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Two-level models for continuous outcomes

The data

The data set is from a study described in Reisby et. al., (1977) that focused on the longitudinal relationship
between imipramine (IMI) and desipramine (DMI) plasma levels and clinical response in 66 depressed
inpatients (37 endogenous and 29 non-endogenous). Following a placebo period of 1 week, patients
received 225 mg/day doses of imipramine for four weeks. In this study, subjects were rated with the
Hamilton depression rating scale (HDRS) twice during the baseline placebo week (at the start and end of
this week) as well as at the end of each of the four treatment weeks of the study. Plasma level measurements
of both IMI and its metabolite DMI were made at the end of each week. The sex and age of each patient were
recorded and a diagnosis of endogenous or non-endogenous depression was made for each patient.

Although the total number of subjects in this study was 66, the number of subjects with all measures at each of
the weeks fluctuated: 61 at week 0 (start of placebo week), 63 at week 1 (end of placebo week), 65 at week 2
(end of first drug treatment week), 65 at week 3 (end of second drug treatment week), 63 at week 4 (end of third
drug treatment week), and 58 at week 5 (end of fourth drug treatment week). The sample size is 375. Data for
the first 10 observations of all the variables used in this section are shown below in the form of a SuperMix
spreadsheet file, named reisby.ss3.
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The variables of interest are:

Patient is the patient ID (66 patients in total).
HDRS is the Hamilton depression rating scale.
Week represents the week (0, 1, 2, 3, 4 or 5) at which a measurement was made.

O O O O

ENDOG is dummy variable for the type of depression a patient was diagnosed with (1 for
endogenous depression and 0 for non-endogenous depression).

o WxENDOG represents the interaction between Week and ENDOG, and is the product of Week and
ENDOG.

The models

A general two-level model for a continuous response variable y depending on a set of » predictors

X,,X,,...,X, can be expressed as

Yy =XB+zu +e

where y; denotes the value of y for the j-th level-1 unit nested within the ;i-th level-2 unit for i =1,2,..., N
and j=1,2,...,n, The scalar product x;/B is the fixed part of the model, and z;/u ; and e, denote the random
part of the model at levels 2 and 1 respectively. For the fixed part of the model, x;./ is a typical row of a design
matrix X; while the vector B contains the fixed, but unknown, parameters to be estimated. In the case of the
random part of the model at level 2, z;j represents a typical row of a design matrix Z,, and u, the vector of

random level-2 effects to be estimated. It is assumed that u ,u,,...,u, are independently and identically

distributed (i.1.d.) with mean vector 0 and covariance matrix @, . Similarly, the ¢; are assumed i.i.d., with

mean vector 0 and variance o”. The elements of z, are typically a subset of those of x;;.

The random intercept and slope model

The random intercept and slope model for the response variable HDRS may be expressed as

HDRS, = f, + f,*(Week), +u, +u, (Week), +¢,

where [, denotes the average expected depression rating scale value, S, denotes the coefficient of the
predictor variable Week (slope) in the fixed part of the model, u,, denotes the variation in the slopes over
patients, and u,, and ¢; denote the variation in the average expected HDRS value over patients and between

patients respectively.



The random intercept and slope with a covariate and an interaction model

The random intercept and slope model for the response variable HDRS with the variable ENDOG as a covariate
and with an interaction effect between Week and ENDOG may be expressed as

HDRS, = f, + f*(Week), + 5, *(ENDOG), + 8, *( WxENDOG )

i

+u, +u, (Week) +e;

where [, denotes the average expected depression rating scale value, 5, and S, denote the coefficients of
the predictor variables Week and ENDOG in the fixed part of the model, S, denotes the coefficient of the
interaction between Week and ENDOG 1in the fixed part of the model, u, denotes the variation in the Week
slopes over patients, and u,, and e, denote the variation in the average expected HDRS value over patients

and over measurements (i.e., between patients) respectively.

Example: Random intercept and slope model
Importing the data

The random intercept and slope model above is fitted to the data in reisby.ss3. The first step is to create the
ss3 file shown above from the Excel file reisby.xlIs. This is accomplished as follows.

Use the Import Data File option on the File menu to open the Open dialog box.
Browse for the file reisby.xls in the Examples\Primer\Continuous folder.

Select the file and click on the Open button to open the following SuperMix spreadsheet window for
reisby.ss3.

