <variable name identifying level-n units>; 
 

Example: 
 

Suppose the raw data file contains information on the test scores, age and gender of 
pupils belonging to classes within schools, and the variables school, class, age, 
gender, and score are contained in the spreadsheet. The following LEVELnID 
commands may be used to identify the levels of the hierarchical structure: 
 

    LEVEL2ID = CLASS; 
    LEVEL3ID = SCHOOL; 
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9.7.24 LINK command 

 
The LINK command is used to indicate the link functions. It is an optional command 
for continuous, count, and nominal outcomes.  
 

Syntax: 
 

LINK = <keyword>; 
 
The link functions available for the different types of outcome variables are listed in 
the table below. Note that the complete link names are listed in parentheses if 
different from the keywords.  
 

Table 9.2: Outcome variable types and available link functions 
 

Outcome 
variable 

type 
Distribution 

Default 
link 

function 
Other available link functions 

Continuous 
Normal Identity – – – 

Inverse Gaussian log – – – 
Gamma log – – – 

Ordered  probit logistic comp_log-log 
(complementary log-log) log-log 

Nominal  logistic – – – 

Count 
Poisson log – – – 

Negative binomial log – – – 

Binary 
Bernoulli probit logistic comp_log-log 

(complementary log-log) log-log 

Binomial probit logistic comp_log-log 
(complementary log-log) log-log 
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Examples: 
 

LINK = probit; 
LINK = comp_log-log; 

 

9.7.25 LnRANDOM command 

 
The LnRANDOM command is used to identify those variables whose coefficients are 
allowed to vary randomly over a given level of the hierarchy. One LnRANDOM 
command is allowed for each level of the hierarchy. When the input file is created 
through the interface, the LnRANDOM command(s) are automatically generated. 
Variables listed, except for the variable intcept (intercept), must be included in the 
data spreadsheet (*.ss3 file). The spelling and case in which they are given need to 
correspond to that given in the spreadsheet. By default, the intercept is automatically 
included as a random effect at level 2 and level 3 of the hierarchy and, in the case of 
normally distributed continuous outcomes, also at level 1 of the hierarchy. To 
exclude the intercept term at any level, the corresponding Intercept check box must 
be unchecked. The LnRANDOM command is an optional command. 
 

Syntax: 
 

LnRANDOM = <list of variables names to be included as random effects on level n>; 
 
Example: 
 

L2RANDOM = intcept PreTHKS; 
L3RANDOM = intcept; 

 
Note that only a model with a continuous, normally distributed outcome variable 
allows for random effects (usually only a random intercept) on level 1 of the 
hierarchy. 
 
It is possible to place constraints on elements of the random coefficient covariance 
matrices. Information on the constraints permitted and on the provision of initial 
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values for elements of these matrices are discussed elsewhere (see Sections 9.7.5 
and 9.7.7 for the COVnPAT and COVnSTART commands respectively). 
 

9.7.26 MEANSTABLE command 

 
The MEANSTABLE command is used to compute the mean of the selected dependent 
variable for each category (distinct value) of the variable selected in the 
MEANSTABLE command. It is an optional command for the continuous and count 
outcomes. 
 

Syntax: 
 

MEANSTABLE = <variable name>; 
 

Example: 
 

MEANSTABLE = Gender; 
 

This command requests mean values of the outcome variables to be computed for 
males and females. 
 

9.7.27     MODEL command 

 
The MODEL command is used to define the type of dependent (outcome) variable. It 
is required for all the syntax files. 
 

Syntax: 
 

MODEL = <keyword>; 
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Valid keywords are: 
 

CONTINUOUS For the continuous dependent variable 
ORDINAL  For the ordered dependent variable  
NOMINAL  For the nominal dependent variable 
COUNT  For the count dependent variable 
BINARY  For the binary dependent variable 

 
Example: 
 

MODEL = BINARY; 
 

9.7.28 NTRIALS command 

 
The NTRIALS command is an optional command used only for the binomial 
distribution when a binary outcome variable is selected. It is used to define the 
variable specifying the number of trials corresponding to a specific number of 
successes. Each trial in a binomial experiment can have one of two outcomes; one is 
classified as a success, and the other as a failure. The number of trials refers to the 
number of attempts in a binomial experiment and is equal to the number of 
successes plus the number of failures. 
 

Syntax: 
 

NTRIALS = <variable name>; 
 
Example: 
 

NTRIALS = ntrials; 
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9.7.29 OFFSET command 

 
The OFFSET command is an optional command used for count outcomes only. It is 
used to define the offset (exposure) variable. 
 
Count models are also appropriate for rate data, where the rate is a count of events 
occurring for a particular unit of observation, divided by a measure of that unit's 
exposure. An example is the death rates in geographic areas as the count of deaths 
(outcome variable) divided by person-years (exposure). In count models, this is 
handled by an offset where the exposure variable is a predictor with regression 
coefficient constrained to 1. 
 

Syntax: 
 

OFFSET = <variable name>; 
 
Example: 
 

OFFSET = Pers_Yrs; 
 

   

9.7.30 OPTIONS command 

 
Each SuperMix analysis starts with an OPTIONS command. The keywords of the 
OPTIONS command are used to control the estimation procedure and the amount of 
output to be written at convergence of the iterative procedure. Inclusion of an 
OPTIONS command in a syntax file is required, even if it contains no keywords. 

 
Syntax: 
 

OPTIONS <keywords>; 
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If no OPTIONS keywords are given, the default values for these keywords are used. 
Not all the keywords are available for the different types of dependent variables. 
The table below summarizes the available keywords and the availability.  
 

Table 9.3: Keywords associated with the OPTIONS command 
 

Keyword function Conti-
nuous Ordinal Nominal Count Binary 

ACM * 
Requests printing of 
asymptotic covariance 
matrix. 

X X X X X 

BAYES Requests printing of 
Bayes results. X X X X X 

CONVERGE 
Sets a value for the test for 
convergence made at the 
end of each iteration. 

X X X X X 

DEVIANCE * 

Provides value of 2 ln− L  
from a previous analysis 
to compare fit of nested 
models. 

X     

MAXITER 
Indicates the maximum 
number of iterations to be 
performed. 

X X X X X 

METHOD Defines the optimization 
method.  X X X X X 

MODELTERMS 
Selects subtracting or 
adding the model terms 
from the thresholds. 

 X    

NFREE * 

Indicates the number of 
free parameters from a 
previous analysis to 
compare fit of nested 
models. 

X     
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Table 9.3: Keywords associated with the OPTIONS command (continued) 
 

NQUADPTS 
Sets the number of 
quadrature points used for 
numeric integration. 

X X X X X 

REFCAT 

Defines whether the first 
or last category of the 
outcome should be used as 
the reference category. 

  X   

SUMMARY * 
Requests printing of 
summary of hierarchical 
data structure 

X X X X X 

*: Keywords cannot be generated via the GUI. Insert manually in syntax (*.inp) file. 
 

9.7.30.1 ACM keyword 

The ACM keyword is used to print the large-sample covariance matrices of the 
estimated parameters in the fixed part and random part of the model. Standard errors 
of the estimated parameters are equal to the square roots of the diagonal elements. 
The non-duplicated elements of these asymptotic covariance matrices are written to 
external files with the following default names: 
 

<Output filename>_params.acm 
 
If the output file name is, for example, kanfer1.out, then the large-sample covariance 
matrices are saved to the file kanfer1_params.acm. 
 

Syntax: 
 

ACM = <Yes/No> 
 

Default: 
 
No: asymptotic covariance matrices will not be printed. 
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Example: 

 
In the OPTIONS command below, the ACM keyword is used to request the printing of 
the asymptotic covariance matrices at convergence. A convergence criterion of 
0.0001 is set as the requirement for convergence, and 30 iterations is indicated as 
the maximum number of iterations to be performed. 
 

OPTIONS MAXITER = 30 CONVERGE = 0.0001 ACM = Yes; 
 

9.7.30.2 BAYES keyword 

This option allows the user to select between writing the (i) Empirical Bayes 
estimates to an external file, (ii) Empirical Bayes estimates and covariances to an 
external file, or (iii) suppressing this output. 

 
Syntax: 
 

BAYES = <keyword> 
 
The keywords include NO, which suppresses the Bayes results; MEANS, which 
requests the printout of the Bayes estimates of the random effects and COV_MEANS, 
which requests printing of both the E.B. estimates and (co)variances to external files 
with extensions *.bay2 (level-2) and *.bay3 (level-3). These files may be imported 
and saved as *.ss3 files. 
 

Default: 
 

BAYES = NO 

9.7.30.3 CONVERGE keyword 

A test for convergence is made at the end of each iteration. If the absolute difference 
between the estimated parameters and their previous values are all smaller than the 
convergence criterion, convergence is said to have been reached.  
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Syntax: 
 

CONVERGE = <value> 
 
Default: 

 
0.0001. 

 
Example: 

 
In order to use a value of, for example, 0.00001 as convergence criterion, the 
keyword CONVERGE = 0.00001 must be included as part of the OPTIONS command, 
as shown in the following example: 

 
OPTIONS CONVERGE = 0.00001 MAXITER = 20; 

 
The iterative procedure will terminate if this requirement is met, or if 20 iterations 
(set with the MAXITER keyword described in Section 9.7.30.5) have been performed 
without meeting this requirement.  
 

9.7.30.4 DEVIANCE keyword 

The DEVIANCE keyword is used to provide the value of – 2 log likelihood as 
reported in a previous analysis, in order to obtain a 2χ  test statistic for comparing 
two nested models. The 2χ  statistic is defined as the difference in the deviance 
statistics for the two models, and has as associated degrees of freedom the 
difference in the number of parameters estimated in the models compared. It must 
be accompanied by the NFREE keyword, which is used to indicate the number of 
parameters estimated in the previous model.  
 

Syntax: 
 

DEVIANCE = <value> 
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where value equals the deviance ( 2 ln− L ) value at convergence printed to the output 
file of the previous analysis. 
 

Default: 
 
None: no – 2 log likelihood value provided. 

 
Example: 

 
In the OPTIONS command below, the DEVIANCE keyword indicates that a – 2 log 
likelihood value of 22735.524 was obtained in the previous analysis, and that 44 
parameters were estimated (NFREE = 44).  

 
OPTIONS NFREE = 44 DEVIANCE = 22735.524; 

 

9.7.30.5 MAXITER keyword 

The keyword MAXITER is used to indicate the maximum number of iterations to be 
performed. To change the value via the interface, click in the box and enter the 
required maximum number of iterations. 
 

Syntax: 
 

MAXITER = <value> 
 

Default: 
 

100. 
 
The default number of iterations should be sufficient for convergence to be reached 
in most cases. If, however, a more stringent convergence criterion is used or 
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previous experience with a particular data set indicates slow convergence, this 
keyword may be used to increase the maximum number of iterations.  
 

Example: 
 

In the OPTIONS command below, the MAXITER keyword is set to 30, indicating that 
a maximum number of 30 iterations should be performed. The iterative procedure 
may terminate before this number is reached if the convergence criterion of 0.00001 
(CONVERGE = 0.00001) is met. 

 
OPTIONS CONVERGE = 0.00001 MAXITER = 30; 

 

9.7.30.6 METHOD keyword 

The METHOD option defines the optimization method on the Advanced tab. 
 
Syntax: 
 

METHOD = <keyword> 
 
The keyword is one of the following: 
 

MAP  maximum posterior method 
ADAP  adaptive quadrature method  
NADAP  non-adaptive quadrature method 

 
Default: 

 
METHOD = ADAP 

 
Example: 

 
The keyword METHOD = MAP is included as part of the OPTIONS command to 
request the maximum posterior method, as shown in the following example: 
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OPTIONS CONVERGE = 0.00001 MAXITER = 100 BAYES = Cov_Means  
METHOD = MAP; 

 

9.7.30.7 MODELTERMS keyword 

The MODELTERMS option allows the user to select subtracting or adding the model 
terms from the thresholds.  This option is only available for ordinal outcomes. 
 

Syntax: 
 

MODELTERMS = <keyword> 
 
The keyword is either SUBTRACT or ADD. 
 

Default: 
 

MODELTERMS = SUBTRACT 
 
Example: 

 
Consider a level-2 model with a random intercept and assume the outcome variable 
has 4 categories. For the subtract option 
 

'
0( ), 1, 2, ..., ; 1, 2, ...,ijc c ij i iu i N j nη τ= − + = =x β , 

 
and for the add option 
 

0( ' ), 1, 2, ..., ; 1, 2, ...,ijc c ij i iu i N j nη τ= + + = =x β . 
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9.7.30.8 NFREE keyword 

The NFREE keyword is used to denote the number of free parameters as reported in 
a previous analysis, in order to obtain a 2χ  test statistic for comparing two nested 
models. The 2χ  statistic is defined as the difference in the deviance statistics for the 
two models, and has as associated degrees of freedom the difference in the number 
of parameters estimated in the models compared. It must be accompanied by the 
DEVIANCE keyword (see Section 9.7.30.4) which is used to provide the value of – 2 
log likelihood as reported in the previous analysis. 
 

Syntax: 
 

NFREE = <number> 
 
where number is the number of free parameters, that is, the total number of 
parameters estimated during the previous analysis, as reported in the output file. 
  

Default: 
 
None: no parameters indicated for previous model. 
 

Example: 
 
In the OPTIONS command below, the NFREE keyword indicates that 44 parameters 
were estimated in the previous model, with a – 2 log likelihood value of 22735.524 
(DEVIANCE = 22735.524). 
 

OPTIONS NFREE = 44 DEVIANCE = 22735.524; 
 

9.7.30.9 NQUADPTS keyword 

The NQUADPTS keyword is used to define the number of quadrature points (per 
random-effect dimension) to use in the evaluation of the log-likelihood function and 
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derivatives using numerical integration. It is usually between 10 and 20 for 1 
random effect and 5 to 10 for 2 or 3 effects.  
 

Syntax: 
 

NQUADPTS = <number> 
 
where number is a positive integer. 
 

Default: 
 

NQUADPTS = 10 
 

9.7.30.10 REFCAT keyword 

The REFCAT is an option to select whether the first or last category of the outcome 
should be used as the reference category. It is to be used with nominal outcomes 
only. 
 

Syntax: 
 

REFCAT = <keyword> 
 
The keyword is either LAST or FIRST. 
 

Default: 
 

REFCAT = first 
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1.7.1.1 SUMMARY keyword 

 
The SUMMARY keyword is used to suppress the printout of the data summary table.  
 

Syntax: 
 

SUMMARY = <Yes/No> 
 

Default: 
 
Yes: the summary table containing sample sizes of units within the various 
levels of the hierarchy is printed. 

 
Example: 

 
The OPTIONS command below requests use of the default values for the MAXITER, 
and CONVERGE keywords, along with suppression of the printing of the summary 
table as indicated the SUMMARY=NO  keyword. 

 
OPTIONS SUMMARY=NO MAXITER=10 CONVERGE=0.0001; 

 

9.7.31 PREDICTORS command 

 
The PREDICTORS command is used to identify the fixed effects for the model to be 
analyzed. When the input file is created using the interface dialogs, the 
PREDICTORS command is automatically generated. This command is entered in the 
Variables tab. The PREDICTORS command is a required command for all model 
types with the exception of the ordinal model. In the ordinal case, only thresholds 
are estimated if the PREDICTORS command is omitted. 
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Syntax: 
 

PREDICTORS = <list of covariates>; 
 

Example: 
 

PREDICTORS = intcept; 
PREDICTORS = intcept AGE GENDER; 

 

9.7.32 SCALE  command 

 
Some sampling distributions, such as the Binomial, Poisson, Gamma, and Inverse 
Gaussian distributions, have an optional scale parameter. Estimation of this 
parameter is specified by using the SCALE keyword, available form the Advanced 
tab. This is an optional command. 
 

Syntax: 
 

SCALE = <keyword>; 
 
The keyword is one of the following: 
 

      NONE  No scale estimated 
      DEVIANCE  Scale estimate based on the deviance statistic  

PEARSON Scale estimate based on the Pearson statistic 
 

Default: 
 

SCALE = none; 
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9.7.33 THRANDOMn command 

 
The THRANDOMn, n = 2 or 3, command is an optional command for ordinal 
outcomes. It is used to allow for the threshold parameters to vary randomly across 
the level-2 and level-3 units. 
 

Syntax: 
 

THRANDOMn = <keyword>; 
 
The keyword is one of the following: 
 
NO  Threshold parameters are fixed values 
YES Threshold parameters vary randomly 
 

Default: 
 

THRANDOMn = no; 
 

9.7.34 THRESHOLDSTART command 

 
The THRESHOLDSTART command is an optional command for ordinal outcomes. It 
is used to provide the starting values for the thresholds. The values must be 
monotonically increasing. The number of thresholds to be estimated is equal to 

1−C  for ordinal outcomes and C  if a censor variable is additionally selected. C  
denotes the number of categories of the outcome variable. 
 

Syntax: 
 

THRESHOLDSTART = <list of values>; 
 

Example: 
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THRESHOLDSTART = –0.5  1.0  2.0; 

 

9.7.35 THRESHTRANSF command 

 
The THRESHTRANSF command is an optional command for ordinal outcomes. It is 
used to together with the TRANSF_START and TRANSF_END commands to test the 
null hypothesis that a linear combination of the estimated parameters is equal to 
zero. 
 

Syntax: 
 

THRESHTRANSF = <list of values>; 
 

Example: 
 

THRESHTRANSF = 1  0  –1; 
 

9.7.36 TITLEn command 

 
The TITLEn command, where n = 1 or 2, allows the user to provide a description of 
the analysis to be performed. The maximum permissible length of the title for this 
optional command is 70 characters.  
 

Syntax: 
 

TITLEn = <title as provided by the user>; 
 

Default: 
 

      No title. 
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Example: 
 

TITLE1 = Level-3 model with design weights; 
TITLE2 = Random intercepts; 

 

9.7.37 TRANSF_END command 

 
TRANSF_END, together with the TRANSFORMNAMES and TRANSF_START 
commands, is used to test that a linear combination of the parameters is equal to 
zero. The command is optional. 
 

