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Model-based graphs 

Three types of model-based graphs can be produced with SuperMix. Plots of predicted 
outcomes based on the model equations can be made, and these graphs can be displayed by 
group or marked by a third variable. Residual plots (normal outcomes only), again marked by 
an additional variable, can also be made. Finally, an option to plot model-based confidence 
intervals of random coefficients is available. Again, these plots can be displayed by group or 
by marking variable. 
 
Model-based graphing options are accessed via the File, Model-based Graphs option. The 
pop-up menu activated through this selection has three options – Equations, Residuals and 
Confidence Intervals – each associated with one of the type of plots described above. 
 

 
 



Graph parameters that may be changed include the axes and descriptions thereof, the symbols 
used, and the colors assigned to the symbols/text. To change any of these, simply double-
click on the symbol/text to be changed to activate a dialog box in which changes can be 
made. Use of such dialog boxes will be illustrated in the course of the discussion of the 
various graphs in the sections to follow.  

Graphing model equations 

A graph frequently used as part of initial exploratory analysis of data is the scatter and/or line 
plot. This type of plot is used to examine potential relationships between an outcome variable 
and possible predictor variables, using the observed data. After fitting a model, one can plot 
the relationship between the outcome variable and predictor variables, subject to the model 
fitted to the data.  

Creating an equation based graph for a two-level model 

Recall that, for the Reisby data, we looked at the patients' HDRS ratings at six time points. In 
Section 3.2, we fitted a model with random intercept and slope for the response variable 
HDRS with the fixed predictors Week, ENDOG and the interaction effect between Week and 
ENDOG to the data. In this model 

  

( ) ( ) ( ) ( )0 1 2 3 0 1HDRS * Week * ENDOG * WxENDOG Weekij i i ijij i ij ij
u u eβ β β β= + + + + + +

 
0β  denotes the average expected depression rating scale value, 1β  and 2β  denote the 

coefficients of the predictor variables Week and ENDOG in the fixed part of the model, 3β  
denotes the coefficient of the interaction between Week and ENDOG in the fixed part of the 
model, 1iu  denotes the variation in the Week slopes over patients, and 0iu  and ije  denote the 
variation in the average expected HDRS value over patients and over measurements (i. e., 
between patients) respectively.  
 

 



The graph above shows the predicted HDRS ratings over the study period for the two groups 
of patients. The average predicted HDRS rating of patient with endogenous depression is 
consistently higher than that of the patients with non-endogenous depression. 

 
This trend holds for most of the patients, as illustrated in the graph below, where the 
predicted HDRS ratings of individual patients were plotted. In this graph, the predictors not 
used in the graph (i.e., ENDOG and WxENDOG) were held at the mean values, in contrast to 
the graph shown above where WxENDOG was held constant at a value of 0.  
 

 

 
 

Care should be taken when making these graphs to verify that, if the default value of 0 is 
assumed for predictors not included, the value 0 is within the range of possible predictor 
values. In our case, the variables ENDOG and WxENDOG both include observed 
values/categories equal to zero, and the choice between holding the predictors constant at 
zero or the mean is a question of personal preference. However, should the variable ENDOG 
for example be recoded to have values 1 and 2 for the depression categories rather than the 
current 0,1 coding, interpretation of the graph shown above would be problematic. The 
variables ENDOG and ENDOG would then both be held constant at nonexistent values in 
terms of their ranges of observation/coding. 

 
Creating an equation based graph 

To create the model-based graph of HDRS ratings over the study period for the two groups of 
patients shown previously, open both the data and model files in the Graphics folder, in this 
case reisby.ss3 and depress.mum, and run the model. Next, select the File, Model-based 
Graphs, Equations option from the main menu bar. The Plot Equations for: HDRS dialog box 
is displayed. Note that it is assumed that the outcome variable used in the model, in this case 
HDRS, is the variable that will be displayed on the vertical axis of the graph. 
 