¥ SuperMix - [reishy.ss3] =10l =]
B4 Fle Edt Window Help =18l =]
|Patient Apply |
[&] Patient | (BLHDRS | [Clweek | (DLENDD | ELwwEN | =]
1 101.00 26.00 0.00 0.00 ooo| _
2 | _oim 2200 1.00 0.00 0.00
a3 | mm 18.00 200 0.00 0.00
4| mm 7.00 300 0.00 0.00
5| m 400 400 0.00 0.00
& | m 3.00 5.00 0.00 0.00
7| 1mm 33.00 0.00 0.00 0.00
& | 1mam 24.00 1.00 0.00 0.00
“a | 10am 15.00 200 0.00 0.00
10 103.00 24,00 300 0.00 000/
i mi

After selecting the File, Save option, we are ready to fit the random intercept and slope model for HDRS to the
data in reisby.ss3.

Setting up the analysis

Start by selecting the New Model Setup option on the File menu as shown below to open the Model Setup
window. The Model Setup window has six tabs: Configuration, Variables, Starting Values, Patterns, Advanced,
and Linear Transforms. In this example, only the Configuration and the Variables tabs are used.
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odel Setup: depress.mum =10l
Eariahles' Starting Values' Eattems' Advanced | Linear Tranzforms
Title 1: |Longitudinal analysiz of 66 depreszed inpatients
Title 2 |Data from Reishy et, al (1977)
Dependent Y ariable Type: lm Level-2 Dz lm
Dependent Yariable: lm Level-3 1Dz lﬁ
wiite Bayes Estimates: m
Corwergence Criterion: Innm—
Mumber of Iterations: I'IUU—
Mizzing Y alues Prezent: lh Generate Table of Means: lm

Output Type: I standard v l

I Use the arow keps or click on the desired tab to select the category of interest for the model.

Starting with the Configuration screen, the titles Longitudinal analysis of 66 depressed inpatients and Data from
Reisby et. al. (1977) are entered in the Title 1 and Title 2 text boxes respectively. The continuous outcome
variable HDRS is selected from the Dependent Variable drop-down list box. The variable Patient, which defines
the levels of the hierarchy, is selected as the Level-2 ID from the Level-2 IDs drop-down list box. We keep the
default settings of all the other options in order to produce the Configuration screen as shown above.

Click the Variables tab to proceed to the Variables screen of the Model Setup window. This screen shows the
list of variables available for analysis and next to it two columns, with headings E (for explanatory variables)
and 2 (for level-2 random effects). The variable Week is specified as the covariate of the fixed part of the
model by checking the E check box for Week in the Available grid. We mark the 2 check box for Week in the
Available grid to specify the random slope at level 2 of the model. After completion, the Variables screen

should look as shown below.



T, Model Setup: depress.mum

o =] 3
LConfiguration tarting Valuesl Eattemsl advancedl Linear Transformsl
Awvailable | E | 2 Explanatary Yariables | L-2 Randam Effects |

Patient i Week | Week

HDRS rr

Week v v

ENDOG rr
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¥ Include Intercept

V' Include Intercept

Usze the amow keps or click on the desired tab ta select the categary of interest for the model.

Before the analysis can be run, the model specifications have to be saved to file. To accomplish this, we select

the Save As option on the File menu to open the Save Mixed Up Model dialog box and then enter the name
depress.mum in the File name text box to produce the following dialog box.

25
Save jn: ID Continuous j - B El-

3 depressl.mum
ﬁ depressz.mum
ﬁ depress, mum
ﬁ TMEPSZ, MU
ﬁ TEps. mum

File name: g j Save I
Save as bype: IM\xed Up Model [*.murm) j Cancel i
7

The analysis is run by selecting the Run option from the Analysis menu as shown below

Analysis  Window  Help

View Cukpuk

Yiew Level-2 Bayes Resulks
Yigw Level-3 Bayes Resulks
Yiews Estimated Parameters

to produce the corresponding output file depress.out.



Discussion of results

Four separate sections of the output file depress.out are shown below. The summary of the hierarchical
structure of the data below, which is given first, shows how the 375 measurements are nested within the 66
patients. It also indicates that the number of repeated measurements per patient varies from 4 to 6 observations.

'?:‘ SuperMix - [depress.out] 101 x|
l‘? File analysis Window Help — ||5’|i|
Numbers of ocbservations ;I

Level & cbservations = =1

Lewvel 1 ohservations = jEir

Nz H 1 Z 2 4 13 & 7 a2
N1l H & & & & 5 5 & 5
Nz H ] 10 11 1z 1z 14 15 16
Nl H £ £ & £ & & 5 5
Nz H 17 13 12 Z0 z1 ZE z3 Z4
N1l H & & & & [ E & &
Nz H 25 26 27 z8 29 20 21 22
N1l H & E 4 & B E & &
Nz H 23 24 35 11 27 28 29 40
N1 H & 5 5 5 ] 5 & &
Nz H 41 &Z 43 4 45 E1-] 47 43
N1l H & E & & [ & E &
Nz H 42 Lo £l £ E2 B4 EE Le
N1l H & & 1 £ B & E &
Nz H E7 =] £9 (3] &l ¥4 63 &d
N1l H & & & & B 5 & &
Nz H 65 1]

Nl H 5 5 LI
Save Az I LCloze I

The following portion of the output file consists of a listing of selected descriptive statistics of the variables
of the model. The descriptive results show, for example, that the mean HDRS score is 17.64 with a standard
deviation of 7.19.

