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Two-level models for continuous outcomes  

The data 

The data set is from a study described in Reisby et. al., (1977) that focused on the longitudinal relationship 
between imipramine (IMI) and desipramine (DMI) plasma levels and clinical response in 66 depressed 
inpatients (37 endogenous and 29 non-endogenous). Following a placebo period of 1 week, patients 
received 225 mg/day doses of imipramine for four weeks. In this study, subjects were rated with the 
Hamilton depression rating scale (HDRS) twice during the baseline placebo week (at the start and end of 
this week) as well as at the end of each of the four treatment weeks of the study. Plasma level measurements 
of both IMI and its metabolite DMI were made at the end of each week. The sex and age of each patient were 
recorded and a diagnosis of endogenous or non-endogenous depression was made for each patient.  
 
Although the total number of subjects in this study was 66, the number of subjects with all measures at each of 
the weeks fluctuated: 61 at week 0 (start of placebo week), 63 at week 1 (end of placebo week), 65 at week 2 
(end of first drug treatment week), 65 at week 3 (end of second drug treatment week), 63 at week 4 (end of third 
drug treatment week), and 58 at week 5 (end of fourth drug treatment week). The sample size is 375. Data for 
the first 10 observations of all the variables used in this section are shown below in the form of a SuperMix 
spreadsheet file, named reisby.ss3. 
 

 



 
The variables of interest are: 
 

o Patient is the patient ID (66 patients in total). 
o HDRS is the Hamilton depression rating scale. 
o Week represents the week (0, 1, 2, 3, 4 or 5) at which a measurement was made. 
o ENDOG is dummy variable for the type of depression a patient was diagnosed with (1 for 

endogenous depression and 0 for non-endogenous depression). 
o WxENDOG represents the interaction between Week and ENDOG, and is the product of Week and 

ENDOG. 
 

The models 

A general two-level model for a continuous response variable y  depending on a set of r  predictors 

1 2, , , rx x x  can be expressed as 
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where ijy  denotes the value of y  for the j -th level-1 unit nested within the i -th level-2 unit for 1, 2, ,i N=   

and 1,2, , .ij n=   The scalar product '
ijx β  is the fixed part of the model, and '

ij iz u  and ije  denote the random 

part of the model at levels 2 and 1 respectively. For the fixed part of the model, '
ijx  is a typical row of a design 

matrix iX  while the vector β  contains the fixed, but unknown, parameters to be estimated. In the case of the 
random part of the model at level 2, '

ijz  represents a typical row of a design matrix iZ , and iu  the vector of 
random level-2 effects to be estimated. It is assumed that 1 2, , , Nu u u  are independently and identically 
distributed (i.i.d.) with mean vector 0 and covariance matrix (2)Φ . Similarly, the ije  are assumed i.i.d., with 
mean vector 0 and variance 2σ . The elements of ijz  are typically a subset of those of ijx . 

 

The random intercept and slope model 

The random intercept and slope model for the response variable HDRS may be expressed as 
 

 
( ) ( )0 1 0 1HDRS * Week Weekij i i ijij ij

u u eβ β= + + + +
 

 
where 0β  denotes the average expected depression rating scale value, 1β  denotes the coefficient of the 
predictor variable Week (slope) in the fixed part of the model, 1iu  denotes the variation in the slopes over 
patients, and 0iu  and ije  denote the variation in the average expected HDRS value over patients and between 
patients respectively. 
 
 

 



The random intercept and slope with a covariate and an interaction model 

The random intercept and slope model for the response variable HDRS with the variable ENDOG as a covariate 
and with an interaction effect between Week and ENDOG may be expressed as 
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( )
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HDRS * Week * ENDOG * WxENDOG
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β β β β= + + +

+ + +  

where 0β  denotes the average expected depression rating scale value, 1β  and 2β  denote the coefficients of 
the predictor variables Week and ENDOG in the fixed part of the model, 3β  denotes the coefficient of the 
interaction between Week and ENDOG in the fixed part of the model, 1iu  denotes the variation in the Week 
slopes over patients, and 0iu  and ije  denote the variation in the average expected HDRS value over patients 
and over measurements (i.e., between patients) respectively. 
 