Syntax: 
 

TRANSF_END = <string>; 
 
where string denotes the name of the transformation.  
 

Example: 
 

 TransformNames = H01; 
 Transf_Start = H01; 
 FixTransf = 1  0  –1  0; 
 *Cov2Transf = 0  0  0 ; 
 *Cov3Transf = 0 ; 
 *ThreshTransf = 0  0 ; 
 *FixbyThresh = 0  0  0  0; 
 Transf_End = H01; 

 
*Commands can be omitted if all values in the list are equal to zero. 
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9.7.38 TRANSF_START command 

 
TRANSF_START, together with the TRANSFORMNAMES and TRANSF_END 
commands, is used to test that a linear combination of parameters is equal to zero. 
The command is optional. 
 

Syntax: 
 

TRANSF_START = <string>; 
 
where string denotes the name of the transformation.  
 

Example: 
 

TransformNames = H01 H02 H03; 
Transf_Start = H03; 
FixTransf = 0.3  –0.3  –0.3  0.3; 
Transf_End= H03; 

 

9.7.39 TRANSFORMNAMES command 

 
The TRANSFORMNAMES command is used together with the TRANSF_START and 
TRANSF_END commands to test that a linear combination of parameters is equal to 
zero. The command is optional. 
 

Syntax: 
 

TRANSFORMNAMES = <list of names>; 
 
where list of names denotes the names of the transformations to be tested. A name 
should not exceed 8 characters, and should not include blank spaces between 
characters.  
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Example: 
 

The TRANSFORMNAMES command below indicates that there are two linear 
transformations to be tested. 
 

TransformNames= transf1 transf2; 
Transf_Start= transf1; 
Cov2Transf= 1  0  –1 ; 
Transf_End= transf1; 
Transf_Start= transf2; 
Cov2Transf= 1  0  0 ; 
Transf_End= transf2; 
 

9.7.40 VARNAMES command 

 
The VARNAMES command lists all the variables used in the model. It is a required 
command. 
 

Syntax: 
 

VARNAMES = <variable names>; 
 
Note that all the variables used in the model, including the outcome variable, 
response variable(s), IDs, and weight variable(s) must be included in the 
VARNAMES command. Variable names are case-sensitive. 
 

Example: 
 

Varnames =   SCHOOL CLASS POSTTHKS PRETHKS CC TV CCxTV intcept; 
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9.7.41 WEIGHTn command 

 
The WEIGHT command is used to specify design weights for each level of the 
multilevel model. One WEIGHT command  for each level of the hierarchy may be 
included in the syntax file. For a 2-level model, either or both level-1 and level-2 
weights, if available, can be used. Likewise, any combination of weights can be 
selected for a 3-level model. Use of the command is optional. 
 

Syntax: 
 

WEIGHTn = <variable name>; 
 
where n denotes a positive integer, (1,2,3), for the weight level and <variable name> 
denotes the name of the weight variable.  
 

Default: 
 

No weights. 
 

Example: 
 

The WEIGHT command shown below indicates the use of the level-1 weighting 
variable SPWT. 
 

WEIGHT1 = SPWT; 
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10 Theory 

10.1  A general framework for level-3 linear mixed-effects 
models 

 
Suppose that ijky  denotes a level-1 outcome variable, where i denotes level-3 units 
( 1, 2, ...,i N= ), j denotes level-2 units (j = 1, 2, …, in ), and k denotes level-1 units 
( 1, 2, ..., ijk n= ). 

 
Let 

 ' ' ' '
(3) (2) (1) ,ijk ijk ijk i ijk ij ijk ijky = + + +x β z v z v z e    (10.1) 

where β  is an ( 1)m×  vector of regression coefficients, and where iv , iju  and ijke  
denote level-3, level-2, and level-1 random effects respectively. We assume that 

1 1, ,..., Nv v v  are i.i.d. (3)( , )N 0 Φ , independent of 11 12, ,...,
iN nv v v which are i.i.d. 

(2)( , )N 0 Φ . We further assume that the iv  and ijv  effects are independent of 

111 112, ,...,
i ijN n ne e e  which are i.i.d. (1)( , )N 0 Φ . 

 
The set of regression equations, k = 1, 2, …, ijn  defined by (10.1) can be written as 

  

'
(1) 1 1

'
(1)(3) (2)

'
(1)

,

ij ij

ij ij

ijk ijkij ij ij i ij ij

ijn ijn

 
 
 
 = + + +
 
 
 
 

z e

z ey X β Z v Z v

z e

M

M
  (10.2) 

where ijky , '
ijkx , '

(3)ijkz  and '
(2)ijkz  are typical rows of ijy , ijX , (3)ijZ  and (2)ijZ . In 

turn, the set of regression equations, j = 1, 2, …, in , can be written as 
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 * *
(3) (2) (1)

1 1
,

iji nn

i i i i ij ij is is
j k= =

= + + +∑ ∑y X β Z v Z v Z e   (10.3) 

where 

 

1 (3) 1

2 (3) 2
(3)

(3)

, ,

i i

i i

i i
i i

in in

   
   
   = =
   
   
      

X Z
X Z

X Z

X Z
M M

 

  *
(2)(2) ijij

 
 
 
 
 

=  
 
 
 
 
 

0

0
ZZ

0

0

M

M

and '*
(1)(1) .isis

 
 
 
 
 

=  
 
 
 
 
 

0

0
zZ

0

0

M

M

  (10.4) 

Note that for the level-1 part of the model, the double subscript jk is replaced by the 

single subscript s, where s = 1, 2, …, *
in  and *

1

in

i ij
j

n n
=

=∑ . 

 
From (10.3) and the distributional assumptions given above, it follows that 

( , ),i i iNy μ Σ:  

where 

    ,i i=μ X β     (10.5) 

   '
(3) (3) (3) (2) ,i i i i= +Σ Z Φ Z Λ    (10.6) 

' '
(2) (2) 1 (2) (2) 1 (1) 1 (2) (2) (2) (1),...,

i i ii i i i in in inDiag  = + + Λ Z Φ Z Λ Z Φ Z Λ  (10.7) 
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and 

 ' '
(1) (1) 1 (1) (1) 1 (1) 2 (1) (1),...,

ijij ij ij ij ijnDiag  =  Λ z Φ z z Φ z   (10.8) 

In practice, the number of level-1 units within a specific level-2 unit may be quite 
large, which leads to iΣ  matrices of very high order. If, for example, there are 100 
level-2 units (such as clinics) and nested within each of these units there are 10 
level-1 units (for example patients), the order of iΣ  is 1,000. Note that the inversion 
of a general symmetric matrix or order n requires operations of order 3n  (see e.g. 
Press, et al. 2002). It is therefore apparent that further simplification of the 
likelihood function, derivatives, and Hessian is required if the goal is to implement 
the theoretical results in SuperMix (see Section 10.1.1 and 10.1.2 where this issue is 
addressed). 
 
The log-likelihood function of 1 2, ,..., Ny y y  is 

 1 '

1

1ln { ln 2 ln ( )( ) }
2

N

i i i i i i i
i

L n trπ −

=

= − + + − −∑ Σ Σ y μ y μ .  (10.9) 

Instead of maximizing ln L , maximum normal likelihood estimates of the unknown 
parameters are obtained by minimizing ln L−  with the constant term omitted, i.e. by 
minimizing the function 

   1

1

1( ) {ln },
2

N

i i y
i

F tr −

=

= +∑γ Σ Σ G    

 (10.10) 

where 

   '( )( ) .
iy i i i i= − −G y μ y μ     (10.11) 

Its minimum ( )F∂
=

∂
γ 0
γ

 yields the normal maximum likelihood estimator 
^
γ  of the 

unknown vector of parameters γ . We subsequently give a general framework for 
maximum likelihood estimation of the unknown parameters. 
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10.1.1 A general optimization framework 

Unless the model yields maximum likelihood estimates in closed form, it will be 
necessary to make use of an iterative procedure to minimize the discrepancy 
function. The optimization procedure described next (see Browne & du Toit, 1992) 
is based on the so-called Fisher scoring algorithm, that in the case of structured 
means and covariances may be regarded as a sequence of Gauss-Newton steps with 
quantities to be fitted as well as the weight matrix changing at each step. Fisher 
scoring algorithms require the gradient vector and an approximation to the Hessian 
matrix. Elements of the gradient vector, ( )g γ , and approximate Hessian matrix, 

( )H γ , of ( )F γ  are given by 

1

1[ ( )] { },
2

N
i i

r i i
ir r r

F g tr trµ
γ γ γ=

∂ ∂∂
= = − +

∂ ∂ ∂∑ Σγ Q P    (10.12) 

where 

  ' 1( )i i i iy µ −= −Q Σ      (10.13) 

  1 1( )
ii i y i i

− −= −P Σ G Σ Σ .    (10.14) 

Let 

2

,
ln[ ( )] ( )r s
r s

LH E
γ γ
∂

= −
∂ ∂

γ . 

Browne and du Toit (1992) showed that 

'
1 1 1

,
1

1[ ( )] { }.
2

N
i i i i

r s i i i
i r s r s

H tr µ µ
γ γ γ γ

− − −

=

   ∂ ∂ ∂ ∂
= +   ∂ ∂ ∂ ∂   
∑ Σ Σγ Σ Σ Σ   (10.15) 

Suppose that kγ
∧

is the k -th approximation to the 
∧

γ  that minimizes ( )F γ . 
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Let ( ), ( ),k k k k= =g g γ H H γ  and ( )k kF F γ= . The next approximation is obtained 
from 

  1 k kk k α
∧ ∧

+ = +γ γ d ,     (10.16) 

where 

  1
k k k

−= −d H g       (10.17) 

and kα  is a step size parameter chosen initially as 1 and then successively halved 
until 1k kF F+ ≤ . 

 
Agresti (1990) pointed out that the Fisher scoring method resembles the Newton-
Raphson method, the distinction being that the Fisher scoring uses the expected 
value of the second derivative matrix. 

A convenient feature of the Fisher scoring algorithm is that an estimate, 1{ ( )}
∧

−H γ  of 
the asymptotic covariance matrix of estimators γ  is available on convergence as a 
by-product of the calculations. 

 
It can happen that the matrix to be inverted in (10.17) is singular or near singular. 
An adaptation of the Jennrich and Sampson (1968) stepwise regression procedure 
may be used to obtain an appropriate conditional inverse. Their procedure for 
imposing bounds on the estimates may also be employed. 
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10.1.2 Efficient algorithms for the calculation of derivatives in 
linear-mixed effects models 

The vector γ  of unknown parameters is 

 

(3)

(2)

(1)

,

vecs
vecs
vecs

 
 
 =
 
 
 

Φ
Φ

γ
Φ
β

 

where vecs S  is a vector of order ( 1) / 2p p +  of non-duplicated elements of the 
( )p p×  matrix .S Suppose, for example, that p = 3, then 

( )'
11 21 22 31 32 33, , , , ,vecs s s s s s s=S . 

 
We next illustrate how to obtain computationally efficient expressions for the 
elements of the gradient vector and information matrix. 

 

For this purpose, we derive ln i

r

L
β

∂
∂

 and 
2

(3) (3)

ln

rs uv

LE
 ∂

−  
∂ ∂  Φ Φ

. 

 
From (10.6), using a well-known matrix identity (see e.g. Khatri (1966)), it follows 
that 

 1 1 1 ' 1
(2) (2) (3) (3) (3) (2) ,i i i i i i i

− − − −= −Σ Λ Λ Z C Z Λ     (10.18) 

where 

 ( ) 1' 1 1
(3) (3) (2) (3) (3) .i i i i

−− −= +C Z Λ Z Φ     (10.19) 

Note that (3)iC  is of order 3p , where 3p  denotes the number of level-3 random 
effects. 
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From (10.12) it follows that 

 ( )' 1

1

ln .
N

i i i i
ir r

L tr
β β

−

=

∂ ∂
= −

∂ ∂∑ βy μ Σ X     (10.20) 

Let i i i− =y μ e , then (cf. (10.18)) 

 ( )' 1 ' 1 ' 1
(2) 1 (2) (3) (3) (3) (2) 1

1

ln ,
N

i i i r i i i i i i i r
ir

L tr
β

− − −

=

∂
= +

∂ ∑ e Λ X J e Λ Z C Z Λ X J  

where 1rJ  is a column vector with all elements equal to zero, with the exception of 
the i-th element, which is equal to unity. 

 
A well-known result for the trace operator is that [ ]1 1,r r

tr =AJ A . Use of this result 
and (10.7) gives 

' 1 ' 1 ' 1
(2) (2) (3) (3) (3) (2)'

1 1 1 1

ln .
ij ij ijn n nN

ij ij ij ij ij ij i ij ij ij
i j j j

L − − −

= = = =

    ∂
= +     ∂     
∑ ∑ ∑ ∑e Λ X e Λ Z C Z Λ X

β
  (10.21) 

 
Each of the terms in (10.21) can be further simplified by noting that 

 1 1 1 ' 1
(2) (1) (1) (2) (2) (2) (1) ,ij ij ij ij ij ij ij
− − − −= −Λ Λ Λ Z C Z Λ    (10.22) 

where the 2 2p p×  matrix (2)ijC  is given by 

  
1' 1 1

(2) (2) (1) (2) (2) ,ij ij ij ij

−− − = + C Z Λ Z Φ    (10.23) 

and where 2p  denotes the number of level-2 random effects. 
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For example, 

' 1 1 '
(3) (2) (3) (1)

1

1 ' 1 '
(3) (1) (2) (2) (2) (1)

1 1
.

ij

ijk ijk

n

ij ij ij ijk ijk ijk
k

n n

ijk ijk ijk ij ijk ijk ijk
j j

− −

=

− −

= =

= −

   
   
   

∑

∑ ∑

Z Λ X z Λ x

z Λ z C z Λ x
  (10.24) 

It is therefore essential to obtain computationally efficient expressions for the first 
and second order derivatives. As illustrated above, only matrix inversions of order 

kp , where kp  denotes the number of random effects on level k, k = 1, 2, 3 are 
required. 
From (10.15) it follows that 

 
2

1 1

(3) (3) (3) (3)

ln ,
N

i i
i i

i irs uv rs uv

LE tr − −

=

   ∂ ∂∂  − =   ∂ ∂ ∂ ∂      
∑ Σ ΣΣ Σ

Φ Φ Φ Φ
 

where 

  

{ }

1 1

(3) (3)

' 1 1 '
(3) (3) (3) (3) .

i i
i i

rs uv

i i i rs i i i uv

tr

tr

− −

− −

 ∂ ∂ 
 ∂ ∂  

=

Σ ΣΣ Σ
Φ Φ

Z Σ Z D Z Σ Z D

   (10.25) 

The result (10.25) follows since 

 (3) '
(3) (3)

(3) (3)

,i
i i

rs rs

∂∂
=

∂ ∂

ΦΣ Z Z
Φ Φ

 

where 

 (3)

(3)

(1 ) ,rs rs rs sr
rs

δ
∂

= = + −
∂

Φ
D J J

Φ
 

and where tr tr=AB BA . The scalar δ rs  equals 1 if r = s and 0 otherwise. 
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' 1
(3) (3)i i i

−Z Σ Z  can be evaluated if we substitute 1
i
−Σ  by the right-hand side of (10.18). 

That is 
' 1 ' 1 ' 1 ' 1
(3) (3) (3) (2) (3) (3) (2) (3) (3) (3) (2) (3) .i i i i i i i i i i i i i

− − − −= −Z Σ Z Z Λ Z Z Λ Z C Z Λ Z  (10.26) 

Similarly 

 ' 1 ' 1
(3) (2) (3) (3) (2) (3)

1
,

in

i i i ij ij ij
j

− −

=

=∑Z Λ Z Z Λ Z  

where 
' 1 ' 1 ' 1 ' 1
(3) (2) (3) (3) (1) (3) (3) (1) (3) (2) (3) (1) (3)ij ij ij ij ij ij ij ij ij ij ij ij ij

− − − −= −Z Λ Z Z Λ Z Z Λ Z C Z Λ Z , (10.27) 

and where  

  ' 1 1 '
(3) (1) (3) (3) (1) (3)

1
.

ijn

ij ij ij ijk ij ijk
k

− −

=

=∑Z Λ Z z Λ z    (10.28) 

 

10.1.3  Patterned structures for random effects covariance 
matrices 

Suppose ijky  is an outcome variable corresponding to the k-th level-1 unit (k = 1, 2, 
…, ijn ) nested within the j-th level-2 unit (j = 1, 2, …, in ), which, in turn, is nested 
within the i-th level-3 unit (i = 1, 2, …, N). 
 
A general formulation for the linear mixed-effects model is 

 ' ' ' '
( ) (3) (2) (1) ,ijk f ijk ijk i ijk ij ijk ijky = + + +x β z v z v z e  

where β  is a 1r×  vector of population parameters, iv  a 1p×  vector of level-3 
random effects, ijv  a 1q×  vector of level-2 random effects, and ijke  an 1s×  vector 
of level-1 random effects. 
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We denote the random effects covariance matrices by (3)Φ , (2)Φ  and (1)Φ  

respectively. Let ( )' ' ' ' '
(3) (2) (1), , ,=γ β σ σ σ  denote the vector of unknown parameters of 

order k, where ( )lσ , l = 1, 2, 3 is a vector formed from the non-duplicated elements 

of ( )lΦ . In general, the number of parameters is * * *,k r p q s= + + +  where 

* 1 ( 1)
2

p p p= + , * 1 ( 1)
2

q q q= +  and * 1 ( 1)
2

s s s= + . 