'?:‘ SuperMix - [depress.out] ;Iglll

fP File Analysis  Window Help _|ﬁ'|1|
Descriptive statistics for all wariables ;I
Wariahle Minimuam Maximuam Mear Stand. Dew.
Dependent
HDRE 0.00000 32.00000 17.683733 7

.13006 J

intcept  (Z) 1.00000 1.00000 1.00000 0.oo000o0

Week (=81 0.0oo0oo E.0oooo Z.42000 1.683E0
intcept (1) 1.00000 1.00000 1.00000 0.oo000o0

Fixed Regressor(s)

intcept 1.00000 1.00000 1.00000 0.oo000o0

Week 0.0oo0oo E.0oooo Z.42000 1.683E0

=l

Save bz | LCloge |

The next part of the output file contains the starting values for both fixed and random components.



'?:‘ SuperMix - [depress.out] - |E||1|
fP File Analysis  Window Help _|ﬁ||1|
Parameter starting walues ;I

Fixed regressoris)

Wariahle Estimate Std_Err E-walue p-walue
intercept Z223.602632 0.E547cl 43.101z8 0.ooooo
Week —Z.40536 0.12z78 -l3.1532¢ 0.ooooo

Log Likelihood = —-E474.9E557

Mumber of free parameters = &

Variance/covariance components J
Lewvel E Estimate Scd_Err. Z-walue p-walue
intercept fintercept 1z.73430 0.z721& 45 78734 0. gogoo
Week fintercept -1.50873 0.1611% -9.36004 0.00000
Week fMeck z.la703 0.12E554 11.78753 0.ooooo
Lewveal 1 Estimate Scd_Err. Z-walue p-walue
intercept fintercept 1z.1401% 0.03054 133_932832 0. gogoo _I

-

Save Az | LCloze |

The last part of the output shows the final estimates of the fixed and random coefficients included in the
model, along with some goodness of fit measures. The results given below show that the p-values for the time
effect, as represented by the variable Week, is highly significant. At the beginning of the study, when Week =
0, the average expected HDRS score is 23.57695. For each subsequent week, a decrease of —2.37707 in average
HDRS score is expected. At the end of the study period, the average expected HDRS score is 23.57695 —
5(2.37707) = 11.6916.

The p-values for the estimates of the random coefficients are also significant, with the exception of that for

the covariance between the intercept and slope. From the output above we have var(u,,) = 12.62930, var(u,,)

=2.07899, C(A)V(uio,u,-l) =—1.42093, and that Vglr(ei].) = 12.21663. It is clear that there is considerably more

variation in patients' intercepts than in their slopes (12.62930 vs. 2.07899). This indicates that there are
significant differences in the initial HDRS scores, but that the patients' slopes over time do not vary as much.
This seems to indicate that the pattern in HDRS scores over time may be similar for patients, although they
start with markedly different initial HDRS scores. Typically, one would expect most of the variation in HDRS

scores at the measurement level, and thus would expect var(e;) to be larger than any of the other

variances/covariances. In this case, however, there is more variation in the random intercepts over patients
than in the measurements nested within patients. Due to this, it may be of interest to take a closer look at the
variation in HDRS scores at the two levels of the hierarchy.

In the case of a model with only a random intercept, there are two variances of interest: the variation in the
random intercept over the patients, and the residual variation at level-1, over the measurements. By calculating

the total variation in the HDRS score explained by such a model, obtained as var(e, ) + var(u,,) , we can obtain

an estimate of the intracluster correlation coefficient.



The intracluster coefficient is defined as

ICC =

A
var(u,,)

AN
var(e; ) + var(u,,)

and would, for a random intercept model for this data, represent the proportion in HDRS scores between

patients.