Example: Random intercept and slope model 

Importing the data 

The random intercept and slope model above is fitted to the data in reisby.ss3. The first step is to create the 
ss3 file shown above from the Excel file reisby.xls. This is accomplished as follows. 
 

o Use the Import Data File option on the File menu to open the Open dialog box.  
o Browse for the file reisby.xls in the Examples\Primer\Continuous folder.  
o Select the file and click on the Open button to open the following SuperMix spreadsheet window for 

reisby.ss3. 
 

 
 
After selecting the File, Save option, we are ready to fit the random intercept and slope model for HDRS to the 
data in reisby.ss3. 

Setting up the analysis 

Start by selecting the New Model Setup option on the File menu as shown below to open the Model Setup 
window. The Model Setup window has six tabs: Configuration, Variables, Starting Values, Patterns, Advanced, 
and Linear Transforms. In this example, only the Configuration and the Variables tabs are used.  



 

 
 

 
 
Starting with the Configuration screen, the titles Longitudinal analysis of 66 depressed inpatients and Data from 
Reisby et. al. (1977) are entered in the Title 1 and Title 2 text boxes respectively. The continuous outcome 
variable HDRS is selected from the Dependent Variable drop-down list box. The variable Patient, which defines 
the levels of the hierarchy, is selected as the Level-2 ID from the Level-2 IDs drop-down list box. We keep the 
default settings of all the other options in order to produce the Configuration screen as shown above. 
 
Click the Variables tab to proceed to the Variables screen of the Model Setup window. This screen shows the 
list of variables available for analysis and next to it two columns, with headings E (for explanatory variables) 
and 2 (for level-2 random effects). The variable Week is specified as the covariate of the fixed part of the 
model by checking the E check box for Week in the Available grid. We mark the 2 check box for Week in the 
Available grid to specify the random slope at level 2 of the model. After completion, the Variables screen 
should look as shown below. 
  



 
 

Before the analysis can be run, the model specifications have to be saved to file. To accomplish this, we select 
the Save As option on the File menu to open the Save Mixed Up Model dialog box and then enter the name 
depress.mum in the File name text box to produce the following dialog box. 
 

 
 
The analysis is run by selecting the Run option from the Analysis menu as shown below 

 

 
 

to produce the corresponding output file depress.out.  
 



Discussion of results  

Four separate sections of the output file depress.out are shown below. The summary of the hierarchical 
structure of the data below, which is given first, shows how the 375 measurements are nested within the 66 
patients. It also indicates that the number of repeated measurements per patient varies from 4 to 6 observations. 

 

 
 
The following portion of the output file consists of a listing of selected descriptive statistics of the variables 
of the model. The descriptive results show, for example, that the mean HDRS score is 17.64 with a standard 
deviation of 7.19. 
 

 
 

The next part of the output file contains the starting values for both fixed and random components. 



 
 
The last part of the output shows the final estimates of the fixed and random coefficients included in the 
model, along with some goodness of fit measures. The results given below show that the p-values for the time 
effect, as represented by the variable Week, is highly significant. At the beginning of the study, when Week = 
0, the average expected HDRS score is 23.57695. For each subsequent week, a decrease of –2.37707 in average 
HDRS score is expected. At the end of the study period, the average expected HDRS score is 23.57695 – 
5(2.37707) = 11.6916. 
 
The p-values for the estimates of the random coefficients are also significant, with the exception of that for 

the covariance between the intercept and slope. From the output above we have 0var( )iu
∧

 = 12.62930, 1var( )iu
∧

 

= 2.07899, 0 1cov( , )i iu u
∧

 = –1.42093, and that var( )ije
∧

 = 12.21663. It is clear that there is considerably more 
variation in patients' intercepts than in their slopes (12.62930 vs. 2.07899). This indicates that there are 
significant differences in the initial HDRS scores, but that the patients' slopes over time do not vary as much. 
This seems to indicate that the pattern in HDRS scores over time may be similar for patients, although they 
start with markedly different initial HDRS scores. Typically, one would expect most of the variation in HDRS 

scores at the measurement level, and thus would expect var( )ije
∧

 to be larger than any of the other 
variances/covariances. In this case, however, there is more variation in the random intercepts over patients 
than in the measurements nested within patients. Due to this, it may be of interest to take a closer look at the 
variation in HDRS scores at the two levels of the hierarchy. 
 
