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3.1 The binary case 

3.1.1 The data for a binary approach 

An analysis of a data set where students are clustered within schools is used to illustrate 
features of random-effects analysis of clustered grouped-time survival data. 
 
As described in previous chapters, the TVSFP study was designed to test independent and 
combined effects of a school-based social-resistance curriculum and a television-based 
program in terms of tobacco use prevention and cessation. In previous chapters the focus was 
on the pre- and post-intervention knowledge of students of the dangers of smoking. Here, we 
focus on actual usage of tobacco products and on subsequent data collected from the 
respondents.  
 
As mentioned previously, schools were randomized to one of four study conditions: (a) a 
social-resistance classroom curriculum (CC); (b) a media (television) intervention (TV); (c) a 
combination of curriculum and TV conditions; and (d) a no-treatment control group. These 
conditions form a 2 x 2 factorial design of CC (yes or no) by TV (yes or no). 
 



The outcome variable of interest in this chapter is the response the question "Have you ever 
tried a cigarette?." Students were assessed at 4 occasions: 
 

o pre-intervention (January 1986, also referred to as Wave A) 
o post-intervention (April 1986, i.e. Wave B) 
o year follow-up (April 1987, i.e. Wave C) 
o year follow-up (April 1988, i.e. Wave D) 

 
As the intervention procedures were implemented following the pretest, we focus in the 
analyses to follow on the three post-intervention time points and include only those students 
who had not answered yes to this question at pretest. Of the original 1,600 respondents, 1,556 
are included in the data considered here. Thus, our analysis examines the degree to which the 
intervention prevented or delayed students from initiating smoking experimentation. Because 
the intervention was also aimed at smoking cessation for individuals who had initiated 
smoking, here we are examining only a part of the intervention aims. 
 
The first few lines of the SuperMix spreadsheet SMKBCD2.ss3 used in this section are shown 
below. Note that there is a maximum of 3 observations associated with each student – not all 
students have data at all 3 occasions. 
 

 

 
The variables of interest are: 
 

o School indicates the school a student is from. 
o Class identifies the classroom to which a student belongs. 
o Student represents the student identification number.  
o Event indicates occurrence of the event (1 indicating "yes" and 0 "no.").  
o TimeC is an indicator variable indicating the first follow-up occasion after the post-

intervention measurement occasion. It assumes a value of 1 if a measurement was 
made at the first follow-up occasion, and 0 otherwise. 



o TimeD is the indicator variable for the second follow-up occasion. It assumes a value 
of 1 if a measurement was made at the second follow-up occasion, and 0 otherwise. 

o SexM is an indicator variable for gender, with "1" indicating male respondents, and 
"0" female respondents. 

o CC is a binary variable indicating whether a social-resistance classroom curriculum 
was introduced, with 0 indicating "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with a "1" 
indicating the use of media intervention, and "0" the absence thereof.  

 
The post-intervention measurement, which is the first of the three measurement occasions in 
this data set, serves as the reference cell. In terms of the indicator variables TimeC and TimeD 
it would be a measurement for which TimeC =  TimeD = 0. 
 

In addition to these variables, SMKBCD2.ss3 includes a number of interaction terms: 
 

o CCTV was constructed by multiplying the variables TV and CC, and represents the CC 
by TV interaction. 

o SexTC denotes the SexM by TimeC interaction. 
o SexTD denotes the SexM by TimeD interaction. 
o CCTC denotes the interaction between classroom curriculum intervention CC and 

TimeC. 
o CCTD denotes the interaction between CC and TimeD. 

 

 
o TVTC denotes the interaction between media intervention TV and TimeC. 
o TVTD denotes the interaction between TV and TimeD. 
o CCTVTC represents the interaction between the CC by TV interaction at the TimeC. 
o CCTVTD represents the interaction between the CC by TV interaction at the TimeD. 

 



In all, there were 1556 students included in the analysis of smoking initiation. Of these 
students, approximately 40% ( n  = 634) answered yes to the smoking question at one of the 
three post-intervention time points, while the other 60% ( n  = 922) either answered no at the 
last time point or were censored prior to the last time point.  
 