% depress.out 1Ol x|
--------------------------------------- [
Convergence attained in 5 iterations
TITLE: Longitudinal analysis of €6 depressed patients

Data from Resiby =t. al {1977)
Maximum likelihood estimates
Fixed regressor(s)
Wariable Estimate std. Err. E-walue p-value
intocept Z23. 57698 054558 43.Z1714 0. 0ooooon
Meek —-2.37707 0. 208658 -11.39z280 0. 0ooooon
Log Likelihood = -11l0%._ 5183
=% Log Likelihood (Deviance) = ZZ219.037E
Akaike's Information Criterion = ZE31.037E
Schwarz's Bayesian Criterion = ZEdd4. 1754
Mumber of free parameters = [
Variancefcovariance components
Level £ Estimate Ztd. Err. Z-walue p-value
intcept fintcept 1z 62930 346653 3.64322 0.0oo0z7?
ek fintoept -1.4Z093 1.0Z59% —1.38500 0. lea0s
Meek fMeek Z2.07899 0. 50417 4. 173263 0. 00004
Lewel 1 Estimate Std. Err. E-walue p-walue
intcept fintcoept 12. 21663 1.10&36 11.03618 0. 00aan ,:J

In the current model, which contains both a random intercept and a random slope, the situation is somewhat
more complicated. This is due to the possible correlation between the level-2 random effects. When
calculating an estimate of the total variation, the covariance(s) between random effects have to be taken into
account in any attempt to estimate the proportion of variation in outcome at any level or for any random
coefficient. In addition, the inclusion of a covariate such as ENDOG can affect the variance estimates.

The total variation in HDRS scores over patients is defined as

Var(level 2) = var(u,, ) + var(u,, (WEEK)? +2[cov(u,y, 1, )| (Week),



The total variation is a function of the value assumed by the predictor Week, which has a random slope. As
such, the total variation at the beginning of the study is

Var(level 2) = var(u,, ) + var(u,, )(0)* + 2[cov(u,, u,,)](0)
= var(u,,)
while at the end of the study we have
Var(level 2) = var(u,, ) + var(u, )(5)° +2[cov(u,g,u,)] (5)

= var(u,,) + 25 var(u, ) +10cov(u,,,u,)

An estimate of the total variation at this level can be obtained by using the estimates of the variances and

covariance obtained under this model. By substituting var(u,,), var(u,), and cov(u,,,u, ) into the equations

above, we obtain the estimated variation in HDRS scores over patients at different points during the study
period.

At the beginning of the study, the estimated total variation in HDRS scores over patients is simply the estimated

variation in the random intercept, i.e., var(u,,) = 12.62930. At the end of the study, the total variation at level-
2 is estimated as

Vzlr(level 2)= V;r(uio) +25 er(uil) + lOccA)V(u,.O, u,)
=12.62930+25(2.07899) +10(-1.42093)
=50.39475.

At the beginning of the study we obtain

var(level 2) C12.62930
Vglr(level 2)+ Vzlr(level 1) 12.62930+12.21663
—0.5083

and thus conclude that that 50.8% of the variation in HDRS scores at this time is over patients. At the end of
the study, we find that

var(level 2) _50.39475
50.39475+12.21663

Vglr(level 2)+ Vzlr(level 1)
=0.8049,

so that only 20% of the variation in HDRS scores are estimated to be at the measurement level, with 80% at
the patient level. As mentioned before, the total variation in HDRS scores is a function of the time of
measurement, as represented by the variable Week. The very different estimates of variation at a patient level
show how the introduction of an important predictor, in this case at the measurement level, can have an impact
on variance estimates at a different level of the hierarchy. By the end of the study period, the residual variation
over measurements has been dramatically reduced, this being explained largely by the inclusion of the time
effect. Most of the remaining unexplained variation is at the patient level. As a result of this finding and in
the light of our original research question, whether the initial depression classification of a patient is also
related to the HDRS scores over the time in which medication is administered, the model will be extended to
include the covariate ENDOG. This dichotomous variable assumes a value of 1 when endogenous depression



was observed, and 0 if not. In addition, we will make provision for a possible interaction between depression
classification and the measurement occasion by including the interaction term WxENDOG in the model. While
WXENDOG can be viewed as a cross-level interaction, as Week is a measurement-level variable and ENDOG a
patient-level variable, the inclusion of the patient-level variable ENDOG may enable us to explain more of the
remaining variation in the random intercepts and slopes at the patient level.

Example: A random intercept and slope model with covariate and interaction effect

To fit the random intercept and slope model with a covariate and an interaction effect for HDRS, we need to
include the variables ENDOG and WXENDOG as covariates in the model. Significant ENDOG and WXENDOG
coefficients will imply that there are significant differences in depression value ratings between the two groups
of patients, or that there is significant interaction between the type of depression and the time at which a
measurement was made. One way to decide whether ENDOG and WXENDOG should be included is to fit the
model with and without these predictors to the data. Then the difference in the deviance (-2 log-likelihood)
values can be used to obtain a y”-square test statistic value. The difference in the number of parameters

estimated in each of these models gives the corresponding degrees of freedom.