In the case of a model with only a random intercept, there are two variances of interest: the variation in the 
random intercept over the patients, and the residual variation at level-1, over the measurements. By calculating 

the total variation in the HDRS score explained by such a model, obtained as var( )ije
∧

+ 0var( )iu
∧

, we can obtain 
an estimate of the intracluster correlation coefficient. 
 



The intracluster coefficient is defined as 
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and would, for a random intercept model for this data, represent the proportion in HDRS scores between 
patients.  

 

 
 
In the current model, which contains both a random intercept and a random slope, the situation is somewhat 
more complicated. This is due to the possible correlation between the level-2 random effects. When 
calculating an estimate of the total variation, the covariance(s) between random effects have to be taken into 
account in any attempt to estimate the proportion of variation in outcome at any level or for any random 
coefficient. In addition, the inclusion of a covariate such as ENDOG can affect the variance estimates. 
 
The total variation in HDRS scores over patients is defined as 
 

 
[ ]2

0 1 0 1Var(level 2) var( ) var( )(WEEK) 2 cov( , ) (Week)i i ij i i iju u u u= + +
 

 



The total variation is a function of the value assumed by the predictor Week, which has a random slope. As 
such, the total variation at the beginning of the study is 
 

 

[ ]2
0 1 0 1

0

Var(level 2) var( ) var( )(0) 2 cov( , ) (0)
var( )

i i i i

i

u u u u
u

= + +

=  
while at the end of the study we have 

 

[ ]2
0 1 0 1

0 1 0 1

Var(level 2) var( ) var( )(5) 2 cov( , ) (5)
var( ) 25var( ) 10cov( , )

i i i i
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u u u u
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An estimate of the total variation at this level can be obtained by using the estimates of the variances and 

covariance obtained under this model. By substituting 0var( ),iu
∧

 1var( ),iu
∧

 and 0 1cov( , )i iu u
∧

 into the equations 
above, we obtain the estimated variation in HDRS scores over patients at different points during the study 
period. 
 
At the beginning of the study, the estimated total variation in HDRS scores over patients is simply the estimated 

variation in the random intercept, i.e., 0var( )iu
∧

 = 12.62930. At the end of the study, the total variation at level-
2 is estimated as 

0 1 0 1var(level 2) var( ) 25var( ) 10cov( , )
12.62930 25(2.07899) 10( 1.42093)
50.39475.

i i i iu u u u
∧ ∧ ∧ ∧

= + +
= + + −
=  

At the beginning of the study we obtain  

 

var(level 2) 12.62930
12.62930 12.21663var(level 2) var(level1)
0.5083

∧

∧ ∧ =
++

=
 

and thus conclude that that 50.8% of the variation in HDRS scores at this time is over patients. At the end of 
the study, we find that  

var(level 2) 50.39475
50.39475 12.21663var(level 2) var(level1)
0.8049,

∧

∧ ∧ =
++

=
 

so that only 20% of the variation in HDRS scores are estimated to be at the measurement level, with 80% at 
the patient level. As mentioned before, the total variation in HDRS scores is a function of the time of 
measurement, as represented by the variable Week. The very different estimates of variation at a patient level 
show how the introduction of an important predictor, in this case at the measurement level, can have an impact 
on variance estimates at a different level of the hierarchy. By the end of the study period, the residual variation 
over measurements has been dramatically reduced, this being explained largely by the inclusion of the time 
effect. Most of the remaining unexplained variation is at the patient level. As a result of this finding and in 
the light of our original research question, whether the initial depression classification of a patient is also 
related to the HDRS scores over the time in which medication is administered, the model will be extended to 
include the covariate ENDOG. This dichotomous variable assumes a value of 1 when endogenous depression 



was observed, and 0 if not. In addition, we will make provision for a possible interaction between depression 
classification and the measurement occasion by including the interaction term WxENDOG in the model. While 
WxENDOG can be viewed as a cross-level interaction, as Week is a measurement-level variable and ENDOG a 
patient-level variable, the inclusion of the patient-level variable ENDOG may enable us to explain more of the 
remaining variation in the random intercepts and slopes at the patient level. 
 