Consider a level-2 model, with schools as the level-2 units. In general, for 1, ,i N=   N 
level-2 units, containing 1, , ij n=   level-1 units (subjects or multiple failure times) the 
concept of a censoring or event indicator can be expressed as follows. First, we assume that 
the assessment time takes on discrete positive values 1, 2, ,t m=   representing time points or 
intervals and that each ij unit is observed until time ijt . The censor/event indicator ijδ  is 
coded depending on what happens at time ijt : 

o an event occurs ( )1ij ijt t and δ= =  

o the observation is censored ( )0ij ijt t and δ= =  
 
The term censoring is used when a unit is observed at ijt , but not at 1ijt + (and we know that 
the event has not occurred up to time ijt ). 

 
As mentioned previously, the dichotomous variable EVENT indicated the occurrence of an 
event. Occurrence of an event was recorded at three time points (WaveB, WaveC, and WaveD), 
though some subjects dropped out of the study and were not measured at all three time 
points. To model the time until the event as the outcome variable in a binary analysis of the 
data, person-time indicators are created (Singer & Willett, 1993). For this, the number of 
records for each person depends on the timing of the event or censoring for that person. For 
example, if there were two follow-up points, the two person-time indicators T1 and T2 would 
be coded as follows: 
 

o T1 = 1: event occurred at T1 (or in interval between T0 and T1) 
o T1 = 0: event did not occur at T1 (or in interval between T0 and T1) and T1 was the 

subject's last measured time point 
o T1 = 0 and T2 = 1: event did not occur at T1 but did occur at T2 (or in the interval 

between T1 and T2) 
o T1 = 0 and T2 = 0: individual was censored at T2 (the subject did not experience the 

event at either T1 or T2) 
 
Note that for the first two scenarios above, subjects would contribute a single record in the 
data set (for the T1 indicator), whereas they would contribute two records (one for each 
person-time indicator T1 and T2) for the latter two scenarios. These indicators would 
represent the dependent variable in the analysis, akin to the variable named EVENT in our 
TVSFP data.   



 
For the TVSFP data, there were three follow-up occasions, and thus three person-time 
indicators are necessary to describe the occurrence of event/censoring. The three person-time 
indicators form the EVENT variable in the data set, and the timing of the event/censoring is 
represented by the two variables TimeC and TimeD in the data set. The coding of the person-
time indicators (T1, T2, T3) that form the EVENT variable are given in Table 8.1.  
 

Table 8.1: Three time points with censoring 
 

Outcome Up to 3 records per person 
Censor at T1 T1 = 0 
Event at T1 T1 = 1 
Censor at T2 T1 = 0; T2 = 0 
Event at T2 T1 = 0; T2 = 1 
Censor at T3 T1 = 0; T2 = 0; T3 = 0 
Event at T3 T1 = 0; T2 = 0; T3 = 1 

Table 8.2: Coding of time and event indicators for binary TVSFP analysis 
 

EVENT records Time indicators Outcome description 
TimeC TimeD  

T1 =0 0 0 Censor at T1 
T1 = 0  

T2 = 0 
0 
1 

0 
0 

No event at T1 
Censor at T2 

T1 = 0  
T2 = 0  
T3 = 0 

0 
1 
0 

0 
0 
1 

No event at T1 
No event at T2 
Censor at T3 

T1 =1 0 0 Event at T1 
T1 = 0 
T2 = 1 

0 
1 

0 
0 

No event at T1 
Event at T2 

T1 = 0 
T2 = 0 
T3 = 1 

0 
1 
0 

0 
0 
1 

No event at T1 
No event at T2 

Event at T3 
 

Note that each person would contribute from one to three records in the data set depending 
on their outcome. For example, for the current data, the EVENT records and their 
corresponding time indicators are coded as shown in Table 8.2. 
 
The breakdown of cigarette onset for gender and condition subgroups is presented in Table 
8.3. Percentages given in the table are calculated relative to the totals for that subgroup at the 