Setting up the analysis

To create the model specifications for this model, we start by opening reisby.ss3 in a SuperMix spreadsheet
window. Then we use the Open Existing Model Setup option on the File menu to open the Model Setup window
for depress.mum. We extend the string in the Title 1 text box on the Configuration screen by adding the string
"+ ENDOG". Since we would like to produce the Bayes estimates for the means, we select the means &
(co)variances option from the drop-down list box next to Write Bayes Estimates to produce the following
screen.

 Model Setup: depress1.mum ) ] 3

|Eariables| Starting Values' Eattems' Advanced | Linear Transforms

Title 1: ILDngitudinaI analyziz of BE deprezzed inpatients + ENDOG

Title 2: |Data from Reisby et. al [1377)

Dependent Yariable Type: Icontinuous 'l Level-2 Dz IF‘atient 'l
Dependent ' ariable: IHDHS Yl Level-3 1Dz I Yl

‘wite Bayes Estimates: Imeans ¥ [colvanances 'l
Convergence Criterian: ID.DD1
Number of Iterations: I'IDD

Mizzing Values Present: Ifalse 'l Generate T able of Means: Ino 'l
Output Type: Istandard 'l

Usze the arrow keys or click on the desired tab to select the categary of interest far the madel.

Next, click on the Variables tab to proceed to the Variables screen of the Model Setup window. The two
covariates are specified by checking the E check boxes for ENDOG and WXxENDOG in the Available grid
respectively to produce the following Variables screen.



Model Setup: depressl.mum o =] 3

LConfiguration Starting Valuesl Eattemsl Advanced | Linear Transformsl
Awvailable | E | 2 Explanatory Yariables L-2 Random Effects
Fatiert rr Week ek
HORS r ENDOG
waek v v wHENDOG
ENDOG |
WHENDOG VI

V' Include Intercept

V' Include Intercept

Use the amow keys or click on the desired tab ta select the category of interest for the model.

Save the changes to the file depress1.mum by using the Save As option on the File menu. To fit the revised
model to the data, select the Run option on the Analysis menu to produce the output file depress1.out.

Discussion of results
A portion of the output file depress1.out is shown below.

'?:' SuperMix - [depress1.out] ) [=] B3

fog File Analysis wWindow Help _|5||i|

| Longitudinal analysis of 66 depressed inpatients + ENDOG |
| Data from Reiskhy et. al (1977) |

Variable Estimate Std.Err. 2-walue p-walus
intcept ZZ.476E8 073435 Z8.EZ9524 0. ooo0oo0
WMeak —-Z.326569 0.21181 -7.58892 0. ooo0oo0
ENDOG 1.98802 1.0&6208 1.8E361 0. 08294
WxENDOG -0.02706 0.41347 -0.06450 0.34357
Log Likelihood = -1107_ 4646

-2 Log Likelihood (Deviance! = z22ld4. 9292

Azaike's Information Criteriomn = Z230_3Z92

Schwarz's Bayesian Criterion = ZEZ45_ 4468

Humher of free parameters = a2

Variance/covariance components
Lewel Z Eztimate Std_Err. Z-walue p-walues
intcept fintcept 1164121 F.E964E 3.E3142 0.00041
ek Fintcept =1.40181 1.00338 =1.39683 0.152458
Meek FfMMeek Z.07707 0.50380 4. 122583 0. 00004
Level 1 Estimate Std_Err. Z-valus p-valus
intcept fintecept 1Z.21247 1.10707 11.038732 0. ooo0oo0

Save As... LCloze




The interaction WXENDOG between the time variable Week and the depression classification of the patient, as
represented by the variable ENDOG, is not significant. Given this, we can take a closer look at the estimated
coefficients for the main effects Week and ENDOG respectively. Note, however, that the p-value for the ENDOG
coefficient is larger than 0.05, and thus can only be considered significant at a 10% level of significance. The
effect of time, on the other hand, is found to be highly significant. While the average HDRS score is predicted
to decrease by —2.37 score scale units each week, patients classified as having endogenous depression (i.e.,
ENDOG = 1) are predicted to have a HDRS score of 2 units higher at all occasions.

This is clear from a plot of the predicted HDRS scores over time for the two ENDOG groups, as shown below
in Figure 3.1. For all practical purposes, the two lines are parallel to each other, again underscoring the absence
of significant interaction between Week and ENDOG.