 
In typical level-3 models 

 

2

2

(1)

2

,

e

e

e

σ
σ

σ

 
 
 =
 
 
  

Φ
O

 

that is, we assume that the level-1 error variances are homogeneous. In practical 
applications, this need not be the case and it may be more realistic to assume that 
the level-1 error variances are heterogeneous, that is, 

 

2
11

2
22

(1)

2

.

ss

σ
σ

σ

 
 
 =
 
 
  

Φ
O

 

In the first case, the number of unknown parameters reduces to * * 1k r p q= + + +  
and in the second case to * *k r p q s= + + + . 

 
The ability to impose constraints on the elements of the random effects covariance 
matrices offers users great flexibility in the type of models that can be analyzed, and 
moreover, can lead to substantial savings in computational time. 
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Example 

Suppose that the number of random effects at level-2 of a mixed-effects model 
equals 4, that is (2)Φ  has 10 non-duplicated elements. Suppose further that there is 
reason to believe that the effects have equal variances and equal covariances 
(compound symmetry model),  

 

11

22 11
(2)

22 22 11

22 22 22 11

,

φ
φ φ
φ φ φ
φ φ φ φ

 
 
 =
 
 
 

Φ  

then (2)Φ  have only 2 unique elements. It follows from Section 10.1.1 that at 
iteration n, the increment vector nd  is obtained as a solution to a set of k 
simultaneous equations 

    ,n n n=H d g     (10.29) 

where nH  and ng  are the approximate Hessian matrix and gradient vector with 
respect to the vector of unknown parameters γ  respectively. 

 
Equality constraints 

Consider an arbitrary set of equations =Ax b , 

  

11 1 12 2 13 3 14 4 1

21 1 22 2 23 3 24 4 2

31 1 32 2 33 3 34 4 3

41 1 42 2 43 3 44 4 4.

a x a x a x a x b
a x a x a x a x b
a x a x a x a x b
a x a x a x a x b

+ + + =
+ + + =
+ + + =
+ + + =

   (10.30) 
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Suppose we constrain 2x  to be equal to 3x , then  

11 1 12 13 2 14 4 1

21 31 1 22 23 32 33 2 24 34 4 2 3

41 1 42 43 3 44 4 4

( )
( ) ( ) ( )

( ) .

a x a a x a x b
a a x a a a a x a a x b b

a x a a x a x b

+ + + =
+ + + + + + + = +
+ + + =

 (10.31) 

Likewise, it follows that constraining elements of γ  to be equal involves the 
addition of rows and corresponding columns of nH  and the addition of rows of ng . 
The result is a reduction in the order of nH  and ng , so that the inversion of nH  (see 
(10.17), Section 10.1.1) and the calculation of the increment vector 1

n n n
−=d H g  are 

computationally efficient. 
 

Constraining parameters to be equal to zero 
Suppose, on the other hand, that we wish to impose a stationary moving average 
process of order 1 on (2)Φ , where q = 5 

 

11

22 11

(2) 22 11

22 11

22 11

,0
0 0
0 0 0

φ
φ φ

φ φ
φ φ

φ φ

 
 
 
 =
 
 
  

Φ  

then (2)Φ  contains 6 zero elements. 

 
To illustrate how one would handle the pattern described above, consider the set of 
simultaneous equations (10.30), but suppose that 2x  and 4x  are constrained to be 
equal to 0. Elimination of rows 2, 4, and columns 2 and 4 from the coefficient 
matrix A  gives 

 11 1 13 3 1

31 1 33 3 3.
a x a x b
a x a x b

+ =
+ =
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Likewise, constraining elements of γ  to be equal to zero involves the elimination of 
rows and corresponding columns from the approximate Hessian matrix H and 
elements from the gradient vector g. 

 
Advantage of the element-wise calculation of H and g 

In situations where elements of the covariance matrices (3)Φ , (2)Φ , and (1)Φ  are 
constrained to be equal, significant reductions in computation time and storage 
requirements can be obtained if typical elements of H and g are computed rather 
than matrix expressions for H and g. 
 

Example 

Consider the MA(1) process for ijv  described in Section 10.1.3.3. If we compute the 
gradient element-wise, we need not compute  

31 41 42 51 52

ln ln ln ln ln, , , , ,L L L L L
φ φ φ φ φ

∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

 and 
53

ln .L
φ

∂
∂

 

 

Using 
2 ln LE
α βγ γ

 ∂
−  

∂ ∂  
 to approximate the Hessian, we need not compute the 21 

elements 
2

31 31

ln LE
φ φ

 ∂
−  ∂ ∂ 

, 
2

31 32

ln LE
φ φ

 ∂
−  ∂ ∂ 

, …, 
2

43 43

ln .LE
φ φ

 ∂
−  ∂ ∂ 

 

 
To impose equality constraints, and to constrain parameters to be equal to zero or to 
a fixed value, SuperMix uses CovnPat and FixPat commands (see Chapter 9). To 
illustrate, suppose that we wish to impose a structure on the covariance matrix of the 
level-3 random effects and that there are 4 random effects at this level. Using the 
convention of numbering the non-duplicated elements of a symmetric matrix row-
wise, it follows that the elements of (3)Φ  are numbered as shown below. 

 
1 
2 3 
4 5 6 
7 8 9 10 
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The elements to be fixed are then replaced by a "0". If, for example, the matrix is 
constrained to be diagonal, the covariance pattern is 

 
1 
0 3 
0 0 6 
0 0 0 10 

 
The structure as specified indicates that there are four parameters to be estimated 
(that is, the variances of the random effects) and five parameters that are fixed (that 
is, the covariances). By default, parameters elements indicated by a zero are set 
equal to zero, unless the user overrides these values by specifying his/her own set of 
fixed values. 

 
Parameters constrained to be equal all have the same number starting with the 
smallest number. E.g. if 22 33φ φ= , the number corresponding to 33φ  (that is 6) is 
replaced with "3". 

 
Examples 

1. Toeplitz: number of level-3 random effects equals 5 
 

 1 
 2 1 
 4 2 1 
 7 4 2 1 
11 7 4 2 1 

 

This pattern is equivalent to the covariance structure 

0

1 0

(3) 2 1 0

23 1 0

3 04 2 1

,

γ
γ γ
γ γ γ

γγ γ γ
γ γγ γ γ

 
 
 
 =
 
 
  

Φ  
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that is (1 1)cov( , )ir is r sv v γ −= . 

 
The Toeplitz structure is a general representation of a stationary ARMA process 
(see e.g. Box & Jenkins, 1976). 

 
2. Block diagonal: Number of level-2 random effects equals 6.  

 
Consider the covariance pattern 

 
1 
2 3 
0 0 6 
0 0 9 10 
0 0 0  0 15 
0 0 0  0 20 21 

 

The pattern shown above specifies that 1 2 3 4( , ), ( , )ij ij ij ijv v v v  and 5 6( , )ij ijv v  are 3 sets 
of uncorrelated random variables. Within each set, the covariance term is non-zero. 
This pattern is equivalent to the covariance structure 

11

21 22

33
(2)

43 44

55

65 66

0 0
.

0 0
0 0 0 0
0 0 0 0

φ
φ φ

φ
φ φ

φ
φ φ

 
 
 
 

=  
 
 
 
  

Φ  

 

10.1.4  Use of dummy variables in longitudinal studies 

To simplify the presentation, we consider growth-curves with only intercepts and 
slopes. We begin with a consideration of growth curves for individuals and then 
extend the discussion to the more complex case in which growth curves for both 
members of a dyad, in which the members of the dyad are distinguished from each 
other, (e.g., husband or wife) are of interest.   
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Consider the first few records of a typical multilevel data set for the analysis of 
growth in which the systolic blood pressure (y) of wives are measured over five 
annual assessments (x, ranging from 0 at the first assessment to 4 at the fifth 
assessment so that the intercept reflects average blood pressure at the first 
assessment)  

 
Case    Occasion  y Intercep  x(slope) 
1  1 110  1  0 
1  2 112  1   1 
1  3 115  1  2 
1  4 118  1  3 
2  1  98  1  0 
2  2 102  1  1 
2  3 103  1  2 
2  4 105  1  3 
2  5 106  1  4 
3  1 103  1  0 
3  3 108  1  2 
3  5 111  1  4 

 
Note that occasions 1, 2, 3, 4, and 5 correspond to time-linked x-values of 0, 1, 2, 3, 
and 4, respectively. Furthermore, the data are unbalanced, in the sense that some 
wives have missing measurements. For example, wife 1 has missing data from the 
fifth occasion, and wife 3 has missing data from the second and fourth occasions.  
 
Let N denote the number of cases and in  the number of occasions for case i. The 
standard intercept-and-slopes-as-outcome-variables model is 

 0 1 , 1, 2, , ;

1, 2, ,
ij i i ij ij

i

y x e i N
j n

β β= + + =

=

K
K

   (10.32) 

where it is assumed that on level 2 (cases 1, 2, …, N) 

 0 0 0

1 1 1 .
i i

i i

v
v

β β
β β

= +
= +
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It is further assumed that 1 2, , ,
ii i ine e e  are independently and identically distributed 

as 2(0, )eN σ  random variables. It is also assumed that 01 11 02 12( , ) ', ( , ) ',v v v v  

0 1, ( , ) 'N Nv v  are independently and identically distributed as ( , )N 0 Φ  and that the 
level-2 random effects 01 1( , )iv v  and ije  are independent. 

 
For case i, the set of regression equations (10.32) can be written in matrix notation 
as 

   ,i i i i= +βy X e      (10.33) 

where '
1, 2,( , )

ii i i iny y y=y  , ' '
0 1( )i i iβ β=β  , '

1 2( , , , )
ii i i ine e e=e  , and  

1

2

1
1

.

1
i

i

i
i

in

x
x

x

 
 
 =  
 
  

X
M M

 

From the distributional assumptions above, it follows that 

    = ( )i i iE =μ y X β    (10.34) 

where 0 1( , ) 'β β=β  and 

  ' 2( ) .
ii i i i nCov σ= = +Σ y XΦX I    (10.35) 

From (10.34) and (10.35) one can compute the likelihood function ( iL ) for case i, 
and hence  

   
1

2 log 2 log .
N

i
i

L L
=

− = − ∑    (10.36) 

Usually, a 2χ - test statistic for testing the fit of this model against the saturated 
model is not available for unbalanced data.  
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Next, we show how one can introduce dummy variables so that a 2χ -test statistic 
can be obtained for testing the hypothesis that a linear growth model provides an 
adequate fit to the data versus the alternative hypothesis of saturated means and 
covariances. The alternative model implies that no structure is imposed on the 
elements of iμ  (see (10.34)) or on the elements of iΣ . For balanced data, it is well 

known that 
∧

=μ x  and 
∧

=Σ S  (sample covariance matrix). We show how 
∧

μ  and 
∧

Σ  
can be estimated in longitudinal models with unbalanced data. We also discuss 
additional covariance structures that can be imposed on the error variances 

1 2, , ,
ii i ine e e . 

 
The data set below shows the original dataset augmented with five dummy variables 
OCC1, OCC2,  …, OCC5 created as follows: 

 
Occasion OCC1 OCC2 OCC3 OCC4 OCC5 

1 1 0 0 0 0 

2 0 1 0 0 0 

3 0 0 1 0 0 

4 0 0 0 1 0 

5 0 0 0 0 1 
 

Case Occ. y Intercep x OCC1 OCC2 OCC3 OCC4 OCC5 

1 1 110 1 0 1 0 0 0 0 

1 2 112 1 1 0 1 0 0 0 

1 3 115 1 2 0 0 1 0 0 

1 4 118 1 3 0 0 0 1 0 

2 1 98 1 0 1 0 0 0 0 

2 2 102 1 1 0 1 0 0 0 

2 3 103 1 2 0 0 1 0 0 

2 4 105 1 3 0 0 0 1 0 

2 5 106 1 4 0 0 0 0 1 

3 1 103 1 0 1 0 0 0 0 

3 3 108 1 2 0 0 1 0 0 

3 5 111 1 4 0 0 0 0 1 
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The following model is equivalent to model (10.32) 

 0 1 OCC ,ij i i ij ij ijy x eβ β= + + ×  

and since 

 0 0 0

1 1 1

i i

i i

v
v

β β
β β

= +
= +  

it follows that 

  '*'
0 1 1 2 3 4 5,( , , , , , ) .i i i i i i i iv v e e e e e=v   (10.37) 

This model can be written in matrix notation as a level-2 model with no random 
component on level-1:  

   * * ,i i i i= +y X β Z v    (10.38) 

where 

 

1

2
*

3

4

5

1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

i

i

i i

i

i

z
z
z
z
z

 
 
 
 =
 
 
  

Z  

and '*'
0 1 1 2 3 4 5,( , , , , , ) .i i i i i i i iv v e e e e e=v  

 
If a specific measurement was unavailable on occasion j, then *

iZ  is defined as 
above, with the corresponding row removed. Rewriting model (10.33) as model 
(10.38) enables one to impose more general covariance structures on the error 
variances. From (10.38) it follows that 

  * * *'( ) .i i i iCov= =Σ y Z Φ Z     (10.39) 
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It should be noted that iΣ  is a i in n×  matrix, and therefore has ( 1) / 2i in n +  non-
duplicated elements. However, *Φ  is a ( )( )i in k n k× ×  matrix, where k = 2, and 
therefore has ( )( 1) / 2i in k n k+ + +  non-duplicated elements. These elements cannot 
be uniquely estimated unless constraints are imposed on the elements of *Φ  so that 
the number of free parameters is less or equal to ( 1) / 2i in n + .  

 
Homogeneous level-1 variances   

Model (10.38) is exactly equivalent to model (10.33) if  

11

21 22

33

*

44

55

66

77

0 0

0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

φ

φ φ

φ

φ

φ

φ

φ

=

 
 
 
 
 
 
 
 
 
  

Φ  

where 

11 0

21 0 1

22 1

var( )
cov( , )
var( )

i

i i

i

v
v v
v

φ
φ
φ

=
=
=  

and where 

33 44 77... var( )ijeφ φ φ= = = =  

This model can be fitted using the following pattern for the level-2 random effects 
covariance matrix. The number of free parameters is 2 (fixed part) + 4 (random part) 
= 6. 
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         1 
         2 3 
         0 0 6 
         0 0 0 6 
         0 0 0 0 6 
         0 0 0 0 0 6 
         0 0 0 0 0 0 6 

 
Note that the 6-th element of the covariance matrix is 33φ  and therefore the 10-th 
element ( 44φ ), 15-th element ( 55φ ), etc. are constrained to be equal to 33φ . The 

2 ln L−  value for the saturated model (also called the deviance statistic) allows one 
to calculate 2χ -statistics for testing models against a model with saturated mean 
and covariance structure. This model is defined by 

* *
i i i i= +y X β Z v  

where *
iZ  is an ij ijn n×  identity matrix with rows deleted if no measurements for the 

occasions corresponding to these rows are available. The number of free parameters 
is 5 (fixed part) + 5(5 + 1) / 2 (random part) = 20. Use of dummy variables as 
described above yields identical estimators of the population mean and population 
covariance matrix than those obtained using multiple imputation (see e.g. Schafer, 
1997). 

 
Heterogeneous level-1 error variances   

Use of the following covariance structure enables one to estimate heterogeneous 
level-1 error variances: 

 
          1 
          2 3 
          0 0 6 
          0 0 0 10 
          0 0 0 0 15 
          0 0 0 0 0 21 
          0 0 0 0 0  0 28 

 
The number of free parameters is 2 (fixed part) + 8 (random part) = 10. 
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Intra-class correlation structure for the level-1 variances   

To specify equal level-1 variances and covariances over time, one can use the 
following covariance pattern: 

 
          1 
          2 3 
          0 0 6 
          0 0 9 6 
          0 0 9 9 6 
          0 0 9 9 9 6 
          0 0 9 9 9 9 6 

 
In the examples above, we assumed that the ie  and iv  are uncorrelated. Clearly, one 
can use the covariance patterns to introduce correlation between these variables as 
well. This property is important when dealing with crossed and nested designs.  

 
Structure of the data set      

Consider the first few records of a typical multilevel data set for the analysis of 
growth in which blood pressure measurements (y) for both husbands and wives are 
measured over five annual assessments (x, ranging from 0 at the first assessment to 
4 at the fifth assessment).    

 
  y Husband Wife 

Couple Occ. Pressure Intcep x(slope) Intcep x(slope) 

1 1 110 1 0 0 0 
1 2 108 1 1 0 0 
1 3 109 1 2 0 0 
1 4 118 1 3 0 0 
1 5 117 1 4 0 0 
1 6 111 0 0 1 0 
1 7 106 0 0 1 1 
1 8 101 0 0 1 2 
1 9 109 0 0 1 3 
1 10 104 0 0 1 4 
2 1 117 1 0 0 0 
2 6 141 0 0 1 1 
3 1 119 1 0 0 0 
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3 2 84 1 1 0 0 
3 6 107 0 0 1 0 
3 7 89 0 0 1 1 

 
Because the couple is the unit of analysis and both spouses are nested within couple, 
there are now 10 possible occasions for each couple, five for the husband, and five 
for the wife. Further, each blood pressure count is defined as belonging to either the 
husband or to the wife so that a husband’s intercept and slope score will have entries 
of 0 for the wife, and the wife’s intercept and slope will have entries of 0 for the 
husband. As in the earlier example, the data here are also unbalanced because 
spouses from some couples had data at only some assessments. For example, for 
couple 2, husband and wife contributed data at only the first assessment, and for 
couple 3, husband and wife contributed data for only the first two assessments. 