Example: A random intercept and slope model with covariate and interaction effect 

To fit the random intercept and slope model with a covariate and an interaction effect for HDRS, we need to 
include the variables ENDOG and WxENDOG as covariates in the model. Significant ENDOG and WxENDOG 
coefficients will imply that there are significant differences in depression value ratings between the two groups 
of patients, or that there is significant interaction between the type of depression and the time at which a 
measurement was made. One way to decide whether ENDOG and WxENDOG should be included is to fit the 
model with and without these predictors to the data. Then the difference in the deviance (–2 log-likelihood) 
values can be used to obtain a 2χ -square test statistic value. The difference in the number of parameters 
estimated in each of these models gives the corresponding degrees of freedom. 
 

Setting up the analysis 

To create the model specifications for this model, we start by opening reisby.ss3 in a SuperMix spreadsheet 
window. Then we use the Open Existing Model Setup option on the File menu to open the Model Setup window 
for depress.mum. We extend the string in the Title 1 text box on the Configuration screen by adding the string 
"+ ENDOG". Since we would like to produce the Bayes estimates for the means, we select the means & 
(co)variances option from the drop-down list box next to Write Bayes Estimates to produce the following 
screen.  
 

 
 

Next, click on the Variables tab to proceed to the Variables screen of the Model Setup window. The two 
covariates are specified by checking the E check boxes for ENDOG and WxENDOG in the Available grid 
respectively to produce the following Variables screen.  
 



 
 

Save the changes to the file depress1.mum by using the Save As option on the File menu. To fit the revised 
model to the data, select the Run option on the Analysis menu to produce the output file depress1.out.  
 

Discussion of results  

A portion of the output file depress1.out is shown below.  
 

 



 
The interaction WxENDOG between the time variable Week and the depression classification of the patient, as 
represented by the variable ENDOG, is not significant. Given this, we can take a closer look at the estimated 
coefficients for the main effects Week and ENDOG respectively. Note, however, that the p-value for the ENDOG 
coefficient is larger than 0.05, and thus can only be considered significant at a 10% level of significance. The 
effect of time, on the other hand, is found to be highly significant. While the average HDRS score is predicted 
to decrease by –2.37 score scale units each week, patients classified as having endogenous depression (i.e., 
ENDOG = 1) are predicted to have a HDRS score of 2 units higher at all occasions.  
 
This is clear from a plot of the predicted HDRS scores over time for the two ENDOG groups, as shown below 
in Figure 3.1. For all practical purposes, the two lines are parallel to each other, again underscoring the absence 
of significant interaction between Week and ENDOG.  
 
To obtain the predicted average HDRS scores as shown in these plots, the estimates obtained from the output 
are used: 

 0 1 2 3(Week) (ENDOG) (WxENDOG)
22.47626 2.36569(Week) 1.98802(ENDOG) 0.02706(WxENDOG)

y β β β β
∧ ∧ ∧ ∧

= + + +
= − + −



 

 

 
Figure 3.1: Predicted HDRS scores over time for two groups 

 

To illustrate differences between significant and nonsignificant interaction, we examine two scenarios. In the 
first, suppose that a negative and significant estimate of –1.02 was obtained for the interaction between Week 
and ENDOG. In this case, the graph (see Figure 3.2) would have looked somewhat different, as shown below. 
Under this scenario, patients with endogenous depression would have improved faster than their counterparts 
with non-endogenous depression. 



 

 
Figure 3.2: Predicted HDRS scores over time for two groups 

 
For the second scenario, suppose that a significant and positive interaction term of 1.02 was obtained. In this 
case, patients with non-endogenous depression would have shown more marked improvement over time than 
the patients with endogenous depression. This scenario is illustrated in Figure 3.3. 
 

 

 
Figure 3.3: Predicted HDRS scores over time for two groups 

 



A question that arises from inspection of the results is whether the interaction term contributes overall to the 
explanation of the variation in the HDRS scores. To test this, we can fit a model without the interaction term 
and use the deviance reported in the output to compare results for the model with interaction and the model 
without this term. The relevant output (depress2.out) from an analysis without the interaction term is shown 
below. We note that the deviance obtained for the simpler model is almost identical to that of the model 
considered in this section. Based on this, we conclude that a model without the interaction WxENDOG would 
fit the data as well as the one with the interaction term included. 