 
 
Select Week as the predictor variable that will be displayed on the X-axis of the graph by 
checking the box next to this variable in the Predictor column. To obtain separate lines for 
patients with and without endogenous depression, select the variable ENDOG in the Mark 
column. Note that only one grouping variable and one marking variable may be selected.  

 

 
 

By default, predictors not selected will be held constant at zero, as indicated by the default 
selection of the Remaining predictors fixed at 0 option. Click Plot to display the graph shown 
below. 
 
Note that the two lines shown in this graph correspond to the model  
 



 ( ) ( ) ( )

( ) ( )

0 1 2 3

0 1 2

HDRS * Week * ENDOG * WxENDOG

* Week * ENDOG

ij ij i ij

ij

β β β β

β β β

∧ ∧ ∧ ∧

∧ ∧ ∧

= + + +

= + +
 

 
as WxENDOG is held constant to zero. This variable can assume a value of 0 when a patient 
exhibits non-endogenous depression (ENDOG = 0), or alternatively at the beginning of the 
study period when WEEK = 0. Consequently, the graph reflects the predicted HDRS ratings 
over time for patients meeting these requirements – in effect a subset of all the patients.  
 

 
 
If, instead of holding the predictor WxENDOG equal to zero, this variable is held constant at 
its mean of 1.745, the same plot would usually look different. 
 
For this case, the two lines shown in this graph correspond to the model  
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and thus corresponds to the predicted outcome assuming a mean value for the interaction 
term. 
 

From Section 3.2, we have 3β
∧

 = –0.02, and therefore ( )3 1 745 0 035. . .β
∧

= −  The difference 
between this value and zero is too small to see the effect on the graphical display below, 
which appears to be identical to the "remaining predictors fixed at 0" selection. However, it 
gives support to the finding of a non-significant interaction effect. 



 
 

The graph shown above distinguishes between the two depression groups by using blue and 
green lines (green for "yes", blue for "no"). For publication purposes, the difference may be 
clearer if both lines are shown in black, but with different line styles. To change the graph, 
double-click on the lower of the two lines to activate the Plot Parameters dialog box. Click 
the Line Attributes button to display the Line Parameters dialog box and set the Color to 
black,  the style to "…." and the width to 1 as shown below. Click OK on both dialog boxes 
to display the modified graph. 
 

 
 

  
 



To create a graph displaying the predicted outcomes over time by individual patient, close 
the graphing window to return to the Plot Equations for: HDRS dialog box. Select the variable 
Patient as marking variable. Ensure that the Remaining predictors fixed at their means option 
is enabled. Click Plot to display this graph, as shown below. 

 

 
 

Apart from a few patients for whom an increase in the HDRS ratings is predicted over the 
course of the study, the general trend is for HDRS to decrease over time. 
 

 
 

Creating an equation based graph for a three-level model 

In Section 3.3 of the primer a model using the participant's gender, ethnicity, type of health 
insurance coverage, and measure of income relative to poverty level was fitted to predict the 
total expenditure on health care in 1999, with expenditure transformed to the natural 
logarithm of the actual expenses incurred. The model fitted was of the form 
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For this model, the output shown below was obtained.  
 

 
 
Recall that a value of 1 for the gender indicator variable SEX indicated that a participant was 
female, with a value of 0 assigned to male participants. Female participants are expected to 
have a total health expenditure 0.93063 higher than male participants do if all other variables 
are held constant. In contrast, participants with public coverage or no coverage have a lower 
expected total expenditure, as indicated by the negative estimated coefficient –0.61785 for 
the predictor INSCOV.  
 
Using the Equations option on the File, Model-based Graphs menu, the plot shown below was 
obtained. This graph shows the predicted total expenditure on health care for the two 
insurance coverage groups, marked by gender. As indicated by the output shown above, the 
total expenditure for females is appreciably higher than for males, and respondents with 
private insurance coverage tend to spend less than those without coverage or with public 
insurance coverage. 
 