 
Because the couple now has 10 occasions, 10 dummy variables (H1 to H5 for the 
husbands’ five occasions and W1 to W5 for the wives’ five occasions) are needed to 
define each occasion. Thus, the full data set, augmented with the set of dummy 
variables looks as follows: 

 
   Husband Wife Husband Wife 

Couple Occ. Pres. Intcep x Intcep x H1 H2 H3 H4 H5 W1 W2 W3 W4 W5 

1 1 110 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
1 2 108 1 1 0 0 0 1 0 0 0 0 0 0 0 0 
1 3 109 1 2 0 0 0 0 1 0 0 0 0 0 0 0 
1 4 118 1 3 0 0 0 0 0 1 0 0 0 0 0 0 
1 5 117 1 4 0 0 0 0 0 0 1 0 0 0 0 0 
1 6 111 0 0 1 0 0 0 0 0 0 1 0 0 0 0 
1 7 106 0 0 1 1 0 0 0 0 0 0 1 0 0 0 
1 8 101 0 0 1 2 0 0 0 0 0 0 0 1 0 0 
1 9 109 0 0 1 3 0 0 0 0 0 0 0 0 1 0 
1 10 104 0 0 1 4 0 0 0 0 0 0 0 0 0 1 
2 1 117 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
2 6 141 0 0 1 1 0 0 0 0 0 1 0 0 0 0 
3 1 119 1 0 0 0 1 0 0 0 0 0 0 0 0 0 
3 2 84 1 1 0 0 0 1 0 0 0 0 0 0 0 0 
3 6 107 0 0 1 0 0 0 0 0 0 1 0 0 0 0 
3 7 89 0 0 1 1 0 0 0 0 0 0 1 0 0 0 
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The covariance pattern below allows for correlation between wives' and husbands' 
intercept and slope coefficients but restricts the model to homogeneous level-1 error 
variances and uncorrelated level-1 errors. 

 
 1 
 2  3 
 4  5  6 
 7  8  9 10 
 0  0  0  0 15 
 0  0  0  0  0 15 
 0  0  0  0  0  0 15  
 0  0  0  0  0  0  0 15 
 0  0  0  0  0  0  0  0 15  
 0  0  0  0  0  0  0  0  0 15 
 0  0  0  0  0  0  0  0  0  0 15 
 0  0  0  0  0  0  0  0  0  0  0 15   
 0  0  0  0  0  0  0  0  0  0  0  0 15 
 0  0  0  0  0  0  0  0  0  0  0  0  0 15  

 
The number of free parameters is 4 (fixed part) + 11 (random part) = 15. 

 
Heteroscedastic level-1 error variances, correlated errors between spouses, and 
autoregressive errors for wives.   

A researcher can also examine improvement in model fit when a lag-1 process is 
modeled with the aid of dummy variables. This is a common way to model 
autocorrelated errors (e.g., Sivo & Willson, 1998; Willett & Sayer, 1994) in which 
errors at one time point influence those from only the next immediate time point 
(e.g., the error associated with a Time 1 assessment is related to the error in the 
Time 2 assessment, the error associated with a Time 2 assessment is related to the 
error in the Time 3 assessment, and so on). As seen in the covariance pattern below, 
the four errors between adjacent assessments (i.e., between year 1-year 2, year 2-
year 3, year 3-year 4, and year 4-year 5) were allowed to correlate. Because there 
was no reason to expect these lags to differ in strength, they were constrained to be 
equal. 
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Hint 1 
Hslp 2  3 
Wint 4  5  6 
Wslp 7  8  9 10 
H1   0  0  0  0 15 
H2   0  0  0  0  20 21 
H3   0  0  0  0  0  20 28  
H4   0  0  0  0  0  0  20 36 
H5   0  0  0  0  0  0  0  20 45  
W1   0  0  0  0 50  0  0  0   0 55 
W2   0  0  0  0  0 50  0  0   0 65 66 
W3   0  0  0  0  0  0 50  0   0  0 65 78   
W4   0  0  0  0  0  0  0 50   0  0  0 65 91 
W5   0  0  0  0  0  0  0  0  50  0  0  0 65 105  

 
The number of free parameters is 4 (fixed part) + 23 (random part) = 27. Again, the 
deviance statistic associated with this model can be used to compare this model with 
the previous model.  

 

10.1.5  The use of dummy variables in multivariate response 
models 

In health services research, researchers often have data sets containing more than 
one response variable. A typical example is counts of inpatient ( 1y ), outpatient ( 2y ) 
and emergency room ( 3y ) visits for mental health care. There is thus a need for 
software that can fit multivariate response variables to a linear mixed-effects model. 
It turns out that, with the use of dummy variables, a multivariate level-2 model can 
be fitted to the data using a 3-level model with a single response variable and no 
level-1 random effects. 

 
For the variables 1y , 2y , and 3y  considered above, the following represents a 
typical data set, where 1x  = depressive severity and 2x  = type of insurance coverage 
(coded 1 for public and –1 for private). Missing values are coded –9. 
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Clinic Patient y1 y2 y3 x1 x2 

1 1  0 2  1 22 -1 
1 2  1 3 -9 30  1 
1 3 -9 2  1 26 -1 
2 1  0 1  1 23 -1 
2 2  0 2  0 29  1 
2 3  0 1  1 26  1 
2 4  1 2  1 33 -1 

 

 
To create a data set that can be analyzed with the SuperMix level-3 module, dummy 
variables are created for each response variable in the data set. For the example 
above this translates to three dummy-coded variables: kd  = 1 if ky  is measured, k = 
1, 2, 3, and 0 otherwise. Using these dummy variables we construct a new data set, 
shown below for clinic number 1, patients 1, 2, and 3. 

 
Clinic Patient y d1 d2 d3 x1*d1 x1*d2 x1*d3 x2*d1 x2*d2 x2*d3 

1 1 0 1 0 0 22 0 0 -1  0  0 
1 1 2 0 1 0 0 22 0  0 -1  0 
1 1 1 0 0 1 0 0 22  0  0 -1 
1 2 1 1 0 0 30 0 0  1  0  0 
1 2 3 0 1 0 0 30 0  0  1  0 
1 3 2 0 1 0 0 26 0  0 -1  0 
1 3 1 0 0 1 0 0 26  0  0 -1 

…     
 

In the level-3 framework, y is the response variable, d1, d2, d3, x1*d1, …., x2*d3 are 
typical rows of the fixed-effects design matrix. The fixed effects part consists of 
intercept coefficients (corresponding to d1, d2, and d3), slope coefficients for 
depressive severity (corresponding to x1*d1, x1*d2, and x1*d3), and insurance 
coverage coefficients (corresponding to x2*d1, x2*d2, and x2*d3). Alternatively, one 
can use depression and insurance as level-2 covariates in which case the data set 
(shown for Clinic 1, Patient 1 only) has the form 

 
Clinic Patient y d1 d2 d3 x1 x2 

1 1 0 1 0 0 22 -1 
1 1 2 1 1 0 22 -1 
1 1 1 1 0 1 22 -1 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

616 

 
The difference between the two approaches is that in the first approach, different 
slopes are assumed for the three service utilization outcome variables, whereas we 
assume equal slopes for depression and equal slopes for insurance type in the 
second approach.  

 
Theoretical Framework 

Suppose that there are q response variable and let ijky  denote the k-th response for 
the (i,j)-the unit. 
 
The multivariate response model to be considered in this section (see du Toit 
(1995)) is defined by 

   [ ]'
ijk ijk i ijk k

y  = + +  x β v v    (10.40) 

where 1,2,..., ; 1, 2,..., ii N j n= =  and {1,2,..., }.k q∈  

 
Assume that the 1q×  random vectors 1 2, ,..., Nv v v  are i.i.d. with mean 0 and 
covariance matrix (3)Φ , independently distributed of the 1q×  i.i.d. random vectors 

1 2, ,...,
ii i inv v v , which have, mean 0 and covariance matrix (2)Φ . 

 
' :1ijk s×x  is a typical row of the design matrix of the fixed part of the model, the 

elements being values of the s predictors. The elements of iv  and ijv  make 
provision for variation of responses over level-3 and level-2 units respectively. Note 
that no allowance is made for level-1 variation, since there are no true experimental 
units below level-2. 
 
The set of equations given in (10.40) can be written in matrix notation as 

 (3) (2)
1

in

i i i i i ij
j=

= + +∑y X β Z v Z v  
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where iX  has typical row '
ijkx , 

    

1

(3) ,

i

i

iji

in

 
 
 
 =
 
 
 
 

S

SZ

S

M

M
    (10.41) 

(2)ijZ  is a 
1

in

ij
j

n m
=

 
× 

 
∑  matrix partitioned as 

    (2)ij ij

 
 
 
 
 =  
 
 
 
  

0

0
Z S

0

0

M

M

    (10.42) 

and ijS  is a selection matrix consisting of a subset of the rows of the q q×  identity 
matrix qI  where the rows of ijS  correspond to the response measurements available 
for the ( ,i j )-th unit. 
 
As an example of how the ijS  matrices are constructed, consider the measurement 
of six plasma lipid variables, 1 2 6, ,...,y y y . For the case where all six response 
measurements are available ij q=S I . If, however, only measurements on 2y  and 4y  
are available,  

 
0 1 0 0 0 0

.
0 0 0 1 0 0ij
 

=  
 

S  
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Under the distributional assumptions given above, it follows that 

 ( )i iE =y X β  

and 

  

'

' '
(3) (3) (3) (2) (2) (2)

1

( , )

,
i

i i i
n

i i ij ij
j

Cov

=

=

= +∑

y y Σ

Z Φ Z Z Φ Z
   (10.43) 

with iX , (3)iZ  and (2)ijZ  as defined by (10.41) and (10.42). 

 

10.1.6  The use of dummy variables for fitting 4-level 
regression models 

Consider a clinical study designed to measure the impact of hormone therapy on 
memory and cognition in elderly women. Suppose that 50 hospitals (level-4 units) 
participated in the study. For each of the hospitals, data are available for 5 types of 
hormone treatments (level-3 units) obtained from the female patients (level-2 units) 
who were tested twice a year for a period of up to 6 years (level-1 units). 

 
Let ijkly  denote a cognition score at occasion l for patient k on treatment j at hospital 
i.  

 
A typical mixed-effects model for data of this type is 

0 1 21 2 ... ,ijkl ijkl ijkl r ijkl i ij ijk ijkly x x xr w v u eβ β β β= + + + + + + + +  (10.44) 

where iw  denotes a level-4 (hospital level) variance component, ijv  a level-3 
(treatment level) variance component, ijku  a level-2 (patients) variance component, 
and ijkle  denotes the level-1 measurement error. It is further assumed that there are r 
covariates 1 2, ,..., rx x x  (such as age, weight and percentage fat) that may influence 
the cognition score. 
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The set of regression equations (10.44) can be rewritten as 

 *
(3) (2) (1) ,ijkl ikl ikl i ikl ik ikl ikl= + + +y X β Z v Z v Z e    (10.45) 

where 

  

1, 1 , 1
0

1, 2 , 2
1

1, 3 , 3

1, 4 , 4

1, 5 , 5

1
1
1 ,
1
1

i kl r i kl

i kl r i kl

i kl r i klikl

i kl r i kl
r

i kl r i kl

x x
x x
x x
x x
x x

β
β

β

 
  
  
  = ⋅
  
  
   

X

K
K
K

M
K
K

   (10.46) 

  

1

2*
(3)

3

4

5

1 1 0 0 0 0
1 0 1 0 0 0

,1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1

i

i

i
ikl i

i

i

i

w
v
v
v
v
v

 
   
   
   
 = ⋅  
   
   
       

Z v   (10.47) 

  

1

2

(2) 3

4

5

1 0 0 0 0
0 1 0 0 0

,0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

i k

i k

ikl ik i k

i k

i k

v
v
v
v
v

  
  
  
  = ⋅
  
  
     

Z v    (10.48) 
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and 

 

1

2

(1) 3

4

5

1 0 0 0 0
0 1 0 0 0

.0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

i kl

i kl

ijkl ikl i kl

i kl

i kl

e
e
e
e
e

  
  
  
  = ⋅
  
  
     

Z e     (10.49) 

We note that, except for column 1 of the design matrix (3)Z , the remaining columns 
correspond to dummy variables 1 2 5, ,...,T T T  where 1jT =  if treatment number is j 
and 0 otherwise. If only treatments 2, 3, and 5 are available at hospital i, the design 
matrices (3) (2), ,ikl ikl iklX Z Z  and (1)iklZ  are defined by (10.46) to (10.49), but with 
rows 1 and 4 removed. For example, 

 (3)

1 0 1 0 0 0
1 0 0 1 0 0 .
1 0 0 0 0 1

ikl

 
 =  
  

Z  

For the level-3 model (10.45) to be equivalent to the level-4 model (10.44), the 
following patterned covariance specifications (see Chapter 9) are required. 

 
Level-3 covariance pattern 

1 
0 3 
0 0 3 
0 0 0 3 
0 0 0 0 3 
0 0 0 0 0 3 

 

The advantage of this presentation is that one can allow for cross-level 
correlation(s). For example, if there is reason to believe that there is differences in 
the way patients react to the treatments due to some hospital effect, then we may 
want to assume that cov( , ) 0i ijw v ≠ . These covariance terms may be included in the 
model by using the following covariance pattern: 
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1 
2 3 
2 0 3 
2 0 0 3 
2 0 0 0 3 
2 0 0 0 0 3 

 

Level-2 covariance pattern 
1 
0 1 
0 0 1 
0 0 0 1 
0 0 0 0 1 

 

Level-1 covariance pattern 
1 
0 1 
0 0 1 
0 0 0 1 
0 0 0 0 1 

 

Since measurement error may be associated with the type of treatment administered, 
the assumption of homogeneous level-1 error variances may not be realistic and one 
may want to use a covariance pattern for heterogeneous error variances as described 
in Section 10.1.3. 

 

10.1.7 Testing of contrasts (linear transforms) in mixed-effects 
models 

Consider a clinical trial in which two types of drugs are administered to 400 obese 
adults. Adults are randomly assigned to four groups: 

 
o Group 1, Drug A, low dosage (10 mg/day) 
o Group 2, Drug A, high dosage (50 mg/day) 
o Group 3, Drug B, low dosage (10 mg/day) 
o Group 4, Drug B, high dosage (50 mg/day) 
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Let ijy  denote weight loss of subject i on occasion jt , i = 1, 2, …, 400 and j = 1, 2, 
…, in , and let 

 1 2 3 4 5 6

7 8 1 2

AL AH BL BH TIJ AGE

GENDER INITW TIJ
ij

i i ij

y
v v e

β β β β β β

β β

= + + + + +

+ + + + × +
  (10.50) 

where AL, AH, BL and BH are dummy variables, coded as follows 
 

 AL AH BL BH 

Drug A, low dosage 1 0 0 0 
Drug A, high dosage 0 1 0 0 
Drug B, low dosage 0 0 1 0 
Drug B, high dosage 0 0 0 1 

 
In model (10.50), 1 2 3, , ,β β β  and 4β  represent the average group loss (or gain) 
in weight over the study period if we control for a subject’s age (AGE), gender 
(GENDER), weight at the onset of the trial (INITW), and time (TIJ) at which the 
weight loss ( ijy ) measurement was made.  

 
Visual inspection of the estimated β -coefficients may point to significant 
differences between the different treatments. The construction of contrasts or linear 
functions of the parameters is a useful statistical analysis tool and enables the 
researcher to perform hypothesis testing concerning the equality of subsets of 
parameters.  

 
In the example above, the fixed part of the model has 8 parameters 1 2 8, , ... ,β β β . 
We may want to test the following 3 hypotheses: 

 
01 1 2

02 1 3

03 1 4

:
:
: .

H
H
H

β β
β β
β β

=
=
=
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Each of these hypotheses can alternatively be written as 

 
01 1 2 3 4 5 6 7 8

02 1 2 3 4 5 6 7 8

03 1 2 3 4 5 6 7 8

:1 1 0 0 0 0 0 0 0
:1 0 1 0 0 0 0 0 0
:1 0 0 1 0 0 0 0 0

H
H
H

β β β β β β β β
β β β β β β β β
β β β β β β β β

− + + + + + + =
+ − + + + + + =
+ + − + + + + =

 

or, in matrix notation,  

0 : ,H =Cβ 0  

where 

 
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 .
1 0 0 1 0 0 0 0

− 
 = − 
 − 

C  

Suppose that an additional 100 subjects (the control group) are also assigned to the 
experiment, but each subject from this group receives a placebo. Suppose further 
that the 5 treatments are hypothesized to be related as described by the tree diagram 
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Here we can form the orthogonal contrasts: 
 

 Treatments 
Contrast 1 2 3 4 5 TIJ AGE GENDER INITW 

A 1/3 1/3 1/3 -1/2 -1/2 0 0 0 0 
B 1 -1/2 -1/2 0 0 0 0 0 0 
C 0 0 0 1 -1 0 0 0 0 
D 0 1 -1 0 0 0 0 0 0 

 
A complex hypothesis about several elements of the vector of fixed coefficients β  
can be tested if use is made of a p m×  contrast matrix C, with p the number of 
contrasts and m the number of fixed coefficients. The hypothesis is written in the 
form 

 =Cβ k , 

where k is a known vector, usually k = 0.  
 

For large samples (see e.g. du Toit, 1993), 
∧

Cβ  has an approximate ( )1 ',N −Cβ CΓ C  

distribution, where ( )Cov
∧

=Γ β . The elements of 1−Γ  can be obtained from 
2

'

log LE
 ∂

−  ∂ ∂ β β
 (see Section 10.1.1). If the hypothesis 0 :H =Cβ k  is true, it follows 

(see, e.g. Anderson (2003)), that 

 ( ) ( )1' 1 'U
−− = − − Cβ k CΓ C Cβ k    (10.51) 

has an approximate 2χ -distribution with p degrees of freedom.  
 

A set of 100 (1 )%α−  simultaneous confidence intervals for the p elements of Cβ  is 
given by the p intervals 

 
0.5' ' 1 2

,i i i m αχ
∧

− ±  c β c Γ c , 
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where p m≤ , '
ic  denotes the i-th row of C and 2

,m αχ  is the critical value of the 2χ  
distribution with m degrees of freedom. 