To obtain the predicted average HDRS scores as shown in these plots, the estimates obtained from the output
are used:

y=p,+ f,(Week) + 3,(ENDOG) + 8,(WXxENDOG)
— 2247626 — 2.36569(Week) +1.98802(ENDOG) — 0.02706( WXxENDOG)

Predicted HDAS =core over time

v _pred=22.47-2.36%week+1 . 98*%endog-0. 02%uxendog

yv_pred
257

Heek
EHDOG 8% j=an=an =l |

Figure 3.1: Predicted HDRS scores over time for two groups

To illustrate differences between significant and nonsignificant interaction, we examine two scenarios. In the
first, suppose that a negative and significant estimate of —1.02 was obtained for the interaction between Week
and ENDOG. In this case, the graph (see Figure 3.2) would have looked somewhat different, as shown below.
Under this scenario, patients with endogenous depression would have improved faster than their counterparts
with non-endogenous depression.



Predicted HDRS score over time
v _pred=22.47-2.36%week+1.98%endog-1. 02*%wxendog

y_pred
25

20

Heek
ENDOG —88 o900

Figure 3.2: Predicted HDRS scores over time for two groups

For the second scenario, suppose that a significant and positive interaction term of 1.02 was obtained. In this
case, patients with non-endogenous depression would have shown more marked improvement over time than
the patients with endogenous depression. This scenario is illustrated in Figure 3.3.

Predicted HDRS score over time
v _pred=22.47-2.36%uweek+1 .98%endog+1 . 02*¥wxendog

y_pred
257

20

<
)
=]
-
Ll

Heek
ENDOG —88 0 o500

Figure 3.3: Predicted HDRS scores over time for two groups



A question that arises from inspection of the results is whether the interaction term contributes overall to the
explanation of the variation in the HDRS scores. To test this, we can fit a model without the interaction term
and use the deviance reported in the output to compare results for the model with interaction and the model
without this term. The relevant output (depress2.out) from an analysis without the interaction term is shown
below. We note that the deviance obtained for the simpler model is almost identical to that of the model
considered in this section. Based on this, we conclude that a model without the interaction WXENDOG would
fit the data as well as the one with the interaction term included.

'?:‘ SuperMix - [depressz.out] — |EI|5|
:;3 Eile  Analysis  Window Help - |ﬁl|i|
Fixed regressori(s) ;I
Variable Estimate Std.Err a-wvalue p-value
intcept ZZ.49344 0.7453%9 30.055%2 o.ooooo
Maek —Z.328064 0.Z0g59 -11.413217 o.ooooo
ENLOG 1.35650 0.35083 £.05769 0.0336E
Log Likelihood = -1107._4667 _I
-2 Log Likelihood (Deviance) = 2214 .93324
Akaike's Information Criterion = ZZE8.9334
Schwarz's Bayesian Criterion = 2244 _Z&l0
MNumber of free parameters = 7 _I
-

In addition, we can test the hypothesis that the model with covariate (ENDOG) fits the data better than the
random intercept and slope model considered previously. To test this hypothesis, we calculate the difference
between the —2 log likelihood value obtained for the previous model (depress1.out) and the —2 log likelihood
value for the current model (depress2.out). It can be shown that this difference of 2219.04 — 2214.93 = 4.11

hasa y* distribution with associated degrees of freedom equal to the difference in the number of parameters

estimated in the two examples, i.e., 8 — 7 = 1 degree of freedom. Since the p-value for this test statistic is less
than 0.05, it is concluded that the random intercept and slope model with ENDOG as a covariate does not
provide a better description of the data than the original random intercept and slope model. This finding is
supported by the fact that the p-value for ENDOG when the interaction effect between Week and ENDOG is
excluded.

Residual analysis

Up to this point, we have considered results averaged over all patients. We now turn our attention to the
residual file depress1.ba2, which offers the opportunity to take a closer look at the results by individual
patient. In the image below, the contents of this file are displayed for the first 10 patients.

Two lines of information are given for each patient, containing, in order of appearance,
o the patient ID,

the number of the empirical Bayes coefficient,

the empirical Bayes estimate,

the estimated variance of the Bayes coefficient, and

o O O O

the name of the associated coefficient as used in the model.
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| 1al.00 1 1.73E80 3.39520 intercept &

1l01.00 Z —-Z.041z2 0.4E969 Meek
103.00 1 4_ 3130 3.95E0 intercept
102,00 4 -0.331le3 0.4E5252 Week

104 .00 1 1.9208 3.9EZ0 intercept
104 .00 Z -1_5EZ43 0.45363 Meek

1oL, 00 1 —2.1804 2.9E8E0 intercept
l0L5.00 z 0. 26636 0.4E363 Meek

10&. 00 1 —-0.30552 4. 134F intercept
10&.00 Z 0.97334 0.g2758 Meek
107.00 1 -1._EZ044 3.9533 intercept
1a7.00 4 —0.47:04 0. 53423 Week
lo0g.00 1 -z.Eg00 3.9EZ0 intercept
l0s.00 Z -0.86300 0.45363 Meek
l1z.00 1 0.212819E-01 4,134 intercept
11z.00 z 1.8643 O.g3758 Meek
114.00 1 —-£.385399 5.8413 intercept
114.00 Z -0.4632Z5 052432 Meek
115.00 1 —E.9641 5.58413 intercept
11E.00 4 0.4z2e7 0.E84323 Week ;I