 
 
 

Creating an equation based graph 
To create the graph shown above, start by opening both the data and model files, in this case 
Examples\Primer\Graphics\meps.ss3 and meps.mum. After running the analysis, select the 
File, Model-based Graphs, Equations option from the main menu bar. The Plot Equations for: 
TOTEXP99 dialog box is displayed. Select the predictor INSCOV for display on the horizontal 
axis by checking the box next to the variable name in the Predictor column, and request 
separate plots for the gender groups by selecting SEX in the Mark column. Click OK. 

 

 
 
The graph shown below is now displayed. For publication purposes, the distinction between 
the two lines shown may be emphasized by changing the style of one of the lines. To change 
the attributes of the line for female respondents, i.e. the higher of the two lines, double-click 
on this line to activate the Plot Parameters dialog box. 
 



 
 
Click the Line Attributes button to open the Line Parameters dialog box. Change the Color of 
the line to black, and select a dotted line from the Style list box. Adjust the width of the line 
to 1 in the Width list box, and click OK on both the Line Parameters and Plot Parameters 
dialog boxes to obtain the revised graph. 

 

 
 



 
 

Residual plots 

The Residuals option on the File, Model-based Graphs menu is used to examine the residuals 
obtained for a fitted model. It is useful for examining the fit of the model, and also as a check 
for possible distributional assumption violations. As residuals are defined as the difference 
between the observed and predicted outcome, trends in residuals, for example over the course 
of a study in a longitudinal data set, may indicate that an important predictor was not 
included in the model fitted to the data. To request the creation of a residual file, set the Write 
Bayes Estimates field on the Configuration tab to yes. 
 

 
 
The image below shows the residuals for a model fitted to the Reisby data, in which the time 
of measurement, depression status, and interaction between the depression status and time of 
measurement, were used to predict the HDRS ratings of patients. The model fitted to the data 
was of the form 
 



( ) ( ) ( ) ( )0 1 2 3 0 1HDRS * Week * ENDOG * WxENDOG Weekij i i ijij i ij ij
u u eβ β β β= + + + + + + . 

 
If a perfect fit is obtained, the residuals would all be equal to zero. In practice, this is not the 
case, but clustering of the residuals around 0 is usually observed. Using the 0 tick mark on 
the vertical axis as guideline, we observe that approximately half of the residuals are above 
this mark, and half below. It is interesting to note that the largest positive residuals occur for 
measurements associated with patients with endogenous depression (indicated by circles in 
the graph), and that most of the largest negative residuals are those for patients with non-
endogenous depression. This indicates that, under the fitted model, some of the predicted 
measurements for endogenously depressed patients were smaller than the observed 
measurements, while the opposite is true for non-endogenously depressed patients. This 
occurs for a small percentage of the measurements, most of which are considerably closer to 
zero and tightly clustered. As such, we do not suspect systematic deviations from the fitted 
model over the range of the outcome variable.  
 

  
 

Creating a residual plot 
To create the model-based graph of HDRS rating residuals shown above, start by opening the 
data and model files for the Reisby data Examples\Primer\Graphics\reisby.ss3, depress.mum) 
and run the analysis. Next, select the Residuals option on the File, Model-based Graphs menu 
to open the Plot of Residuals dialog box. 
 
The Plot of Residuals dialog box offers the option to obtain either standardized or 
unstandardized residual plots. By default, a standardized plot of the residuals will be 
displayed. All the variables included in the model specification, including the level-2 
identification variable Patient, are shown in the List of Variables. Any single variable on this 
list can be used as marking variable, to request different legends for its categories. Check the 
box for ENDOG, the dichotomous variable indicating the depression classification of a patient 
and click the Plot button. 



 

 
 

The plot obtained is the one shown above. By default, the same plotting symbol is used for 
both categories of the marking variable, but is shown in different colors (blue and green) for 
the two groups. If the plot is to be used in a report, typically produced in black and white 
format, it may be advisable to change the plotting symbols to make it easier to distinguish 
between the groups. To do so, double-click on any of the green circles towards the top of the 
graph.  
 