 
 

10.2 Distribution models and link functions 

10.2.1 Introduction 

It is assumed that ijky  is an outcome variable, where 1, 2, ...,i N=  denotes level-3 
units and 1, 2, ..., ij n=  denotes level-2 units, nested within each level-3 unit i . The 
level-1 units 1, 2, ..., ijk n=  are nested within the ( , )i j -th (level-3; level-2) 
combination. 
 
For 2-level models, the subscript i  is omitted and jky  denotes level-1 unit k  nested 
within level-2 unit j . 
 
A multilevel model with a non-normal outcome variable is transformed to a linear 
model by using a link function which defines the relationship between the dependent 
variable ijkη  of the linear model and the mean ijkµ  of the distribution selected. More 
specifically, the linear model of a multilevel generalized linear model is given by 

 ' ' '
(2) (3) ,ijk ijk ijk ij ijk iη = + +x β z v z v  

where ijkx  is a 1p×  vector of predictors, (2)ijkz  is a 1q×  design vector associated 
with the level-2 random effects ijv . Likewise, (3)ijkz  is a 1r×  design vector 
associated with the level-3 random effects iv . Typically, the elements of (3)ijkz  and 

(2)ijkz  are subsets of the elements of ijkx . 

 
It is further assumed that the level-3 and level-2 random effect vectors are 
uncorrelated and also that ( )(3),i Nv 0 Φ:  and that ( )(2),ij Nv 0 Φ: . 
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10.2.2 Link function and derivatives 

The link functions available are the log, logistic, complimentary log-log, log-log, 
and probit. Table 10.1 contains a summary of these link functions and their 
derivatives. The cumulative distribution for each link is denoted by ( )CDF η  and 
the corresponding probability distribution function by ,PDF where 

.PDF CDF
η
∂

=
∂

 The second-order derivatives of η  with respect to the link 

function is denoted by .PDF
η
∂
∂

 The CDF  of a standardized normal variable is 

denoted by ( )Φ ⋅ , while ( )1 expc η= − , and ( ) 12 exp
1

c
c

η= = . 

 
Table 10.1: Probability and cumulative distribution functions 

 

Function ( )CDF η  ( )PDF η  .PDF
η
∂
∂

 

Logistic 
1

1 1c+
 (1 )CDF CDF−  2( 1 2)c c PDF− ×  

Probit ( )ηΦ  21 1exp
22
η

π
−  PDFη− ×  

Complementary log-log ( )1 exp 2c− −  ( )2 1c CDF−  (1 2)c PDF−  

Log-log ( )exp 1c−  1c CDF×  ( 1 1)c PDF−  

Log 2c  2c  2c  
 
In subsequent sections, short descriptions of the different distribution-link type 
models are given. 
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10.2.3 The Poisson-log model 

Assume ijky  follows a Poisson distribution with mean ijkµ . In other words, the 
probability density function of ijky  is given by 

 ( ) ( ) { } { }, ln , ln ln !
!

ijk ijky
ijk

ijk ijk ijk ijk ijk ijk ijk ijk
ijk

e
f y f y y y

y

µ µ
µ µ µ µ

−

= ⇒ = − −  (10.52) 

and the variance of ijky is given by 

     ( )2
ijk ijkyσ µ=     (10.53) 

Suppose further that the following exponential model is imposed on the means of 
ijky  

     ( )expijk ijkµ η=     (10.54) 

The model in (10.54) is transformed to a linear model by using the log link function. 
In other words 

     ( )lnijk ijkη µ=      (10.55) 

 

10.2.4 Models for the Bernoulli sampling distribution 

Sampling distribution 

    1( ) (1 )ijk ijky y
ijk ijk ijkf y µ µ −= −     (10.56) 

Variance 

    2 ( ) (1 )ijk ijk ijkyσ µ µ= −    (10.57) 
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10.2.4.1 The logistic model 

Model for means 

    
( )

1
1 expijk

ijk

µ
η

=
+ −

     (10.58) 

Link function 

   logit( ) ln
1

ijk
ijk ijk

ijk

µ
η µ

µ

  = =  −  
    (10.59) 

 

10.2.4.2 The complementary log-log model 

Model for means 

    ( ){ }1 exp expijk ijkµ η= − −     (10.60) 

Link function 

    ln( ln(1 ))ijk ijkη µ= − −      (10.61) 

 

10.2.4.3 The probit model 

Model for means 

     ( )ijk ijkµ η= Φ      (10.62) 

where ( )Φ ⋅  denotes the cumulative distribution function of the standard Normal 
distribution.  
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Link function 

     1( )ijk ijkη µ−= Φ     (10.63) 

    

10.2.4.4 The log-log model 

Model for means 

    ( ){ }exp expijk ijkµ η= − −     (10.64) 

Link function 

    ( ){ }ln lnijk ijkη µ= − −      (10.65) 

 

10.2.5 Models for the Binomial distribution 

Sampling distribution  
Let ijky  denote the proportion of successes in ijkn  independent trials:  

   ( ) ( )1
( ) 1 ijk ijkijk ijk

n yijk n y
ijk ijk ijk

ijk ijk

n
f y

n y
µ µ

− 
= −  
 

   (10.66) 

Variance 

    
( )2
1

( ) ijk ijk
ijk

ijk

y
n

µ µ
σ

−
=    (10.67) 

The models for the means and the link functions are identical to those of the 
Bernoulli-logit model described in Section 10.2.4. 

 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

630 

10.2.6 The Negative Binomial-log model 

Sampling distribution 

   
( )

( )
( )

1

1

( )
1 11

ijk

ijk

y
ijk

ijk
ijk

y

ijkijk

y
f y

y ψ

ψµψ

ψµ
ψ

+

 
Γ + 
 =

  +Γ + Γ 
 

   (10.68) 

Variance 

    ( )2 2
ijk ijk ijkyσ µ ψµ= +    (10.69) 

The model for means and the link function are identical to those of the Poisson-log 
model described in Section 10.2.3. 

 

10.2.7 The Gamma-log model 

Sampling distribution 

   

1

1( ) exp
1

ijk ijk
ijk

ijk ijk
ijk

y y
f y

y

ψ

µ ψ µ ψ
ψ

   
= −           Γ 

 

   (10.70) 

Variance 

     ( )2 2
ijk ijkyσ ψµ=    (10.71) 

The model for means and the link function are identical to those of the Poisson-log 
model described in Section 10.2.3. 
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10.2.8 The Inverse Gaussian-log model 

Sampling distribution 

  
2

3

1 1( ) exp
22

ijk ijk
ijk

ijkijkijk

y
f y

yy

µ
ψ

µπ ψ

  − = −      
   (10.72) 

Variance 

     ( )2 3
ijk ijkyσ ψµ=    (10.73) 

The model for means and the link function are identical to those of the Poisson-log 
model described in Section 10.2.3.  

 

10.2.9 Models for the Multinomial sampling distribution 

Sampling distribution 

( )
1

,
, 1

1

,1 ,2 , 1 , ,1 1
1

, ,
11

!
, ,...,

! !

C

ijk ijk l
ijk l l

C n y
yijk

ijk ijk ijk C ijk l ijk CC C
l

ijk l ijk ijk l
ll

n
f y y y

y n y
µ µ

−

=

− −

− − −
=

==

∑ 
=      −  

  

∏
∑∏

  (10.74) 

Covariance matrix 

    *( )
ijkijk ijk ijkµ ′= −Σ y D μ μ    (10.75) 

where *
,1 ,2 , 1ijk ijk ijk ijk Cy y y −

′ =  y L and 
ijkµD denotes a ( 1) ( 1)C C− × −  diagonal 

matrix with the elements of ,1 ,2 , 1ijk ijk ijk ijk Cµ µ µ −
′ =  μ L  on the diagonal. 
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10.2.9.1 The generalized logistic (nominal) Model 

Model for means 

   
{ }

{ }
,

, 1

,
1

exp
1,2, , 1

1 exp

ijk l
ijk l C

ijk l
l

l C
η

µ
η

−

=

= ∀ = −
+∑

L    (10.76) 

Link function 

    ,
, ,

,

logit( ) ln ijk l
ijk l ijk l

ijk C

µ
η µ

µ

  = =  
 

   (10.77) 

 

10.2.9.2 The cumulative logistic (ordinal) model 

Model for means 

  
{ }
{ }

{ }

,
, ,

,

*

1

exp
, 1

1 exp
1

1 exp

l ijk l
ijk l ijk r

l ijk l

ijk

l

r
l C

τ η
µ µ

τ η

η

∗

=

−
= = ∀ = −

+ −

=
+ −

∑ L   (10.78) 

where 

, ,ijk l l ijk lη τ η∗ = −  

 the elements of 1 2, 1, , Cτ τ τ −L  denote threshold parameters. 
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Link function 

    ,
, ,

,

clogit( ) ln
1

ijk l
ijk l ijk l

ijk l

µ
η µ

µ

∗
∗ ∗

∗

  = =  −  
   (10.79) 

 

10.2.9.3 The proportional hazards (cumulative complimentary log-log) 
model 

Model for means 

  { }( ), , ,
1

1 exp exp 1,2, , 1
l

ijk l ijk r ijk l
r

l Cµ µ η∗ ∗

=

= = − − ∀ = −∑ L   (10.80) 

   ( )( ), , ,cloglog( ) ln ln 1ijk l ijk l ijk lη µ µ∗ ∗ ∗= = − −    (10.81) 

 

10.2.9.4 The cumulative log-log model 

Model for means 

  { }( ), , ,
1

exp exp 1,2, , 1
l

ijk l ijk r ijk l
r

l Cµ µ η∗ ∗

=

= = − − ∀ = −∑ L   (10.82) 

   ( )( ), , ,loglog( ) ln lnijk l ijk l ijk lη µ µ∗ ∗ ∗= = − −    (10.83) 

 

10.2.9.5 The cumulative probit model 

Model for means 

  ( ), , ,
1

1, 2, , 1
l

ijk l ijk r ijk l
r

l Cµ µ η∗ ∗

=

= = Φ ∀ = −∑ L    (10.84) 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

634 

where ( )Φ ⋅  denotes the cumulative distribution function of the standard normal 
distribution. 

 
Link function 

     ( )1
, ,ijk l ijk lη µ∗ − ∗= Φ     (10.85) 

 

10.2.10 The estimation of scale and dispersion parameters 

A number of sampling distributions discussed in the previous sections have a 
dispersion parameter and/or a scale parameter. A summary of these distributions 
with respect to dispersion and scale parameters and their estimates is shown in 
Table 10.2. 

 
Table 10.2:  Scale and dispersion parameters 
 

Distribution Deviance Dispersion Pearson Scale 

Binomial x   x x 

Gamma x x x x 

Inverse Gaussian x x x x 

Negative binomial x x x   

Poisson x   x x 

 

10.2.10.1 The deviance 2χ  estimate 

  
2

ˆ D
D d

χφ =       (10.86) 

 2 ˆ2 ln ( | ) 2 ln ( | )D L Lχ = −y y μ y      (10.87) 
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1 1 1

iji nnN

ijk
i j k

d w q
= = =

= −∑∑∑      (10.88) 

 

10.2.10.2 The Pearson 2χ  estimate 

   
2

ˆ P
P d

χφ =               (10.89) 

  
( )

( )

2

2
2

1 1 1

ˆ

ˆ

iji nnN
ijk ijk ijk

P
i j k ijk

w y

y

µ
χ

σ= = =

−
=∑∑∑              (10.90) 

 
10.3 Theoretical aspects: level-3 generalized linear models 

10.3.1 Notation 

Let ijy  denote a 1ijn ×  vector of outcomes with typical element ijky , where i  
denotes the level-3 units, j  denotes the level-2 units nested within the i -th level-3 
unit and k  denotes the level-1 units nested within ij . 

 
Assume further that there are N  level-3 units so that 1, 2,..., .i N= Within a typical 
level-3 unit there are in  level-2 units, 1, 2,..., ij n=  and nested within ij  there are 

ijn  level-1 units so that 1, 2,..., .ijk n= There are, therefore, 
1

N

i
i

n
=
∑  level-2 units and 

1 1

inN

ij
i j

n
= =
∑∑  level-1 units. 
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Let *
iy  and *

iv  denote 
1

1
in

ij
j

n
=

×∑  vectors partitioned as follows: 

 

1

2*

i

i

i
i

in

 
 
 =  
  
 

y
y

y

y
M

; 

1

2*

i

i

i
i

in

 
 
 =  
  
 

v
v

v

v
M

, 1, 2,i N= L  

Under the assumption that 

  ( )1, , . . . ,
ii in i i d Nv v 0 ΦL    (10.91) 

and 

  ( ), 1, , . . . ,i i N i i d N=v 0 ΨL   (10.92) 

with ( )'cov ,ij i =v v 0 , it follows that 

  
( ) ( ) ( )

( ) ( ) ( )

* * * * *

* * *

, , | , ,

| ,

i i i i i i i i

i i i i i

f f g

f g g

= ⋅

= ⋅

y v v y v v v v

y v v v v
  (10.93) 

Therefore 

( ) ( ) ( ) ( )
*

* * * * *| ,
i i

i i i i i i i if f g d g d
  = ⋅ 
  
∫ ∫
v v

y y v v v v v v  

From (10.91), it follows that 

( ) ( ) ( ) ( )* *

1

| , | ,
in

i i i i ij ij i ij
j

f g f g
=

⋅ =∏y v v v y v v v . 
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Hence 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

*

1

1 1

| ,

| ,

i

i ij

iji

i ij

n

i i i i ij ij i i
j

nn

ijk ij i ij ij i i
j k

f f g d g d

f y g d g d

=

= =

  = ⋅ 
  
   = ⋅  

    

∏∫ ∫

∏ ∏∫ ∫

v v

v v

y y v v v v v v

v v v v v v

 (10.94) 

 
Using the Poisson distribution model as an example,  

( ) ( )
,

exp
| ,

!

ijky
ijk ijk

ijk ij i
ijk

f y
λ λ

λ

−
=v v  

where 

{ }' ' '
(2) (3)exp .ijk ijk ijk ij ijk iλ = + +x β z v z v  

 

10.3.2 Log-likelihood function 

Let 

( )

( ){ } ( )

*

1

ln

ln
i

i

i i

n

ij i i
j

l f

h g d
=

=

= ∏∫
v

y

v v v
 

where 

( ) ( ) ( )
1

exp ln | ,
ij

ij

n

ij ijk ij i ij i
k

h f g d
=

= ∑∫
v

v y v v v v  
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Note that 

( ) ( ) ' 1 1
1 2

11 1

1 1exp exp
2 2

iji i

ij

nn n

ij i ijk ij ij ij i i
kj j

h g K l d K− −

== =

     ′= − −   
   
∑∏ ∏ ∫

u

v v v Φ v v v Ψ v  

Let 

   ' 1

1

1 ln
2

ijn

ij ijk ij ij u
k

t l K−

=

= − +∑ v Φ v   (10.95) 

    ( )ln | ,ijk ijk ij il f y= v v    (10.96) 

and 

    11ln ,
2i v i iq K −′= − v Ψ v   (10.97) 

        ( ) 1 222 r
uK π −−= Φ  

         ( ) 1 222 m
vK π −−= Ψ . 

 
From (10.95), (10.96), and (10.97) it follows that 

( )*
2

1

2
1

*
2

1

exp exp

exp ln exp exp

exp ln

i

i ij

i

i ij

i

i

n

i ij ij i i
j

n

ij ij i i
j

n

ij i i
j

f K t d q d

K t d q d

K q q d

=

=

=

  =  
  

  =  
  
 

= + 
 

∏∫ ∫

∑∫ ∫

∑∫

v v

v vu

v

y v v

v v

v

 

with * exp .
ij

ij ij ijq t d= ∫
v

v  
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Therefore 

 ( ) ( )*ln ln ln ln ln exp
i

i v i v ij i i
v

l K f K q q dv= + = + +∫y   (10.98) 

where *

1
ln

in

ij ij
j

q q
=

=∑ . 

 

10.3.3 Empirical Bayes estimates  

Estimates of the random effects are obtained as the conditional expectation of ijku  

given the observations *
iy . More specifically, 

  ( ) ( ) ( )* *| exp /ijk i v i ij ijk i iE u K q q p d f = + ∫y v y  (10.99) 

where  

( )
1
222

m

vK π −−= Ψ , 

11
2i i iq −= − v Ψ v  

and where 

( ) ( )| ,
ij

ijk ijk ij i ij ij ijp u f g d= ∫
v

y v v v v  

Likewise 

  ( ) ( ) ( )* *| exp /ijk ijl i v i ij ijkl i iE v v K q q c d f = + ∫y v yg  (10.100) 
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where 

( ) ( )| ,
ij

ijkl ijk ijl ij i ij ij ijc v v f g d= ∫
v

y v v v v . 