 

 
 

In addition, we can test the hypothesis that the model with covariate (ENDOG) fits the data better than the 
random intercept and slope model considered previously. To test this hypothesis, we calculate the difference 
between the –2 log likelihood value obtained for the previous model (depress1.out) and the –2 log likelihood 
value for the current model (depress2.out). It can be shown that this difference of 2219.04 – 2214.93 = 4.11 
has a 2χ  distribution with associated degrees of freedom equal to the difference in the number of parameters 
estimated in the two examples, i.e., 8 – 7 = 1 degree of freedom. Since the p-value for this test statistic is less 
than 0.05, it is concluded that the random intercept and slope model with ENDOG as a covariate does not 
provide a better description of the data than the original random intercept and slope model. This finding is 
supported by the fact that the p-value for ENDOG when the interaction effect between Week and ENDOG is 
excluded. 

 

Residual analysis 

Up to this point, we have considered results averaged over all patients. We now turn our attention to the 
residual file depress1.ba2, which offers the opportunity to take a closer look at the results by individual 
patient. In the image below, the contents of this file are displayed for the first 10 patients.  
 
Two lines of information are given for each patient, containing, in order of appearance, 

o the patient ID,  
o the number of the empirical Bayes coefficient,  
o the empirical Bayes estimate,  
o the estimated variance of the Bayes coefficient, and  
o the name of the associated coefficient as used in the model.  

 



 
 

To obtain patient-specific predicted HDRS scores the empirical Bayes estimates for each patient have to be 
taken into account, as these estimates indicate the extent to which the random intercept or slope for that patient 
deviates from the intercept and slope over all patients. Patient-specific predicted HDRS scores are calculated 
as 

0 1

| 22.47626 2.36569(Week) 1.98802(ENDOG)

0.02706(WxENDOG) (Week)

i

i i

y

u u

∧

∧ ∧

= − +

− + +

u

 

For the first patient shown in the residual file above, we have 0iu
∧

 = 1.7950 and 1iu
∧

 = –2.0413. From this 
information, we can already tell that the intercept for the patient is higher than average, but that the Week 
slope for this patient is lower than average. This patient was classified as having non-endogenous depression, 
so that ENDOG = 0. At week 1, the predicted HDRS score for this patient (Patient = 101) is found to be 

22.47626 2.36569(1) 1.7950 2.0413(1)
19.8643

y
∧

= − + −
=

 

and at the end of the study period (Week = 5) the predicted HDRS score for Patient 101 is 

22.47626 2.36569(5) 1.7950 2.0413(5)
2.3631.

y
∧

= − + −
=

 

Figures 3.4 and 3.5 are graphical representations of the average and patient-specific regression lines of six 
patients, three of which were classified as non-endogenous and three as endogenous. The graphs on the left 
show the patient-specific regression lines (solid lines) and the observed HDRS trajectories (the dotted lines) 
for each of the patients. The graphs on the right show the average regression line (solid) and the patient-
specific regression line (dotted).  

 
For the patients with non-endogenous depression (Figure 3.4; graphs on the right), all the average regression 
lines are identical. Similarly, the average regression lines for patients with endogenous depression (Figure 
3.5; graphs on the right) are identical. For the latter case, the average regression lines are higher. Recall that 
for the predictor ENDOG an estimated coefficient of 1.98802 was obtained. A patient classified as having 
endogenous depression is thus expected to have a higher average HDRS score than a patient with non-
endogenous depression.  

 



              
 
 

               

                
Figure 3.4: Average and unit-specific regression lines for patient with non-endogenous depression 

 
From the top right graph in Figure 3.4 we find that patient number 101 had a higher initial HDRS score, but 
over time obtained a lower than average score. For patient 103, a higher than average predicted HDRS score 
is obtained at each time point, as illustrated in the second graph on the right. In contrast, patient 114 scored 
lower at each time point. Similar patterns for patients with endogenous depression are present in the graphs 



in Figure 3.5. Patients 104, 106 and 108 were classified as having endogenous depression. In the case of 
patient 108, the predicted average regression line shows a consistently higher predicted HDRS score over time 
when these scores are compared to the predicted average regression line for the non-endogenous patients. The 
observed trajectories of patients 101, 114, 106 and 108 follow their predicted patient-specific regression line 
more closely than is the case for patients 103 and 104. 