time of response. At Wave B (post-intervention time point; TimeC = 0 and TimeD = 0), 130 
females (SexM = 0) and 156 males (SexM = 1) reported an event (Event = 1), while 105 
females and 83 males were censored  (Event = 0). These censored subjects did not experience 
the event at Wave B and were not measured at subsequent waves. The total numbers of 
females and males that provided data at Wave B were 814 and 742 respectively. The totals at 
Wave C (TimeC =1) are only 579 and 503 females and males, respectively because the 
numbers of Wave B event and censored subjects are removed from the Wave C totals. For 
example, the total number of females at Wave C equals 814 (the number at Wave B) – 130 
(females experiencing the event at Wave B) – 105 (censored females at Wave B) = 579. The 
male total of 503 is obtained in the same way. Of the 579 females, 117 experienced the event 
at Wave C and 154 were censored at Wave C. Similar calculations for Wave D (TimeD =1) 
yield the total of 308 females ( = 579 – 117 – 154), where 79 females experienced the event 
and 229 did not and were censored at this last time point. Regarding the differences between 
males and females, it can be seen that the proportion of males who experienced the event is 
relatively similar across the three waves. Alternatively, females were initially lower than 
males (16% versus 21% at Wave B) but increasingly experienced the event across the waves. 
At the end, the total proportion of males who experienced the event is 41.5% (156 + 89 + 63 
of 742), and similarly it is 40.0% for females (130 + 117 + 79 of 814). Thus, the initial 
gender difference is largely gone by the end of the study.         
 
In terms of the invention groups, the differences do not appear to be very large. If anything, 
there is some suggestion that control subjects have lower rates of the event, but this 
difference is not striking.   

 
Table 8:3: Onset of cigarette experimentation across three time points 

 
 TimeB TimeC TimeD 

with event censored total with event censored total with event censored total 
Males 156 

(21.0) 
83 

(11.2) 
742 89 

(17.7) 
134 

(26.6) 
503 63 

(22.5) 
217 

(77.5) 
280 

Females 130 
(16.0) 

105 
(12.9) 

814 117 
(20.2) 

154 
(26.6) 

579 79 
(25.6) 

229 
(74.4) 

308 

Control 66 
(16.5) 

60 
(15.0) 

401 53 
(19.3) 

69 
(25.1) 

275 34 
(22.2) 

119 
(77.8) 

153 

CC only 75 
(19.1) 

27 
(6.9) 

392 53 
(18.3) 

61 
(21.0) 

290 49 
(27.8) 

127 
(72.2) 

176 

TV only 71 
(17.3) 

54 
(13.2) 

410 60 
(21.1) 

79 
(27.7) 

285 38 
(26.0) 

108 
(74.0) 

146 

CC & TV 74 
(21.0) 

47 
(13.3) 

353 40 
(17.2) 

79 
(34.1) 

232 21 
(18.6) 

92 
(81.4) 

113 

 



In terms of clustering, these 1556 students were from 28 schools with between 13 and 151 
students per school ( n  = 56, S.D. = 38) Thus, the data are highly unbalanced with large 
variation in the number of clustered observations. 
 
In the binary case, the survival time of individual i  at occasion j  is treated as a set of 
dichotomous observations indicating whether or not an individual failed in each time unit 
until a person either experiences the event or is censored. Thus, each survival time is 
represented as a 1ijt ×  vector of zeros for censored individuals, while for individuals 
experiencing the event the last element of this 1ijt ×  vector of zeros is changed to a one. 
These multiple person-time indicators are then treated as distinct observations in a 
dichotomous regression model. In the case of clustered data, a random-effects dichotomous 
regression model is used. This method has been called the pooling of repeated observations 
method by Cupples (1985). It is particularly useful for handling time-dependent covariates 
and fitting non-proportional hazards models because the covariate values can change across 
each individuals' ijt  time points. 

 
For this approach, define ijtp  to be the probability of failure in time interval t, conditional on 
survival prior to t: 

Pr |ijt ij ijp t t t t = = ≥   

Similarly, 1 ijtp−  is the probability of survival beyond time interval t, conditional on survival 
prior to t. The proportional hazards model is then written as  

( ) '
0log log 1 ijt t ijt ij ip α  ′− − = + +  x β z v  

and the corresponding proportional odds model is 

( ) '
0log 1ijt ijt t ijt ij ip p α  ′− = + +  x β z v  

where now the covariates x can vary across time and so are denoted as .ijtx  Augmenting the 

model intercept, which we will denote 01α , the remaining intercept terms 0tα ( )2, ,t m=   
are obtained by including as regressors 1m −  time indicators representing deviations from 
the first time point. Because the covariate vector x now varies with t, this approach 
automatically allows for time-dependent covariates, and relaxing the proportional hazards 
assumption only involves including interactions of covariates with the 1m −  time point 
dummy codes. It is further assumed that the random effects vector has a ( )(2),0 ΦN  
distribution. 
 