 

10.3.4 Derivatives of the log-likelihood function 

10.3.4.1 Fixed effects: β -derivatives  

( ) ( )*ln ln expi i v i ij il f K q q d= = +∫y v  

Therefore 

( ) ( ) ( )
1

ln exp ln | ,
i

i ij

n

i ij i ij ij i i
j

l f g g d
=

  =  
  
∑∫ ∫

v v

y v v v v v  

   

  
( ) ( )

( ) ( )

*

*

ln 1 exp

1 exp

i

i

i
v ij i i

r ri

v ij ij i i
ri

l K q q dv
f

K q q q dv
f

β β

β

∂ ∂
= +

∂ ∂

 ∂
= + ∂ 

∫

∫

v

v

y

y

  (10.101) 

Since 

*

1
ln

in

ij ij
j

q q
=

=∑ , 

it follows that 

*

*
1

ln
i ijn

ij r

jr ij

qq
q

β
β =

∂
∂ ∂

=
∂ ∑  
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and  

( ) ( )

( ) ( ) ( )

*

1

1

exp ln | ,

ln | , | , .

ij

ij

ij

ij

n

ij ijk i ij ij ij
kr r

n

ijk i ij ij i ij ij ij
k r

q f g d

f f g d

β β

β

=

=

∂ ∂
=

∂ ∂

∂
=

∂

∑∫

∑∫

v

v

y v v v v

y v v y v v v v
 (10.102) 

 

10.3.4.2 Level-2 variance components: Φ  - derivatives 

 
( ) ( )*

ln 1 expi
v ij ij i i

rs rsi

l K q q q d
f φ

 ∂ ∂
= + ∂Φ ∂ 

∫
v

v
y

  (10.103) 

*

1
ln

in

ij ij
j

q q
=

=∑  

( ) ( ) ( )

( )

( )

*
1

/

*
1

,

*
1

1 ln | ,

E ln

2E
2

i

ij

ij iji

i ij i

n
ij

ij ij i ij ij ij
jrs ij rs

ijn
rs

j ij

n ij r s

j ij

q
g f g d

q

g

q

rs

q

φ

φ

δ

=

=

=

∂  ∂
=  ∂Φ ∂ 

 ∂
 ∂ =

− 
  =

∑ ∫

∑

∑

v

v y

v y

v y v v v v

v

P

 

where ( )1 ' 1.ij ij ij
− −= −P Φ v v Φ Φ   
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10.3.4.3 Level-3 variance components: Ψ - derivatives 

  
( ) ( ) ( )*

ln 1 exp
i

i
ij ij i i

rs rsi

l q q q dv
fψ ψ

 ∂ ∂
= + ∂ ∂ 

∫
vy

  (10.104) 

( )

11 ln
2

ln

i i i v

i

q K

g

−= − Ψ +

=

v v

v
 

   ( ) ,

2
2

i
i r s

rs

q rsδ
ψ
∂ − ⇒ =  ∂  

P    (10.105) 

 
where ( )1 ' 1.i i i

− −= Ψ −Ψ ΨP v v   

 

10.3.5 Second order derivatives  

The method for obtaining second order partial derivatives is illustrated below for the 

terms 
2 ln i

uv rs

l
ψ ψ
∂

∂ ∂
 and 

2 ln i

uv rs

l
φ φ
∂
∂ ∂

. The derivatives for 
2 ln i

u rs

l
β ψ
∂
∂ ∂

 etc. are obtained in a 

similar way. 
 
 
( ),uv rsψ ψΙ : 

 
From (10.104) 

( )

( ) ( ) ( )

*

*

lnln

1 ln exp
i

ii

rs rs

i ij i i
rsi

fl

g q q d
f

ψ ψ

ψ

∂∂
=

∂ ∂

 ∂
= + ∂ 

∫
v

y

v v
y
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Hence 

 

( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )

( )

2 2

*

*

2*

2

*

ln 1 ln exp

1 ln ln exp

1 ln exp ln exp

1 ln

i

i

i i

i
i i ij i

uv rs uv rsi

i i i ij i
rs uvi

i i ij i i i ij i
rs uvi

uv rsi

l g q q d
f

g g q q d
f

g q q d g q q d
f

g
f

ψ ψ ψ ψ

ψ ψ

ψ ψ

ψ ψ

 ∂ ∂
= + ∂ ∂ ∂ 

 ∂ ∂
+ + ∂ ∂ 

    ∂ ∂ − + + +    ∂ ∂     

∂
=

∂

∫

∫

∫ ∫

v

v

v v

v v
y

v v v
y

v v v v
y

y
( ) ( ) ( ) ( )

( ) [ ] [ ] ( ) 1 1 1 1
, ,*

ln ln exp

ln ln

ln lnexp

i

i

i i i i ij i
rs uv

i i

uv rs

i i
i i i ij i ur vs us vru v r s

uv rsi

g g q q d

l l

l lcons P P q q d cons
f

ψ ψ

ψ ψ

ψ ψ ψ ψ
ψ ψ

− − − −

 ∂ ∂
+ × + ∂ ∂ 

∂ ∂
−
∂ ∂

∂ ∂
= × + − − +

∂ ∂

∫

∫

v

v

v v v v

v
y

          
 (10.106) 

( )( )2 2
2

uv rs
cons

δ δ− −
=  

From (10.106) it follows that 

 [ ] [ ] [ ] [ ]{ }
2

1 1 1 1
| | |

ln .
i i i

i
y i y i y i i ur vs us vruv rs uv rs

uv rs

f cons E E E
ψ ψ

− − − −∂
= − ⋅ + +

∂
P P P P ψ ψ ψ ψ

(10.107) 
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( )uv rs,I Φ Φ : 
 

From (10.103) we have 

( ) ( ) ( )*

ln 1 ln exp
i

i
i ij i i

rs rsi

l g q q d
fφ φ

 ∂ ∂
= + ∂ ∂ 

∫
v

v v
y

 

and 

( ) ( )
1
ln | ,

ij

ij

n

ij ij i ij ij ij
k

q f g d
=

=∑ ∫
v

y v v v v . 

Thus 

1

2 _
2

in

ij
jrs

rsq E PIJ EPIJδ
φ =

∂ −
= =

∂ ∑ , 

where 

( ) ( ) ( )* ,

1 2_ | ,
2ij ij i ij ij ijr s

ij

rsE PIJ P f g d
q

δ− =   ∫ y v v v v , 

and 

  
( ) ( )*

ln 1 exp
i

i
ij i i

rs i

l EPIJ q q d
f

∂
= +

∂Φ ∫
v

v
y

  (10.108) 

1
_

in

j
EPIJ E PIJ

=

=∑ , 

and therefore 

( ) ( )
2 2

*

ln ln ln1 exp
i

i i i
ij ij ij i ij i

uv rs uv rs uv rs uv rsi

l l lq q q q q d
fφ φ φ φ φ φ

  ∂ ∂ ∂∂ ∂ ∂
= + × + − ⋅  ∂ ∂ ∂ ∂ ∂ ∂Φ ∂Φ  

∫
v

v
y

. 
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Hence 

( ) ( )
2

|*
1

1 1 1 1

1

ln exp

ln ln

i

ij

i

n
i

y ij ij i ij iuv rs
juv rs i

N
i i

i ur vs us vr
juv rs

f cons E q q d
f

f f cons n

=

− − − −

=

 ∂ −    = +    ∂Φ Φ  

 ∂ ∂  + ⋅ + × +   ∂Φ ∂Φ  

∑∫

∑

v

P P v
y

Φ Φ Φ Φ

 

 

10.3.6 Evaluation of integrals 

In the preceding sections expressions for the log-likelihood function and derivatives 
are given in terms of multiple integrals. In general, no closed form solution to these 
multiple integrals exists and therefore use is made of numerical integration to 
evaluate them. 

 
Consider a general integral of the form   

 ( ) ( )| ,i i i iI f g d= ∫ y v v v  

where it is assumed that ( ),i Nv 0 Φ: . This integral can equivalently be written as 
follows: 

 ( ) ( ) ( )
( )

|
| ,

|
i i i i

i i i
i i

f g d
I dφ

φ
  =  
  

∫
y v v v

v y v
v y

 

where 

 ( ) $( ) $( )11| exp ,
2

i ii i i i ikφ − = − − − 
 

v y v v Σ v v   (10.109) 

$ ( )| ,i i iE=v v y
 

µ ( )|i i iCov=Σ v y , 
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and  

   ( ) /2 1/22 | | .r
ik π

∧− −= Σ     (10.110) 

Consider the transformation of variables 

   11
2

ii i i

∧
−  = − 
 

z T v v     (10.111) 

where 

'
ii i

∧

=TT Σ  

and hence 

( ) ( )
1

1 1' .i i i

−∧ − −
=Σ T T  

From (10.111) it follows that 

( ) 2 ,ii i i i i

∧

= = +v v z Tz v  

The Jacobian of the transformation is given by 

 
*

*

| | ,

2 .

i i i

i i

d d=

=

v T z

T T
 

Using the change in variables, it follows that 

  ( ) ( )' *
'

|
exp | | .

exp
i i i

i i i i
i i

f g
I k d

k
 

= −  − 
∫

y v v
z z T z

z z
  (10.112) 
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10.3.7 Adaptive quadrature 

To evaluate (10.112), use is made of a direct implementation of Gauss-Hermite 
quadrature. With this rule 

 2exp{ } ( )z f z dz
∞

−∞

−∫  

can be approximated by  

 
1

( )
G

w f zα α
α=
∑ , 

where the wα  and zα  denote weights and nodes of the Hermite polynomial of 
degree G . 

 
Applying this to the multiple integral defined by (10.112), it follows that 
 

 

( ) ( )

( ) ( )
1

1

1

1

' *

1 1

*

1 1

... ... exp | | | ( ) ( )

... ... | | | ( ) ( )

r
r

r
r

G G

g g g g i i i g i g
g g

G G

g g i i i g i g
g g

I C w w f g

C m m f g
= =

= =

=

∑ ∑

∑ ∑

z z T y v z v z

T y v z v z

;

 

 

( ) ( )
( ) ( )

*

1
1

*

1
1

( ) ( )
1 1

( ) ( )
1 1

exp |

|

i i i ir
r

i i i ir
r

g g

g g

G G
I C w w f gg g g g g g

G G
C m m f gg g g g

= =

= =

∑ ∑ ′

∑ ∑=

z z T y v z v z

T y v z v z

; L L

L L

 

where 

 
( ) / 2 1/ 22 | | ,rC π − −= Φ
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( )exp ln ,g g gm z w

α α α
= ⋅

 
and 

 ( )1 2, , ..., .g g g grz z z z=  

Values of i

∧

v  and i
∧

Σ  (cf. Section 10.3.3) are iteratively updated. This implies that 
the location and scale of the area under the integral changes over iterations and 
depends on the observed values for a particular level-3 or level-2 unit.  
 

10.4 Starting values for generalized linear models 

10.4.1 Introduction 

SuperMix uses an algorithm based on the maximization of the posterior distribution 
(MAP) with respect to the random effects. 
 
In the sections to follow, we assume a level-2 model with a count outcome variable. 
It is also assumed that the Poisson model is appropriate for level-2 data with a 
subset of the regression coefficients assumed to be random. 
 

10.4.2  Illustration of the procedure for a count outcome 
variable 

Let ijy  be a count outcome variable where i  denotes level-2 units, 1, 2, ,i N= K  and 
j  level-1 units nested within the level-2 units 1, 2, , ij n= K . 

 
Under the assumption of conditional independence 

  ( ) ( ) ( ) 1

2

i
ij

n
y

i i ij ij ij
j

f | exp y !µ µ
−

=

= −∏y v   (10.113) 
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Suppose that the following exponential model is imposed on the means of the 
elements ijy  of the 1in ×  vector iy  

  ( ) ( )' '
ij ij ij ij iexp exp ,µ η= = +x β z v    (10.114) 

where ijx  is a 1p×  vector of covariates and the elements of 
'

1 2, , , pβ β β =  β K  

denote unknown, but fixed, parameters. Generally, the 1m×  vector ijz   is a subset 

of the columns of ijx . Additionally, it is assumed that 1 2, , , Nv v v  are i.i.d. 

( ),N 0 Φ . 

 
The model (10.114) is transformed to a linear model by using the log link function. 
In other words, 

    ( )ij ijlnη µ= .    (10.115) 

Using standard results for conditional distributions, it follows that 

( ) ( ) ( )
( ) ( ) ( )

i i i i i

i i i i

f | f , / f

f | g / f .

=

= ⋅

v y v y y

y v v y
 

Hence 

 
( ) ( ) ( )

( ){ } ( )
1

i

i i i i i

n

ij ij ij ij i
j

ln f | ln f | ln g K

y ln ln y ! g K ,µ µ
=

= + −

= − + − + +∑

v y y v v

v
 (10.116) 
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10.4.3 Gradient vector and Hessian matrix 

Given β  and Φ , it follows that 

( )
[ ] ( )

1

1 2

in
i i

ij ij ij i
ji ir ir irr

ln f |
y ln ln g ,

v v v

r , , ,m

µ µ
=

∂  ∂ ∂ ∂
= − + ∂ ∂ ∂ ∂ 

=

∑
v y

v
v

K

 (10.117) 

Since 

   ij
ij ijr

ir

z
v
µ

µ
∂

=
∂

,     (10.118) 

( ) ( )
1

' 122
12 exp
2

r

i i ig π −− − = − 
 

v Φ v Φ v  

and hence 

   ( )
[ ]

1ln
,i

i r
i r

g −∂
 = −  ∂

v
Φ v

v
   (10.119) 

it follows that 

( ) { } 1

1

ln |
, 1, 2, , , .

in
i i

ijr ij ij i r
jir

f
z y r m

v
µ −

=

∂
 = − − = ∂ ∑

v y
Φ v 

 

Maximization of ( )ln |i if v y  is equivalent to the minimization of  

   ( ) ( )
2 1

i i i

F F

F ln f | ln g .= − − −v y v
 

   (10.120) 

Hence the gradient vector is defined by 

    ( )ln |i ii

ir ir

fF
v v

∂∂
= −

∂ ∂
v y

.  (10.121) 
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Furthermore, 

 
2

1

1
1 2

in
i

ij ir ijr ,s
jir is

F z z s, r , s , , , ,m.
v v

µ−

=

∂  = + = ∂ ∂ ∑Φ 
 (10.122) 

Let H  denote the Hessian matrix, where 

   [ ]
2

,
,i r s

ir is

F
v v
∂

=
∂ ∂

H     (10.123) 

then 

  [ ] ( )1
,,

1
,

in

i r s ijr ijs ijr s
j

E z z E µ−

=

= +∑H Φ    (10.124) 

where 

  ( ) { }( )' '
ij ij ij ijE E expµ = +x β z v .   (10.125) 

Therefore 

 [ ] 1

1

1
2

in
' '

i r ,s ij ij ij ijr ijsr ,s
j

E exp z z .−

=

  = + +    
∑H Φ x β z Φz   (10.126) 

 

10.4.4 The MAP algorithm 

1. Set µ 0.1= ∗Φ I , 1 2, , , N

∧ ∧ ∧

=v v v 0  

2. Calculate 
∧

β  given 
∧

Φ  and iv
∧

 

3. Given the current estimates 
∧

β  of β  and 
∧

Φ   of Φ , calculate iv
∧

, 1, 2, ,i N=   
using the Newton-Raphson method: 

  
( 1)

1( ) ( ) , 1, 2,
k k

k k
i i i iv v k

−∧ ∧
−= + =H g   (10.127) 
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where 

  [ ] , 1, 2, , .i
i r

ir

F r m
v
∂

= =
∂

g     (10.128) 

4. Obtain (see, e.g., du Toit, 1993) a revised estimate 
∧

Φ  of Φ  from 

  ( ) ( )( )'1 |i i iiCov
N

∧  
= + − − 

 
∑Φ v y v v v v 

     (10.129) 

where 

  ( ) 1
|i i iCov E

∧ −  =      
v y H     (10.130) 

and 

   
1

1 in

i ij
ji

v
n

∧

=

= ∑v .     (10.131) 

5. Repeat steps (2) to (4) until convergence is attained. 
 

10.4.5 Starting values for adaptive quadrature 

As initial estimates of the fixed and random parameters, we use the values of 
∧

β  and 
∧

Φ  at convergence. The i

∧

v  and ( | )i iCov
∧

v y  (see (10.130) and (10.131)) are used as 
initial estimates of the empirical Bayes means and the covariances in the adaptive 
quadrature procedure described in Section 10.3.7. 
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10.5 Survival analysis and ordinal models 

10.5.1 Introduction 

Several authors have noted the connection between survival analysis models and 
binary and ordinal regression models for survival data that are discrete or grouped 
within time intervals, see for example Hedeker (2008). 
 
An example that illustrates the binary approach is given in Chapter 8. In Sections 
10.5.2 and 10.5.3 we assume that time of assessment can take on only discrete 
positive values 1, 2, ,t T=  . To make the connection to ordinal models more direct, 
in the next sections time will be denoted by c, where 1,2, ,c C=   and where C 
equals the number of categories of the outcome variable y. 
 

10.5.2 Proportional hazards model 

Let ijky  denote the outcome c , where 1,2, ,c C=   for individual k, 1, , ijk n=   
nested within level-2 unit j, 1, 2 , ij n=  , which in turn is nested within level-3 unit 
i, 1, 2, ,i N=  . 

 
For each level-1 unit, observation continues until time ijky , at which point either an 
event occurs, indicated by 1ijkd =  or the observation is censored, indicated by  

0ijkd = . Censoring indicates being observed at c but not at 1c + . 

 
Let ,ijk cP  denote the probability of failure up to and including time interval c, that is 

  ( ),ijk c ijkP P y c= ≤      (10.132) 

From (10.131) it follows that the probability of survival beyond time interval c is 
,1 ijk cP− . 
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Because ,1 ijk cP−  represents the survival function, Hedeker (2008), based on 
McCallagh (1980) proposed the following proportional hazards model 

 
( )

( ) ( )

, ,

2 3

log log 1ijk c ijk c

c ijk ij iijk ijk

Pη

γ β

 = − − 
′ ′ ′= + + +x z v z v

    (10.133) 

where ijkx , ( )2 ijk′z  and ( )3 ijk′z  are design vectors for the fixed, random at level-2 and 

random at level-3 effects. The threshold terms cγ  represent the logarithm of the 
integrated baseline hazard (i.e. when =β 0 , ij =v 0 , and i =v 0 .) 

 
A positive coefficient for a predictor reflects increasing hazard with greater values 
of the predictor. In the ordinal treatment, survival time is represented by ijky , which 
is designated as being censored or not. 
 

10.5.3 Estimation 

The probability of a response in category c, conditional on the random effects is 
equal to  

   ( ) , , 1| ,ijk i ij ijk c ijk cP y c P P −= = −v v   (10.134) 

where 

( ), ,1 exp expijk c ijk cP η = − −   

The likelihood is given by 

 ( ) ( ) ( )
,

1

, , 1 ,
1 1

| , 1
ijk ciji

ijk ijk

ynn d d

ijk i ij ijk c ijk c ijk c
j k

l y P P P
−

−
= =

 = − × −  ∏∏v v   (10.135) 

Consequently, the log-likelihood function is  
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( ) ( ) ( ) ( ){ }, , , 1 ,
1 1

ln | , ln 1 ln 1
iji nn

ijk i ij ijk c ijk ijk c ijk c ijk ijk c
j k

y y d P P d P−
= =

= − + − −∑∑v v  (10.136) 

The marginal maximum likelihood ( )ln ijky  and derivatives are obtained using 
numerical quadrature as described in Section 10.4. 
 