Save As. . | LCloze |

To obtain patient-specific predicted HDRS scores the empirical Bayes estimates for each patient have to be
taken into account, as these estimates indicate the extent to which the random intercept or slope for that patient
deviates from the intercept and slope over all patients. Patient-specific predicted HDRS scores are calculated
as

| u, =22.47626 - 2.36569(Week) + 1.98802(ENDOG)

~0.02706( WXENDOG) + 1, + 1, (Week)

For the first patient shown in the residual file above, we have ujo =1.7950 and uAl.1 = —2.0413. From this

information, we can already tell that the intercept for the patient is higher than average, but that the Week
slope for this patient is lower than average. This patient was classified as having non-endogenous depression,
so that ENDOG = 0. At week 1, the predicted HDRS score for this patient (Patient = 101) is found to be

)A/ =22.47626—-2.36569(1) +1.7950—-2.0413(1)
=19.8643
and at the end of the study period (Week = 5) the predicted HDRS score for Patient 101 is

= 22.47626—2.36569(5) +1.7950 — 2.0413(5)
=2.3631.

Figures 3.4 and 3.5 are graphical representations of the average and patient-specific regression lines of six
patients, three of which were classified as non-endogenous and three as endogenous. The graphs on the left
show the patient-specific regression lines (solid lines) and the observed HDRS trajectories (the dotted lines)
for each of the patients. The graphs on the right show the average regression line (solid) and the patient-
specific regression line (dotted).

For the patients with non-endogenous depression (Figure 3.4; graphs on the right), all the average regression
lines are identical. Similarly, the average regression lines for patients with endogenous depression (Figure
3.5; graphs on the right) are identical. For the latter case, the average regression lines are higher. Recall that
for the predictor ENDOG an estimated coefficient of 1.98802 was obtained. A patient classified as having
endogenous depression is thus expected to have a higher average HDRS score than a patient with non-
endogenous depression.



Regression line and observed trajectory Patient and average regression lines
Patient=101 Patient=101

Heek Heek
Regression line and observed trajectory Patient and average regression lines
Patient=103 Patient=103
¥ ¥
35 7 35

51 51
o T T T T T 0T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
Heek Heek
Regression line and observed trajectory Patient and average regression lines
Patient=114 Patient=114
35 an
307 20
25 7 25 -
20 7 20
15 7 15 7
107 107
5 57
o T T T T T o T T T T T
0 1 2 3 4 5 1] 1 2 3 4 5
Heek Heek

Figure 3.4: Average and unit-specific regression lines for patient with non-endogenous depression

From the top right graph in Figure 3.4 we find that patient number 101 had a higher initial HDRS score, but
over time obtained a lower than average score. For patient 103, a higher than average predicted HDRS score
is obtained at each time point, as illustrated in the second graph on the right. In contrast, patient 114 scored
lower at each time point. Similar patterns for patients with endogenous depression are present in the graphs



in Figure 3.5. Patients 104, 106 and 108 were classified as having endogenous depression. In the case of
patient 108, the predicted average regression line shows a consistently higher predicted HDRS score over time
when these scores are compared to the predicted average regression line for the non-endogenous patients. The
observed trajectories of patients 101, 114, 106 and 108 follow their predicted patient-specific regression line
more closely than is the case for patients 103 and 104.
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Figure 3.5: Average and unit-specific regression lines for patient with endogenous depression



Level-1 residuals can also be obtained, either for a typical or specific patient, by using the empirical Bayes
estimates. The residuals for a typical patient are obtained as

Average residual = Observed HDRS score — )A/
= Observed HDRS score
—[22.47626 —2.36569(Week) +1.98802(ENDOG)] - 0.02706( WXENDOG)

The residuals for a specific patient use the additional information given by the empirical Bayes residuals and
have the form

Patient-specific residual = Observed HDRS score—y |u,
= Observed HDRS score —

[22.47626 —2.36569(Week) +1.98802(ENDOG) — 0.02706( WXENDOG) + 10 + un (Week)]

Reziduals over time
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Figure 3.6: Comparison of population average and Bayes residuals for first 10 patients