In the examples to follow, two random intercept models are fitted to the data. The type of 
intervention (CC and/or TV), the gender of the student and the interactions between gender 



and time (SexTC and SexTD) are included as fixed effects, along with indicators of the time of 
assessment (TimeC and TimeD). 
 
The model fitted to the data will use the binary case and is of the form 

( ) 01 02 03 1 2

3 0

log log 1 ( ) ( ) ( ) ( )

( ) .

α α α β β

β

 − − = + + + + 
+ +

ijt ij ij ij j

j i

p TimeC TimeD SexM CC

TV v
 

In the current model specification, the baseline hazard is a function of the model intercept 
and the coefficients for the time indicators. Specifically, the baseline hazard estimate at the 
first time point equals the estimated model intercept, the baseline hazard estimate at the 
second time point is the sum of the model intercept and the estimated coefficient for the 
TimeC indicator, the baseline hazard at the third time point is the sum of the model intercept 
and the estimated coefficient for the TimeD indicator. Thus, two of these baseline hazard 
estimates involve sums of the estimated parameters.  
 

3.1.2 Setting up the analysis 

Start by selecting the New Model Setup option on the File menu to open the Model Setup 
window. Enter (optional) titles in the Title 1 and Title 2 text boxes. Select the binary outcome 
variable Event from the Dependent Variable drop-down list box. The variable School, which 
defines the units within which students are nested, is selected as the Level-2 ID from the Level-
2 IDs drop-down list box.  
 

 

 



Next, click on the Variables tab of the Model Setup window. TimeC, TimeD, SexM, CC, and TV 
are specified as the predictors (explanatory variables) of the fixed part of the model by 
checking the corresponding boxes in the E column of the Available grid on the Variables 
screen. By default, it is assumed that the intercept is allowed to vary randomly over the level-
2 units (i.e., the schools), as indicated by the checked box in the Include Intercept field. 
 

  

 
To specify the number of quadrature points and link function (Function Model), we proceed 
to the Advanced screen by clicking on the Advanced tab.  
 

 



 
Select complementary log-log as the Function Model in order to yield the proportional hazards 
model. Note that the default Number of Quadrature Points of 10 is replaced by 25. Here, more 
quadrature points are used because it is thought that the School effect on the student 
outcomes (i.e., the clustering effect) is likely to be small, resulting in a near-zero random 
effect variance parameter. In such cases, for computational purposes it is beneficial to use a 
relatively larger number of quadrature points. 
 
This step completes the model set-up. Use the File, Save option to save the model setup to a 
file named smkbcd1.mum. Next, use the Analysis, Run option on the main menu bar to run 
the analysis. 
 

3.1.3 Discussion of results 

Data summary 

The portion of the output file shown below indicates that there are 28 schools. Nested within 
these level-2 units are 3226 measurements (note: this is not equal; to the number of students 
because of the creation of person-time indicators in this binary version of the survival 
analysis model). A summary of the number of level-1 observations per level-2 unit is also 
given. 

 

  

 

Descriptive statistics  

This is followed by descriptive statistics for all the variables. Except for the intercept term, 
the variables are all dichotomous. The proportions of subjects assigned a value of 0 or 1 are 



0.80347 and 0.19653 respectively. In approximately 20% of the person-time indicators, an 
event occurred. 
 

 

 

Fixed effects estimates 

Parameter estimates are given in the next part of the output. The effect of SexM is positive 
and indicates that boys have a slightly, but non-significant, increased hazard (i.e., a shorter 
time to the first occurrence), relative to girls. The coefficients associated with the TimeD 
indicator variable is significant at a 5% level. In contrast, the corresponding TimeC 
coefficient is not significant. These indicate that the baseline hazard does not significantly 
change between Waves B and C, however there is significant change between Waves B and 
D as relatively more students experiment with smoking at Wave D. Finally, the effects of the 
intervention variables CC and TV are not seen to be statistically significant, though the 
direction of their effects is positive (i.e., increased hazard relative to the control group).   

 



 

Intraclass correlation (ICC)  

The last part of the output contains an estimate of the intracluster correlation. This estimate 
indicates a very modest school effect, and we also note that the random effect variance term 
is not significant. From this, we conclude that the time until the occurrence of an event does 
not vary significantly across schools. However, from a design point of view, because schools 
were randomized to the intervention conditions in this study, one can argue that the 
clustering attributable to schools is an important part of the model regardless of its 
significance.   
 