10.6 Level-2 continuous outcome models with 
autocorrelated level-1 errors 

10.6.1 Introduction 

It is usually assumed that the errors in linear random coefficient models are 
conditionally independent (conditional on the random effects). When fitting models 
to longitudinal data, it is often more realistic to assume that the model errors are 
autocorrelated over time. 
 
In subsequent sections we describe several models that allow for subject 
heterogeneity via the level-2 random effects and autocorrelation via time-series 
structures imposed on the level-1 residuals. 
 
Let  

   ' ' ,ij ij ij i ijy e= + +x β z v     (10.137) 

where 1,2, ,i N=   and 1, 2, , ij n=  . Level-2 units are denoted by the subscript i  
and level-1 units by the subscript j . 
 
The set of in  regression equations (10.137) can be written in matrix notation as 

   ' ' ,i i i i i= + +y X β Z v e     (10.138) 

where iX  and iZ  are design matrices for the fixed and random effects respectively. 
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It is further assumed that ( )(2),i Nv 0 Φ:  and that ( )2,i iN σe 0 Ω:  where iv  and 

ie  are uncorrelated. For uncorrelated homogeneous level-1 residuals, 

( ): 1i in= ×Ω I . 

 
From the distributional assumptions it follows that 

  
2

~ ,
0

i i i v i i i v

i v v

N
σ ′ +   

      ′     

y X β Z Σ Z Ω Z Σ
v Σ Z Σ

.  (10.139) 

Also, the mean of the posterior distribution of iv , given iy , yields the empirical 
Bayes (EB) estimator of the random effects, 

 ( ) ( ) ( )
11 1' 2 1 ' 2 .i i i i v i i iσ σ
−∧ − −− = + −  

v Z Ω Z Σ Z Ω y X β   (10.140) 

Similarly, the corresponding posterior covariance matrix is given by 

  ( )
11' 2 1

| iv y i i i vσ
−− − = +  

Σ Z Ω Z Σ    (10.141) 

Further details regarding estimation of multilevel linear models are provided in 
Section 10.1.  
 

10.6.2 AR(1) errors 

The first-order autoregressive process (AR1) for the error e  at time point j  is given 
as 

   1j j je eρ ξ−= +      (10.142) 

where the disturbances jξ  are assumed to be distributed ( )20,N σ  and ρ  is the 
autocorrelation coefficient that reflects the degree to which the errors are 
autocorrelated. It is assumed that | | 1ρ <  (i.e., that ρ  is a correlation parameter). 
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Under the AR(1) relationship, the variance of the errors at a particular time point is 
equal to  

   
( ) ( )

( )
1

2 2
1 .

j j j

j

V e V e

V e

ρ ξ

ρ σ

−

−

= +

= +
   (10.143) 

An assumption that is often made is that of stationarity, which means that the 
variance of the errors is assumed to be constant across time and that the correlations 
are the same within a time-lag. With stationarity, 

   ( )
2

2, .
1

s

j j sCov e e ρ σ
ρ− =

−
   (10.144) 

Taken together, this leads to a variance-covariance matrix of the errors 

 
( )

2 1

2

2 32
2

2

1 2 3

1
1

1
1

1

n

n

n

n n n

ρ ρ ρ
ρ ρ ρ
ρ ρ ρσσ

ρ

ρ ρ ρ

−

−

−

− − −

 
 
 
 

=  
⋅ ⋅ ⋅ ⋅−  

 ⋅ ⋅ ⋅ ⋅
 
  

Ω

L
L
L
L
L
L

 

 

10.6.3 MA(1) errors 

Another common form for autocorrelated errors is the first order moving average 
process, MA(1), which is given as 

    1j j je ξ θξ −= −     (10.145) 

with disturbances jξ  assumed to be ( )20,N σ , and θ  the autocorrelation coefficient 
for the moving-average process. Here, the errors at a particular time point equal the 
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disturbances at that time point plus a correlated part of the disturbances at the 
previous time point. For the stationary MA(1) process 

 

2

2

2 2 2

2

1 0 0
1 0

,0 1 0

0 0 0 1

θ θ
θ θ θ

σ σ θ θ

θ

 + −
 − + − 
 = − +
 

⋅ ⋅ ⋅ ⋅ 
 + 

Ω

L
L
L
L
L

 

that is, a symmetric matrix with ( )2 21 θ σ+  on the main diagonal, 2θσ−  on the first 
off-diagonal, and 0 everywhere else. This form posits that only the lag-1 errors are 
correlated. This implies that the errors at a given time point are only correlated with 
those one time point apart. 
 
While the MA(1) form is generally unreasonable for the variance-covariance matrix 
of e  in fixed effects linear models, it might well be reasonable for the variance-
covariance matrix of e  in linear random effect models, which is conditional on both 
covariates X and the random effects iv . 

 

10.6.4 ARMA(1,1) errors 

A more general form for the autocorrelated errors is the first-order mixed 
autoregressive-moving average process which depends on both the AR parameter ρ  
and the MA parameter θ , and is given as 

    1 1k k k ke eρ ε θε− −= + −    (10.146) 

with all terms as before. The error variance-covariance matrix is now of the form: 
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( )

2
0 1 1 1

3
1 0 1 1

42
2 1 1 0 1

2 52
1 1 1 1

2 3 4
1 1 1 0

1

n

n

n

n

n n n

γ γ ργ ρ γ
γ γ γ ρ γ
ργ γ γ ρ γσσ
ρ γ ργ γ ρ γρ

ρ γ ρ γ ρ γ γ

−

−

−

−

− − −

 
 
 
 

=  
−  

 ⋅ ⋅ ⋅ ⋅
 
  

Ω

L
L
L
L
L
L

 

where 2
0 1 2γ θ ρθ= + −  and ( )( )1 1 .γ ρθ ρ θ= − −  

 

10.6.5 Toeplitz errors 

One can assume that each lag (or each off-diagonal in the error variance-covariance 
matrix) has its own distinct autocorrelation parameter. The error variance-
covariance matrix is then of the form 

 

1 2 1

1 1 2
2 2

2 1 3

1 2 3

1
1

1 .

1

n

n

n

n n n

ρ ρ ρ
ρ ρ ρ

σ σ ρ ρ ρ

ρ ρ ρ

−

−

−

− − −

 
 
 
 =
 ⋅ ⋅ ⋅ ⋅ 
  

Ω

L
L
L
L
L

 

The matrix Ω  is a symmetric general Toeplitz matrix with 1n −  unique 
autocorrelation parameters. It is typical to assume that some of the higher order lags 
have zero autocorrelation in models with level-2 random effects, and so one can 
define the s -order symmetric Toeplitz matrix to allow only the first s  
autocorrelations to be non-zero, with the others equal to zero. For instance, a 
random-intercepts model can only include at most 2n −  Toeplitz autocorrelations, 
since this model is equivalent to a fixed effects model with full Toeplitz structure.  
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10.6.6 Non-stationary AR(1) errors 

All of the above autocorrelated error forms assumed stationarity, and so the error 
(co)variances are equal within a time-lag in all of these forms. In some cases, it can 
be advantageous to relax this assumption. For an AR(1) process (see (10.143)) the 
variance of the errors at a particular time point is given by  

 ( ) ( )2 2
1 .j jV e V eρ σ−= +  

Instead of assuming stationarity, assume that the errors have zero variance at time 0 
(i.e., one time point before the start of the process) namely ( )0 0V e = . Then one 
gets the following for the error variance at the first four time points: 

 

( )
( ) ( )
( ) ( )
( ) ( )

2
1

2 2
2

2 4 2
3

2 4 6 2
4

1

1

1 .

V e

V e

V e

V e

σ

ρ σ

ρ ρ σ

ρ ρ ρ σ

=

= +

= + +

= + + +

 

The error covariance matrix is of the form 

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( )

2 1

2 2 2 2

2 2 2 4 3 2 4
2 2

1
1 2 2 3 2 4 2

1

1

1 1 1

1 1 1

1 1 1

n

n

n

n
n n n j

j

ρ ρ ρ

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ ρ ρ ρ ρσ σ

ρ ρ ρ ρ ρ ρ ρ

−

−

−

−
− − −

=

 
 

+ + + 
 

+ + + + + =
 

⋅ ⋅ ⋅ ⋅ 
 

+ + + + 
  

∑

Ω

L

L

L

L

L

 

which depends only on the non-stationary AR(1) parameter ρ  and the error 
variance 2σ . 
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multivariate, 49 
opening existing, 50 
pie chart, 48 
plot model equations, 50 
residuals, 50, 256 
scatter plot, 48 
univariate, 48 

H 

Help menu, 43 
Hessian matrix, 593, 600, 602, 650, 651 
Heterogeneous level-1 variances, 610 
Heteroscedastic level-1 error variances, 613 
Hierarchy 

defining in syntax, 567 
Histogram, 48 
Homogeneous level-1 variances, 609 

I 

Import Data File option 
File menu, 41, 42, 104, 442 

Include Intercept check box 
Variables tab, 62, 112, 187, 188, 237, 317, 338, 

417 
Incorporate Time Offset list box 

Advanced tab, 364 
Indicator variables, 32, 123, 125, 314, 475, 499, 615 
Information matrix, 595 
Input file 

specifying, 554, 555 
Interaction, 65, 66, 75, 86, 99, 131, 144, 152, 153, 

156, 157, 158, 176, 180, 183, 195, 217, 225, 245, 
247, 249, 274, 282, 284, 293, 376, 386, 387, 388, 
394, 399, 414, 424, 425, 434, 475, 476, 482, 495, 
496, 499, 500, 504, 505, 514, 560, 566 
creating in spreadsheet, 99 
cross-level, 145 

Interactions 
between predictors and thresholds, 566 

INTERACTIONS command, 566 
Intercept 

including in model, 62, 112, 187, 188, 237, 317, 
338, 417 

random effect, 14, 62, 109, 123, 129, 135, 138, 
142, 143, 157, 185, 193, 197, 210, 245, 324, 
353, 376, 386, 429, 442, 465, 484 

Intra-class correlation structure for level-1 variances, 
611 

Intracluster correlation coefficient, 122, 142, 396, 
397, 425, 492, 500, 513 

Inverse Gaussian distribution 
scale parameter for, 583 

Inverse Gaussian-log model, 631 
Iterations 

number of, 58, 111, 190, 283, 315, 321, 337, 341, 
359, 389, 552, 573, 575, 577 

setting maximum number of, 575, 576, 577, 578, 
579 

L 

L-2 Random Effects grid 
Variables tab, 61, 112, 188, 237 

L-3 Random Effects grid 
Variables tab, 60, 62, 237 

Level-1 
residuals, 12, 37, 164 
specifying error term structure, 72, 171 
variance, 170, 495, 611 

Level-2 
patterns for cov matrix, 69 
random effects at, 109 
specifying ID, 57, 137, 187, 236, 283, 302, 337, 

353, 389, 417, 487, 507 
starting values for random effects, 64, 66 
variance, 120, 142, 143, 145, 305 

Level-2 (Co)variance Patterns list box 
on Patterns tab, 69 

Level-2 (Co)variances grid 
Starting Values tab, 64, 66 

Level-2 IDs list box 
Configuration tab, 57, 137, 187, 236, 283, 302, 

337, 353, 389, 417, 487, 507 
Level-3 

patterns for cov matrix, 69 
specifying ID, 57, 307 
starting values for random effects, 64, 66 

Level-3 (Co)variance Patterns list box 
on Patterns tab, 69 

Level-3 (Co)variances grid 
Starting Values tab, 64, 66 

Level-3 IDs list box 
Configuration tab, 57, 307 

LEVELnID command, 567 



                                                                                                                                                                                                                                                                                                                                                                                                                                       
 
  
 

672 

Likelihood 
function value, 118, 290, 394 
ratio test, 118, 174 

Line and scatter plot, 48 
Line plot, 48 
Linear contrast testing 

for covariance matrix, 553 
Linear transform, 18, 83, 84, 85, 87, 89, 145, 496, 

497, 498, 518, 527, 533, 538, 541, 560, 588 
Linear transformation, 560 

specifying for fixed parameters, 564, 565 
Linear transforms, 621 
Linear Transforms tab 

continuous outcome, 18, 526 
count outcome, 18, 526 
Model Setup dialog box, 283, 498 
nominal outcome, 19, 537 
ordinal outcome, 19, 532 

LINK command, 568, 569 
Link function, 16, 19, 75, 77, 83, 267, 268, 269, 280, 

285, 286, 288, 291, 297, 311, 315, 319, 322, 327, 
332, 374, 381, 383, 384, 385, 391, 392, 397, 402, 
405, 414, 418, 419, 420, 425, 472, 485, 488, 495, 
501, 508, 513, 514, 517, 526, 532, 540, 568, 625, 
626, 628, 629, 630, 631 
and their derivatives, 626 
binary outcome, 267, 288, 392, 420 
comp. log-log, 19, 77, 83, 267, 268, 385, 414, 472, 

485, 488, 495, 501, 513, 514, 568, 626, 628 
log, 19, 332, 339, 492, 503, 626, 627, 649 
logistic, 19, 280, 463, 626, 628 
log-log, 19, 626, 629 
ordinal outcome, 268, 297, 315, 319, 322, 405, 

418 
probit, 19, 315, 626, 628 
specifying, 568, 569 
survival analysis, 77, 83, 267, 268, 385, 414, 472, 

485, 488, 495, 501, 508, 513, 514, 568, 628 
List box 

Assigned Weight on Advanced tab, 317, 350 
Autocorrelation on Advanced tab, 72, 171 
Censor Variable on Advanced tab, 77 
Crosstab Variable on Configuration tab, 60, 316, 

430 
Dependent Variable on Configuration tab, 57, 59, 

111, 137, 187, 236, 283, 316, 337, 353, 389, 
416, 446, 487, 507 

Dependent Variable Type on Configuration tab, 
57, 59, 111, 137, 187, 236, 283, 316, 337, 353, 
389, 416, 446, 487, 507 

Error Form on Advanced tab, 72, 171 
Function Model on Advanced tab, 77, 83, 285, 

391, 418, 488, 508 
Generate Table of Means on Configuration tab, 58 
Incorporate Time Offset on Advanced tab, 364 
Level-2 (Co)variance Patterns on Patterns tab, 69 
Level-2 IDs on Configuration tab, 57, 137, 187, 

236, 283, 302, 337, 353, 389, 417, 487, 507 
Level-3 (Co)variance Patterns on Patterns tab, 69 
Level-3 IDs on Configuration tab, 57, 307 
Means Variable on Configuration tab, 58 
Missing Values Present on Configuration tab, 417 
Offset variable on Advanced tab, 80, 364 
Perform Crosstabulation on Configuration tab, 60, 

316, 430 
Starting Values on Starting Values tab, 12, 13, 18, 

19, 45, 54, 62, 63, 64, 65, 66, 67, 70, 72, 171, 
173, 521, 522, 529, 530, 534, 538, 542 

Time Variable on Advanced tab, 73 
Unit Weighting on Advanced tab, 72, 350 
Write Bayes Estimates on Configuration tab, 57, 

159, 205, 236, 283, 300, 302, 447 
LnRANDOM command, 546, 569 
Log link function, 19, 332, 339, 492, 503, 626, 627, 

649 
Log odds, 280, 293, 315, 324, 469 
Logistic link function, 19, 280, 463, 626, 628 
Logit link function, 267, 288, 392, 420 
Log-likelihood function, 270, 333, 580, 592, 637, 645, 

654 
Log-log link function, 19, 626, 629 
Longitudinal data 

analysis of, 407 

M 

MA(1) process, 559, 601, 657 
MAP estimation, 269, 270, 271, 578, 579, 648, 651 
Matrix scatter plot, 49 
Maximum likelihood estimation, 592 
MAXITER keyword 

OPTIONS command, 575, 576, 577, 578, 579 
Means 

for table of, 58 
generating table of, 58 
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structured, 593 
Means Variable list box 

Configuration tab, 58 
MEANSTABLE command, 570 
Menu 

File, 41, 42, 44, 54, 55, 89, 90, 96, 98, 104, 105, 
132, 137, 147, 153, 183, 194, 198, 204, 224, 
231, 276, 278, 307, 353, 355, 364, 377, 380, 
413, 455, 486, 497, 507 

Help, 43 
METHOD keyword 

OPTIONS command, 578, 579 
Method of optimization 

specifying, 578, 579 
Missing data 

on all variables, 557, 565 
Missing values, 58, 111, 315, 337, 409, 417, 419, 447, 

507, 556, 557, 565, 605 
on outcome variable, 556, 557 
specifying, 58, 417, 507 

Missing Values Present list box 
Configuration tab, 58, 417, 507 

MIX file 
converting, 44 

Mixed-effects models, 20, 33, 34, 75, 96, 590, 621 
2-level binary, 144, 374, 382, 383, 477 
2-level continuous, 109 
2-level for count data, 55, 58, 65, 67, 79, 86, 88, 

352, 353, 364, 648 
2-level nominal, 439, 440 
2-level ordinal, 374, 381, 382, 383, 385, 386, 392, 