 

                
 
 

                  

                
Figure 3.5: Average and unit-specific regression lines for patient with endogenous depression 



 
Level-1 residuals can also be obtained, either for a typical or specific patient, by using the empirical Bayes 
estimates. The residuals for a typical patient are obtained as  

 

[ ]

Average residual Observed HDRS score
Observed HDRS score
22.47626 2.36569(Week) 1.98802(ENDOG) 0.02706(WxENDOG)

y
∧

= −
=

− − + −

 

 
The residuals for a specific patient use the additional information given by the empirical Bayes residuals and 
have the form 

 

0 1

Patient-specific residual Observed HDRS score |
Observed HDRS score

22.47626 2.36569(Week) 1.98802(ENDOG) 0.02706(WxENDOG) (Week)

i

i i

y

u u

∧

= −
= −

 − + − + + 

u

 

 

 
Figure 3.6: Comparison of population average and Bayes residuals for first 10 patients 

 
Inspection of these estimates can be useful in examining the distributional assumptions for the level-1 data, 
in this case at the measurement level. For the current example, residuals for a typical patient have a mean of 
–0.022 and range between –15.3792 and 20.4995. The residuals for specific patients have a mean of 0.000 
with a minimum value of –9.5942 and a maximum value of 12.6566. The range of the latter is much smaller. 
Empirical Bayes estimates are frequently referred to as "shrunken" estimates, as the empirical Bayes tend to 
pull the estimates closer to the sample average, thus "shrinking" them. The amount of shrinkage is a function 
of the precision of the intercept/slope estimates. The greater the precision for an estimate, the less shrinkage. 
This means that more shrinkage will occur for units where there is more uncertainty concerning the accuracy 
of the fixed intercept and slope regression estimates. Figure 3.6 shows a comparison of the two types of 



residuals for our example. The Bayes residuals are much closer to the horizontal reference line at 0. Note the 
shrinking of the more extreme population average residuals in the left pane. 
 
An alternative way to display the Bayes residuals is to plot 95% confidence intervals for patient intercepts 
and slopes, as shown in Figures 3.7 and 3.8. Information for the first 10 patients in the study were used to 
construct these graphs. 
 
Confidence intervals were obtained as 1.96( . )mean std dev± . For the intercepts, the means are computed as 

0 0 , 1, 2,...,10.ju jβ
∧ ∧

+ =  Standard deviations are computed as the square roots of the variances of the empirical 
Bayes intercept residuals given in the ba2 file shown earlier. For patient 1, for example,  

 

01 01

11 11

1.7950, var 3.9520

2.0413, var 0.45969.

u u

u u

∧ ∧

∧ ∧

 = = 
 
 = − = 
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Therefore, the 95% confidence intervals for patient 1 are: 

 

1/ 2

1/ 2

intcept : (22.47626 1.7950) 1.96 (3.9520)
(20.3749; 28.1677)

slope : ( 2.36569 2.0413) 1.96 (0.45969)
( 5.7359; 3.0781).

+ ± ×
=

− − ± ×
= − −

 

 
In Figures 3.7 and 3.8, each mean is represented by a square. Figure 3.8 shows that the individual slopes for 
the first 10 patients are all negative. 

 

 
Figure 3.7: 95% confidence intervals for patient intercepts 



 
Figure 3.8: 95% confidence intervals for patient slopes 

Graphical displays 

It is possible to obtain a great variety of graphical displays with SuperMix. To invoke the graphics procedure, 
open a SuperMix data file. To illustrate this, we use reisby.ss3 in the Continuous subfolder. The next step is to 
select the Data-based Graphs, Exploratory option on the File menu as shown below 

 

 
 

to activate the New Graph dialog box. Specify HDRS as the dependent (vertical axis) variable by selecting it 
from the Y drop-down list box and Week as the independent (horizontal axis) variable by selecting it from the 
X drop-down list box. A graph on the same axes-system is created for each patient by selecting the variable 
Patient from the Overlay drop-down list box. Furthermore, each graph is assigned a color by selecting ENDOG 
from the Color drop-down list box to produce the following New Graph dialog box.  

 



 
 

Click on the OK button to produce the following graph of the reaction trajectories over time for the 66 patients. 
 

 
 

To modify the existing graphic displays, select the Edit Graph option from the Settings menu to open the Edit 
Graph dialog box. To obtain different graphs for the two categories of the covariate ENDOG, select it from the 
Filter drop-down list box to produce the following Edit Graph dialog box. 

 

 
 

Click on the OK button to open the following graphics window. 
 



 
 

At the bottom of the graphics window is a "slider" with left and right arrows. By clicking on the right arrow, 
one can obtain the next graphic shown below and by clicking on the left arrow, the graphic above. 
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