 

 

3.1.4 Interpreting the output 

Estimated unit-specific probabilities 

We now use the estimated coefficients from the fitted model 



01 02 03 1 2 3log log(1 ( ) ( ) ( ) ( ) ( )

1.6564 ( )0.0399 ( )0.3103 ( )0.0574

( )0.0449 ( )0.0213

ij ij ij j jijt

ij ij ij

j j

p TimeC TimeD SexM CC TV

TimeC TimeD SexM
CC TV

α α α β β β
∧ ∧ ∧ ∧ ∧ ∧ ∧ − − = + + + + +  

= − + + +

+ +

 

and the inverse cumulative log-log link function  

( ) 1 exp[ exp( )]P z z= − −  

to calculate the probability of Event = 1 at various time points and for different covariate 
values.   
 
At the first time point (Wave B), 0= =ij ijTimeC TimeD , and thus the relevant part of the 
fitted model (see above) is 

01 1 2 3log log(1 ) ( ) ( ) ( )

1.6564 ( )0.0574 ( )0.0449 ( )0.0213

ij j jijt

ij j j

p SexM CC TV

SexM CC TV

α β β β
∧ ∧ ∧ ∧ ∧ − − = + + +  

= − + + +
 

For female students (SexM = 0) from the control group (CC = TV =  0) the probability of 
smoking experimentation (Event = 1) at the point of post-intervention can be expressed as 

 

[ ]( 1 , ) 1 exp exp( 1.6564)
0.1737.

= = − − −

=

P Event atWaveB female

 
 
For male students in the control group adding the intercept with the  SexM estimate together 
yields  z = –1.6564 + 0.0574 = –1.599, and so 

  

[ ]( 1 , ) 1 exp exp( 1.599)
.1830.

= = − − −

=

P Event atWaveB male

 
 
Results for all groups are summarized in Table 8.5. The probability of smoking 
experimentation at the time of post-intervention is larger for males than for females. The 
results also indicate an increased probability of failure with an increase of time. In the current 
model, it is assumed that the ratio of the estimated hazards over time will be constant for two 
individuals with the same values on the covariates. To check whether the effect of gender is 
dependent on time, and thus to check on the proportional hazards assumption, interactions 
with time indicators should be included in the model.  



Table 8.5: Unit-specific probabilities for groups 
 

Gender CC TV 

 
WaveB 

(TimeC = 0, 
TimeD = 0) 

 

WaveC 
(TimeC = 1, 
TimeD = 0) 

WaveD 
(TimeC = 0, 
TimeD = 1) 

Female 0 0 0.1737 0.1801 0.2291 
 1 0 0.1809 0.1876 0.2383 
 0 1 0.1771 0.1836 0.2335 
 1 1 0.1844 0.1912 0.2428 

Male 0 0 0.1830 0.1897 0.2409 
 1 0 0.1905 0.1975 0.2505 
 0 1 0.1865 0.1933 0.2454 
 1 1 0.1942 0.2012 0.2551 
 

Table 8.6 shows the differences between the estimated unit-specific probabilities and the 
observed proportions for each of the 24 subgroups formed by crossing all predictors currently 
in the model.  
 

Table 8.6: Differences between unit-specific probabilities and observed proportions 
 

Gender CC TV 
Difference at 

WaveB 
(estimated – 
observed) 

Difference at 
WaveC 

(estimated – 
observed) 

Difference at 
WaveD 

(estimated – 
observed) 

Female 0 0 0.0227 –0.0419 –0.0179 
 1 0 0.0149 0.0016 –0.0117 
 0 1 0.0091 –0.0174 –0.0875 
 1 1 0.0204 –0.0058 0.0568 

Male 0 0 –0.0150 –0.0073 –0.0361 
 1 0 0.0165 –0.0025 0.0625 
 0 1 –0.0275 0.0303 0.0064 
 1 1 –0.0678 0.0613 0.0710 
 

Looking at the direction of the differences, we note that for females all the estimated 
probabilities are larger in size than the observed ratios at WaveB, but consistently lower than 
the observed ratios at the next two time points, with the exception of the situation where 
TimeD = CC = TV = 1. It seems as if the model is overestimating the probabilities of failure at 
the first time point, but underestimating probabilities at the last time of measurement. 
However, the pattern for males is almost the opposite. At the first wave, only one estimated 



probability is larger than the observed proportion, at WaveC this is true for 2 of the four 
cells, and at WaveD for three of the four cells. 
 