414, 419, 513, 514, 582, 653 
fixed part, 69, 85, 89, 109, 110, 112, 123, 126, 

137, 138, 187, 236, 237, 246, 247, 267, 284, 
297, 316, 338, 354, 390, 417, 447, 457, 465, 
487, 508, 517, 527, 533, 538, 541, 561, 562, 
616, 622 

general framework, 590 
including interaction term, 65, 66, 75, 86, 99, 131, 

144, 152, 153, 156, 157, 158, 176, 180, 183, 
195, 217, 225, 245, 247, 249, 274, 282, 284, 
293, 376, 386, 387, 388, 394, 399, 414, 424, 
425, 434, 475, 476, 482, 495, 496, 499, 500, 
504, 505, 514, 560, 566 

optimization framework, 592, 595 
proportional hazards, 485 
random intercept, 14, 109, 123, 129, 142, 185, 

193, 197, 245, 324, 353, 376, 429, 442, 465, 
484 

random intercept and slope, 135, 138, 143, 157, 
210, 259, 263, 386 

random part, 109, 112, 120, 123, 127, 187, 192, 
196, 201, 236, 237, 240, 244, 246, 248, 262, 
284, 316, 337, 338, 390, 417, 447, 574 

Model 
comparison, 74, 80, 83, 119, 157, 161, 173, 178, 

196, 201, 263, 290, 329, 341, 359, 394, 453, 
466, 500, 576, 577, 580, 583, 610, 614, 634 

function, 77, 83, 285, 391, 418, 488, 508 
including fixed effect, 112, 187, 237, 317, 338, 

417 
including intercept, 112, 187, 188, 237, 317, 338, 

417 
including random effect, 188, 237 
proportional hazards, 485 
specification summary, 392, 450 
survival analysis, 506 

MODEL command, 570, 571 
Model equations plots, 50 
Model file 

creating new, 45, 54, 55 
editing existing, 44 
opening existing, 46, 47, 48, 54, 55 

Model Setup dialog box, 47, 283, 302, 315, 389, 392 
Advanced tab, 18, 19, 171, 283, 285, 317, 337, 

347, 350, 364, 391, 392, 418, 446, 448, 488, 
508, 523, 524, 525, 530, 531, 535, 536, 539, 
540, 542, 578, 583 

Configuration tab, 148, 159, 236, 283, 300, 302, 
353, 446, 518 

Linear Transforms tab, 283 
Patterns tab, 67, 283, 522, 534 
Starting Values tab, 62, 171, 283, 521 
Variables tab, 125, 138, 148, 154, 155, 159, 171, 

205, 208, 246, 260, 283, 324, 354, 389, 430, 
487, 497, 508, 582 

Model Setup window, 47 
Model specifications 

saving, 113, 125, 188, 238, 246, 260, 286, 325, 
339, 347, 348, 350, 355, 391, 418, 448 

Model-based graphs 
plot model equations, 50 
plot residuals, 50, 256 

Model-based Graphs option 
File menu, 49, 50, 54, 120, 165, 214, 242, 250, 

254, 256, 397, 455 
Models 

4-level, 620 
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comparing via deviances, 576, 577, 580 
MODELTERMS keyword 

OPTIONS command, 579 
Multinomial sampling distribution, 631 
Multivariate graphs, 49 
Multivariate response models, 614, 616 

N 

Negative Binomial-log model, 630 
New Graph dialog box, 132, 224 
New Model Setup option 

File menu, 45, 54, 55, 110, 137, 186, 236, 283, 
315, 337, 353, 389, 416, 446, 486, 507 

New Project option 
File menu, 45, 47 

New Spreadsheet option 
File menu, 41 

Newton-Raphson algorithm, 594, 651 
NFREE keyword 

OPTIONS command, 577, 580 
Nominal model, 632 
Nominal outcome, 12, 13, 19, 55, 58, 59, 60, 62, 63, 

66, 69, 78, 79, 89, 269, 437, 438, 451, 532, 533, 
534, 535, 536, 537, 568, 581 
Advanced tab, 19, 536 
Configuration tab, 18, 528 
defining categories of, 544 
Linear Transforms tab, 19, 537 
Patterns tab, 18, 19, 523, 535 
Starting Values tab, 19, 534 
syntax for, 532 
two-level model, 439, 440 
Variables tab, 18, 521 

Non-adaptive quadrature estimation, 578 
NQUADPTS keyword 

OPTIONS command, 581 
NTRIALS command, 571 
Number 

of iterations, 58, 111, 190, 283, 315, 321, 337, 
341, 359, 389, 552, 573, 575, 577 

of quadrature points, 75, 285, 290, 333, 341, 355, 
391, 394, 418, 453, 488, 508, 574, 580 

of trials, 540, 571 
Number of free parameters, 577, 580 
Number of iterations 

specifying, 575, 576, 577, 578, 579 
Number of Iterations text box 

Configuration tab, 58 
Number of quadrature points, 581 
Number of trials, 571 

O 

OFFSET command, 364, 572 
Offset variable 

count data, 79, 80, 363, 364, 366, 369 
specifying, 364, 572 

Offset Variable list box 
Advanced tab, 80, 364 

Open Existing Model Setup option 
File menu, 46, 47, 48, 54, 55, 153, 194, 198, 204, 

302, 307, 364, 429 
Open Graph option 

File menu, 50 
Open option 

File menu, 42 
Option 

Close on File menu, 47 
Data-based Graphs on File menu, 48, 49, 54, 106, 

107, 132, 181, 183, 217, 218, 222, 224, 228, 
231, 234, 276, 278, 377, 380, 411, 413, 442, 
444 

Delete Row, 92 
Edit Graph on Settings menu, 133 
Exit on File menu, 43 
Import Data file on File menu, 42 
Import Data File on File menu, 41, 42, 104, 442 
Model-based Graphs on File menu, 49, 50, 54, 

120, 165, 214, 242, 250, 254, 256, 397, 455 
New Model Setup on File menu, 45, 54, 55, 110, 

137, 186, 236, 283, 315, 337, 353, 389, 416, 
446, 486, 507 

New Project on File menu, 45, 47 
New Spreadsheet on File menu, 41 
Open Existing Model on File menu, 46, 47, 153, 

194, 198, 204, 307, 364 
Open Existing Model Setup on File menu, 46, 47, 

48, 54, 55, 302, 429 
Open Graph on File menu, 50 
Open on File menu, 42 
Run on Analysis menu, 114, 126, 149, 155, 188, 

195, 199, 205, 238, 246, 286, 308, 325, 339, 
348, 355, 365, 391, 418, 431, 448, 449, 466, 
489, 499, 509 
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Save As on File menu, 41, 51, 113, 148, 153, 188, 
238, 339, 347, 365, 418 

Save on File menu, 51 
OPTIONS command, 19, 516, 518, 535, 572, 573, 

574, 575, 576, 577, 578, 579, 580, 582 
ACM keyword, 573, 574, 575 
BAYES keyword, 575, 579 
CONVERGE keyword, 575, 576, 578, 579 
DEVIANCE keyword, 576, 577, 580 
MAXITER keyword, 575, 576, 577, 578, 579 
METHOD keyword, 578, 579 
MODELTERMS keyword, 579 
NFREE keyword, 577, 580 
NQUADPTS keyword, 581 
REFCAT keyword, 581 
SUMMARY keyword, 582 

Ordinal model, 632 
and survival analysis, 653 

Ordinal outcome, 68, 78, 83, 274, 374, 376, 382, 386, 
388, 389, 394, 411, 414, 418, 442, 482, 485, 506 
adding or subtracting terms, 579 
Advanced tab, 18, 531 
and continuous outcome, 415 
Configuration tab, 18, 528 
defining categories of, 544 
defining censor variable, 545 
indicating categories, 59, 283, 389, 416, 507, 527, 

533, 541, 544 
Linear Transforms tab, 19, 532 
Patterns tab, 18, 523 
probit link function, 268, 297, 315, 319, 322, 405, 

418 
random thresholds, 584 
Starting Values tab, 18, 530 
syntax for, 526 
threshold, 65, 66, 75, 77, 83, 86, 87, 382, 383, 384, 

387, 392, 395, 399, 424, 486, 508, 512, 514, 
526, 527, 560, 566, 573, 579, 582, 584, 632, 
654, 662 

thresholds and transformations, 585 
two-level model, 374, 381, 382, 383, 385, 386, 

392, 414, 419, 513, 514, 582, 653 
user-defined thresholds, 68 
Variables tab, 18, 529 

Outcome variable 
computing mean by category, 570 
cross-tabulation, 554 
missing values on, 556, 557 
specifying, 555 

specifying distribution of, 558 
specifying reference category, 581 
specifying type of, 570, 571 

Outcomes 
binary, 144, 374, 382, 407, 477 
continuous, 180, 181, 182, 183, 218, 222, 231, 

376, 383, 400, 414, 415, 437 
count, 13, 16, 80, 82, 267, 330, 332, 335, 337, 339, 

346, 353, 363, 393, 614 
nominal, 12, 13, 19, 55, 58, 59, 60, 62, 63, 66, 69, 

78, 79, 89, 269, 437, 438, 451, 532, 533, 534, 
535, 536, 537, 568, 581 

ordinal, 68, 78, 83, 274, 374, 376, 382, 386, 388, 
389, 394, 411, 414, 418, 442, 482, 485, 506 

specifying, 57, 59, 111, 137, 187, 236, 283, 316, 
337, 353, 389, 416, 446, 487, 507 

specifying type, 57, 59, 111, 137, 187, 236, 283, 
316, 337, 353, 389, 416, 446, 487, 507 

survival, 386, 472, 473, 480, 483, 484, 485, 489, 
508, 513, 653, 654, 662, 663 

types of, 13, 16, 46, 54, 71, 80, 82, 266, 267, 283, 
330, 332, 335, 337, 339, 346, 363, 389, 393, 
446, 517, 523, 557, 614 

Output 
summary of transforms, 501 

Output file 
crosstabulation, 316, 429, 431, 432 
descriptive statistics in, 116, 239, 319, 341, 357, 

420, 451, 490, 510 
summary of data, 115, 116, 140, 188, 238, 239, 

287, 288, 319, 340, 341, 420, 450, 451, 582 

P 

Parameters 
standard errors of estimates, 39 
starting values, 62, 63, 64, 65, 66, 86, 116, 117, 

169, 170, 171, 173, 189, 190, 270, 320, 420, 
421, 451, 518, 527, 534, 543, 552, 560, 563, 
584 

Pattern 
for covariance matrix, 549 
for fixed parameters, 561, 562 
type specifying for fixed parameters, 562 

Patterned structures for covariance matrix, 599 
Patterns 

examples of, 69 
for fixed effects cov matrix, 69 
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for L-2 random effects cov matrix, 69 
for L-3 random effects cov matrix, 69 
specifying, 67, 522, 534 

Patterns tab 
binary outcome, 18, 523 
continuous outcome, 18, 523 
count outcome, 18, 523 
Level-2 (Co)variance Patterns list box, 69 
Level-3 (Co)variance Patterns list box, 69 
Model Setup dialog box, 283 
nominal outcome, 18, 19, 523, 535 
ordinal outcome, 18, 523 

Pearson chi-square estimate, 634 
Perform Crosstabulation list box 

Configuration tab, 60, 316, 430 
Pie chart, 48 
Poisson 

distribution and count data, 13, 19, 79, 80, 266, 
267, 330, 331, 332, 337, 339, 343, 344, 346, 
348, 350, 351, 357, 362, 539, 627, 637 

offset variable, 79, 80, 363, 364, 366, 369 
Poisson distribution 

scale parameter for, 583 
Poisson-log model, 627, 630, 631 
Pooled data 

in regression analysis, 31, 33 
Predicted probability, 267, 280, 293, 295, 297, 305 
PREDICTORS command, 583 
Probability 

predicted, 267, 280, 293, 295, 297, 305 
Probit link function, 19, 268, 297, 315, 319, 322, 405, 

418, 626, 628 
Project 

opening new, 44, 45, 47 
Proportional hazards model, 385, 484, 485, 486, 488, 

493, 495, 496, 500, 508, 514, 633, 653, 654 
survival analysis, 18, 486, 491, 496, 497, 499, 501, 

512, 514, 515, 654 

Q 

Quadrature points 
number of, 75, 285, 290, 333, 341, 355, 391, 394, 

418, 453, 488, 508, 574, 580, 581 

R 

Random effect, 34, 135, 138, 143, 210, 386, 545, 546, 
549, 550, 652 
estimates, 141, 149 
intercept and slope, 135, 138, 143, 157, 210, 386 
level-2, 109 
patterns for L-2 cov matrix, 69 
patterns for L-3 cov matrix, 69 
selecting, 112, 188, 237 
starting values for, 64, 66 

Random effects 
derivatives of, 641 
specifying, 546, 569 

Random intercept, 62, 188, 214, 237, 254, 259, 263, 
418, 448 
model, 14, 62, 109, 123, 129, 142, 185, 193, 197, 

245, 259, 263, 324, 353, 376, 429, 442, 465, 
484 

Random part 
of mixed-effects model, 109, 112, 120, 123, 127, 

187, 192, 196, 201, 236, 237, 240, 244, 246, 
248, 262, 284, 316, 337, 338, 390, 417, 447, 
574 

REFCAT keyword 
OPTIONS command, 581 

Regression analysis 
using dummy variables, 32 
with pooled data, 31 

Reisby.ss3 
analysis based on, 131, 132, 137, 145, 147, 153, 

159 
Residuals, 14, 36, 50, 116, 164, 165, 166, 236, 256, 

257, 259, 283, 286, 374, 385, 392, 419, 459, 655, 
656 
empirical Bayes, 57, 159, 162, 164, 165, 177, 205, 

213, 214, 215, 254, 255, 261, 283, 300, 301, 
302, 369, 370, 447, 457, 575, 639 

level-1, 12, 37, 164 
plots, 50, 256 

Risk 
survival analysis, 327 

Rows 
manipulating contents, 91 

Run option 
Analysis menu, 114, 126, 188, 238, 246, 286, 325, 

339, 348, 355, 391, 418, 431, 448, 449, 466, 
489, 499, 509 
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S 

Save As option 
File menu, 41, 51, 113, 148, 153, 188, 238, 339, 

347, 365, 418 
Save Mixed Up model dialog box, 355 
Save option 

File menu, 51 
Saving 

model specifications, 113, 125, 188, 238, 246, 260, 
286, 325, 339, 347, 348, 350, 355, 391, 418, 
448 

SCALE command, 583 
Scale parameter 

specifying, 583 
Scale parameters, 634 
Scatter plot, 48 
Schwarz Bayesian criterion, 118, 119, 129, 151, 173, 

196, 201, 203, 211, 212, 256, 264, 329 
Settings menu 

Edit Graph option, 133 
Slope 

random effect for, 135, 138, 143, 157, 210, 386 
Spreadsheet 

assigning values to new variable, 95 
built-in functions, 98 
centering in, 100 
creating interaction term, 99 
data manipulation, 99 
LN function, 96 
manipulating columns, 93 
manipulating rows, 90, 91 
SQRT function, 97 
window of SuperMix, 41, 42, 43, 47, 52, 89, 99, 

104, 153, 194, 282, 352, 364, 388 
Standard errors 

parameter estimates, 39 
Starting values, 62, 63, 64, 65, 66, 86, 116, 117, 169, 

170, 171, 173, 189, 190, 270, 320, 420, 421, 451, 
518, 527, 534, 543, 552, 560, 563, 584 
adaptive quadrature, 652 
autocorrelation structure, 544 
for covariance matrix, 552 
for fixed effects, 64, 66 
for fixed parameters, 562, 563, 564 
for random effects, 64, 66 
for thresholds, 584, 585 
generalized linear models, 648 
specifying, 62, 171, 521 

specifying type, 12, 13, 18, 19, 45, 54, 62, 63, 64, 
65, 66, 67, 70, 72, 171, 173, 521, 522, 529, 
530, 534, 538, 542 

Starting Values list box 
on Starting Values tab, 12, 13, 18, 19, 45, 54, 62, 

63, 64, 65, 66, 67, 70, 72, 171, 173, 521, 522, 
529, 530, 534, 538, 542 

Starting Values tab 
continuous outcome, 18, 522 
count outcome, 18, 522 
Explanatory Variables grid, 64, 66 
Level-2 (Co)variances grid, 64, 66 
Level-3 (Co)variances grid, 64, 66 
Model Setup dialog box, 283 
nominal outcome, 19, 534 
ordinal outcome, 18, 530 
Starting Values list box, 12, 13, 18, 19, 45, 54, 62, 

63, 64, 65, 66, 67, 70, 72, 171, 173, 521, 522, 
529, 530, 534, 538, 542 

Summary 
model specifications, 392, 450 
of data, 115, 116, 140, 188, 238, 239, 287, 288, 

319, 340, 341, 420, 450, 451, 582 
SUMMARY keyword 

OPTIONS command, 582 
SuperMix 

clearing cells, 53 
closing spreadsheet window, 47 
converting MIX files, 44 
copying data, 53 
creating new data file, 41, 43 
creating new model file, 45, 54, 55 
cut data, 53 
data file, 41, 42, 43, 44, 48, 49, 51, 54, 287, 516, 

554, 555, 567, 569, 575 
data manipulation, 43 
editing existing model file, 44 
graph file, 40, 43, 50 
graph window, 40, 48, 49, 51, 54, 233 
Help file, 43 
main window, 40 
opening existing data file, 41, 42, 43 
opening existing graph, 50 
opening existing model file, 46, 47, 48, 54, 55 
opening new project, 44, 45, 47 
pasting data, 53 
saving changes to file, 51 
saving changes to new file, 51 
spreadsheet window, 40, 43, 44, 45, 48, 53, 54, 94 
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syntax files, 516 
technical support, 43, 114 

SUPERMIX 
spreadsheet file, 131, 132, 137, 145, 147, 153, 159, 

352, 353, 364 
spreadsheet window, 41, 42, 43, 47, 52, 89, 99, 

104, 153, 194, 282, 352, 364, 388 
SuperMix spreadsheet 

data manipulation, 99 
Survival analysis, 653 

censoring, 17, 18, 75, 77, 473, 476, 477, 478, 479, 
480, 481, 482, 483, 485, 507, 508, 653 

complementary log-log link function, 77, 83, 267, 
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