 
 

The Plot Parameters dialog box is activated. While retaining a circle as the Shape of choice 
for this group, change the Color to black, and reduce the size of the plotting symbol to 3 by 
selecting this option from the Size list box as shown below. Click OK to return to the 
graphing window. 

 



 
 
Next, click on any of the blue plot symbols at the bottom of the graph. The Plot Parameters 
dialog box is again activated, but now shows the details of the symbols used for the second 
category of the marking variable ENDOG. Set the Shape of the symbol to a plus sign instead 
of a circle, and use the Color and Size list boxes to request the display of these in black and of 
size 3. Click OK. The plot shown previously is obtained.  

 

 
 

Confidence interval plots 

The Confidence Intervals option on the File, Model-based Graphs menu provides the option to 
display confidence intervals for the empirical Bayes estimates of the random effects specified 
in a given model.  
 



 
 
Using the three-level model discussed in Section 3.3 of the primer, graphs showing the 
confidence intervals for the empirical Bayes estimates of the random intercepts for level-2 
and level-3 units may be obtained. 

 
Recall that the model fitted to the MEPS data, formulated as 
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included a random intercept coefficient at both the PSU and stratum levels of the hierarchy 
(levels 2 and 3 respectively). Under this model, the expected total expenditure on health for a 
typical male respondent (SEX = 0) with no insurance coverage (INSCOV = 0) from the 
"negative or poor" income level (RPOVC991 = RPOVC992 = RPOVC993 = RPOVC994 = 0) can 
be calculated as 
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Using the estimates of 0β  and 2β  of 4.5841 and 0.68364 respectively as obtained under this 
model, a white respondent (RACE = 1) was expected to have an expenditure 0.68364 
logarithmic units higher than a similar respondent with different ethnic background. While 
this result is of interest in own right, it does not provide insight in the extent to which 
respondents with this background differ in terms of where they are from – that is, in terms of 
the PSU and stratum they belong to. These characteristics are key to the survey design, and 
the formulated model makes provision for intercepts to differ from stratum to stratum at the 
highest level, and from PSU to PSU at level 2 of the model.   

 



To take the structure of the model into account and obtain unique estimates of the predicted 
total expenditure for each stratum, the extent to which the intercept of a stratum deviates 
from the average must be taken into account. This unique stratum contribution is represented 
by the random coefficient 0iv  in the model. Estimates of these coefficients for the strata are 
referred to as the empirical Bayes residuals for the random level-3 intercepts. When the 
estimate of the 0iv  under the model is added to the expected outcome for a typical 
respondent, the empirical Bayes estimate of the total expenditure specific to a stratum is 
obtained. Using the empirical Bayes estimates for the strata and their corresponding 
variances, we can plot confidence intervals for the random intercept of each stratum. A plot 
showing the 95% confidence intervals for the strata intercepts is shown below. Each 
confidence interval is obtained using  
 

( )1 96Empirical Bayes residuals . var Empirical Bayes residuals± . 

 
 

 
 

A similar graph can be obtained for the level-2 units, defined by the PSUs in this example. 
 



 
Creating confidence interval plots 

Start by opening the data and model specification files for the MEPS data, named meps.ss3 
and meps.mum respectively. After running the analysis, select the Confidence Intervals 
option from the File, Model-based Graphs menu to open the 95% Confidence Intervals for EB 
estimates dialog box. Check the box associated with VARSTR99 Intcept in the Predictor 
column. Note that this box also allows the selection of grouping and marking variables to be 
used in the graphical display. Click Plot to display the graph. 
 

 
 
To obtain a similar graph for the empirical Bayes intercepts of level-2 units, close the graph 
to return to the 95% Confidence Intervals for EB estimates dialog box. Deselect VARSTR99 
Intcept in the Predictor column and select VARPSU99 Intcept instead as shown below. Click 
Plot to display the graph for level-2 units shown earlier. Note that one may check both the 
VARSTR99 and VARPSU99 Intcept boxes to obtain the two graphical displays simultaneously. 
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