This trend could be the result of a gender effect (which we know to be non-significant in the 
current model) or from an interaction between gender and time. While only TimeD had a 
significant estimated coefficient, this apparent trend leads us to conclude that testing of the 
assumption of proportional hazards is appropriate. Specifically, the interaction between 
gender and the time of measurement will be explored. 
 

Estimated population-average probabilities 

Table 8.5 contains the estimated unit (school) specific probabilities. To obtain population-
average probabilities, the estimated ijz  – values are divided by the square root of the design 

effect. For the current example, we know that 
2

vσ
∧

=0.0028, and that the underlying variance 
(i.e., level-1 variance) associated with the complementary log-log link is 2 2 / 6σ π=  (see 
Agresti, 2002, pp. 248-250). The design effect follows as   

 
2

2

0.0028 / 6 1.0017.
/ 6

d π
π

∧ +
= =  

Since 1.0d
∧

≈ , the estimated population-average probabilities for this model would thus be 
interchangeable with the unit-specific probabilities. 
 

3.2 Example: Checking the proportional hazards assumption in a 
binary model 

3.2.1 Introduction 

In a proportional hazards model such as the model fitted previously, it is assumed that the 
hazard function for an observation in the analysis depends on the values of the covariates and 
the value of the baseline hazard. This implies that the ratio of the estimated hazards over time 
will be constant for two individuals with the same values on the covariates. To test the 
validity of this assumption using the current data, interactions with time indicators are 
included in the model. Doing so allows us to check whether the impact of the covariates in 
the model are dependent on time.  
 
The model fitted to the data is of the form 

01 02 03 1 2

3 4 5 0

log log(1 ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ,

α α α β β

β β β

 − − = + + + + 
+ + + +

ijt ij ij ij j

j ij ij i

p TimeC TimeD SexM CC

TV SexTC SexTD v
 



and includes two interaction terms: SexTC represents the SexM by TimeC interaction, while 
SexTD represents the SexM by TimeD interaction. Thus, in this model, 1β  represents the 
gender effect at Wave B, while 4β  and 5β indicate how the gender effect varies at Waves C 
and D, respectively, relative to Wave B. Linear transforms will be used to obtain the specific 
gender effects at Wave C ( 1 4β β+  ) and Wave D ( 1 5β β+  ). The baseline hazard would 
be as shown in Table 8.7, while the two linear transforms used in the model are described in 
Table 8.8. 

 
Table 8.7: Definition of baseline hazard 

 

Intercpt TimeC TimeD 

1 1 0 
1 0 1 

 
Table 8.8: Description of linear transforms 

 

Intercpt TimeC TimeD SexM CC TV SexTC SexTD 

0 0 0 1 0 0 1 0 
0 0 0 1 0 0 0 1 

 

3.2.2 Setting up the analysis 

Using the same data as in the previous example, start by selecting the Open Existing  Model 
Setup option on the File menu to open the model setup file named smkbcd1.mum. Next, click 
on the Variables tab and add SexTC and SexTD to the list of predictors  by checking the 
corresponding boxes in the E column of the Available grid on the Variables screen.  
 



 

 
To complete the model setup, we use the Linear Transforms option to enter the information 
given in Table 8.8. This will provide estimates of the gender effect at Waves C and D. The 
screen below shows the values entered for the first transform. To enter the first linear 
transform, click Add Transform and enter the name of the transform, in this case Sex at TimeC 
in the Linear transform text field. Next, enter the value 1 next to the variables SexM and 
SexTC in the Explanatory Variables field. The screen below shows the values entered for the 
first transform. 
 



 

 
Values for the second transform are entered in the same way. All other input remains the 
same. Use the File, Save option to save the model setup to a file named smkbcd2.mum. Next, 
use the Analysis, Run option on the main menu bar to run the analysis. 
 