Inspection of these estimates can be useful in examining the distributional assumptions for the level-1 data,
in this case at the measurement level. For the current example, residuals for a typical patient have a mean of
—0.022 and range between —15.3792 and 20.4995. The residuals for specific patients have a mean of 0.000
with a minimum value of —9.5942 and a maximum value of 12.6566. The range of the latter is much smaller.
Empirical Bayes estimates are frequently referred to as "shrunken" estimates, as the empirical Bayes tend to
pull the estimates closer to the sample average, thus "shrinking" them. The amount of shrinkage is a function
of the precision of the intercept/slope estimates. The greater the precision for an estimate, the less shrinkage.
This means that more shrinkage will occur for units where there is more uncertainty concerning the accuracy
of the fixed intercept and slope regression estimates. Figure 3.6 shows a comparison of the two types of



residuals for our example. The Bayes residuals are much closer to the horizontal reference line at 0. Note the
shrinking of the more extreme population average residuals in the left pane.

An alternative way to display the Bayes residuals is to plot 95% confidence intervals for patient intercepts
and slopes, as shown in Figures 3.7 and 3.8. Information for the first 10 patients in the study were used to
construct these graphs.

Confidence intervals were obtained as mean +1.96(std. dev) . For the intercepts, the means are computed as

B+ Uy, j =1,2,...,10. Standard deviations are computed as the square roots of the variances of the empirical
Bayes intercept residuals given in the ba2 file shown earlier. For patient 1, for example,

AN

u, =1.7950, Var(u;) ~3.9520

A

u, =—2.0413, var(u:lj — 0.45969.

Therefore, the 95% confidence intervals for patient 1 are:

intcept : (22.47626 +1.7950) £1.96 x (3.9520)">
= (20.3749; 28.1677)

slope : (—2.36569 —2.0413) £1.96x (0.45969)""*
=(=5.7359; —3.0781).

In Figures 3.7 and 3.8, each mean is represented by a square. Figure 3.8 shows that the individual slopes for
the first 10 patients are all negative.

95% confidence intervals for patient intercepts
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Figure 3.7: 95% confidence intervals for patient intercepts
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Figure 3.8: 95% confidence intervals for patient slopes
Graphical displays

It is possible to obtain a great variety of graphical displays with SuperMix. To invoke the graphics procedure,
open a SuperMix data file. To illustrate this, we use reisby.ss3 in the Continuous subfolder. The next step is to
select the Data-based Graphs, Exploratory option on the File menu as shown below

File Edit Window Help

Mew Project CEFl+N I _ Inlﬂ
Import Data File.. . (Zh T
Close
Mews Model Setup Chrl+ie : ] ENDDEEI E le;
Zipen Existing Model Setup... Chrl+E 1 0
Mews Svnkax File 2 0
Open Syntax File, .. 3 0
Open Text File... 4 1]
R N

Data-based Graphs Exploratory. ..
Zipen araph... k43

Univariate. ..

Bivariate. ..

Save Chrl4+5
fultivariate. ..

Save s, L

Exit a 0

n 1 l
4] | 3

to activate the New Graph dialog box. Specify HDRS as the dependent (vertical axis) variable by selecting it
from the Y drop-down list box and Week as the independent (horizontal axis) variable by selecting it from the
X drop-down list box. A graph on the same axes-system is created for each patient by selecting the variable
Patient from the Overlay drop-down list box. Furthermore, each graph is assigned a color by selecting ENDOG
from the Color drop-down list box to produce the following New Graph dialog box.



. |HDRS =l
S IWeek j
Owerlay: IF‘atient j

¥ Drawline [ Draw points

Multiple ' values far same 2
’7 ' Stack verticaly —‘

' Average value

Calar: I EMDOG > l
Filter: I j

Ok I Cancel I Help |

Click on the OK button to produce the following graph of the reaction trajectories over time for the 66 patients.
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To modify the existing graphic displays, select the Edit Graph option from the Settings menu to open the Edit
Graph dialog box. To obtain different graphs for the two categories of the covariate ENDOG, select it from the
Filter drop-down list box to produce the following Edit Graph dialog box.

editGraph
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Click on the OK button to open the following graphics window.



R
HDRS vs. Week where ENDOG = 0

[}

2

(]

B[

T T T T T T
o.o0 0s0 1.00 150 2.00 280 .00 280 400 4.50 6.00
Week
O EMDOG: O Patient: 101 ﬂ W Patient: 101 ﬂ
A EMDOG: O Patient: 103 M Patient: 103
% EMDOG: 1 Patient: 104 M Patient: 104
<> EMDOG: 0 Patient: 105 LI M Patient: 105 j
Off Scale: | = |
| I i

At the bottom of the graphics window is a "slider" with left and right arrows. By clicking on the right arrow,
one can obtain the next graphic shown below and by clicking on the left arrow, the graphic above.
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