3.2.3 Discussion of results 

Fixed effects estimates 

Parameter estimates are given in the next part of the output. The effect of SexM is positive 
and highly significant, indicating that boys have a significantly increased hazard (i.e., a 
shorter time to the first occurrence), relative to girls at Wave B (i.e., the post-intervention 
time point). The coefficients associated with the TimeC and TimeD indicator variables and the 
interaction terms SexTC and SexTD are also significant at a 5% level. The latter two indicate 
that the gender difference at Waves C and D, respectively, are different than the gender 
difference at Wave B. Recall the deviance statistic for the first model was 3187.20. The 
addition of the two predictors SexTC and SexTD have led to a decrease of 8 in this statistic, at 
the cost of predicting an additional 2 parameters. This 2χ  statistic is significant at a 5% 
level, and we conclude that the addition of the interaction terms have contributed 
significantly to the overall explanation of variation in the outcome variable. Thus, the 
proportional hazards assumption is rejected for the gender effect. 

 



 
 

Intraclass correlation (ICC) and transforms 

The last part of the output contains an estimate of the intracluster correlation. We see little 
change here compared to the results of the model without interaction terms. 

 

 
 

Finally, a summary of the transforms (given in transposed form) is given followed by a 
significance test for each transform. These two transforms indicate the gender effect at 
Waves C and D, respectively. Notice that neither is significant. Thus, whereas there was a 
significant gender effect at Wave B, with boys having increased hazard of cigarette 
experimentation, this difference is no longer significant at the subsequent Waves.     
 
In combination with the intercept and time indicator estimates, these provide  estimates of the 
hazard. Specifically, the hazard estimates for the three study time points for girls (i.e., when 
SexM = 0) are –1.7841, –1.7841 + 0.2605, –1.7841 + 0.5357, and –1.7841 + 0.3058, –1.7841 



+ 0.2605 – 0.1461, –1.7841 + 0.5357 – 0.1518 for boys (i.e., when SexM = 1). As shown in 
the next section, these can be converted to the probability scale using the inverse of the 
complementary log-log function.  
 

 

 

3.2.4 Interpreting the output 

Estimated unit-specific probabilities 

We now use the estimated coefficients from the fitted model 



01 01 02 03 1 2 3

4 5

log log(1 ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1.7841 ( )0.2605 ( )0.5357 ( )0.3058

( )0.0465 ( )0.0209 (

ij ij ij j jijt

ij ij

ij ij ij

j j

p TimeC TimeD SexM CC TV

SexTC SexTD
TimeC TimeD SexM

CC TV SexTC

α α α α β β β

β β

∧ ∧ ∧ ∧ ∧ ∧ ∧

∧ ∧

 − − = + + + + +  

+ +

= − + + +

+ + − )0.4518 ( )0.4576ij ijSexTD−

 

and the inverse cumulative log-log link function ( ) 1 exp[ exp( )]P z z= − −  to calculate the 
probability of smoking experimentation across the three waves for boys and girls.  
 
In order to calculate the probabilities, we set the values of CC and TV to the mean values as 
observed in the sample, i.e. 0.4823 and 0.4771 respectively. Note that these values can be 
found in the descriptive statistics section of the output file. Alternatively, if we had not done 



so, but set these predictors to zero, this would have implied that all estimated probabilities 
were for the groups where CC = TV = 0 (i.e., the control group). 
 
We again start by calculating the probabilities at Wave B (post-intervention). For all 
respondents, this implies that 0= =ij ijTimeC TimeD , and thus the relevant part of the fitted 
model (see above) is 

log log(1 ) 1.7841 ( )0.3058 (0.4823)0.0465 (0.4771)0.0209

1.7517 ( )0.3058

ijijt

ij

p SexM

SexM

∧ − − = − + + +  
= − +

 

For female students (SexM = 0) the probability of smoking experimentation at the point of 
post-intervention can be expressed as 

 

[ ]( 1 , ) 1 exp exp( 1.7517)
0.1593.

= = − − −

=

P Event atWaveB female

 
and for male students 

 

[ ]( 1 , ) 1 exp exp( 1.7517 0.3058)
0.2099.

= = − − − +

=

P Event atWaveB male

 
Results for all waves are summarized in Table 8.9. 
 
The probability of smoking experimentation at the time of post-intervention is larger for 
males than for females. This was reflected by the significant main effect of SexM in the 
analysis. However, this gender difference changes across time, as indicated by the significant 
gender by time interaction terms, as females exhibit relatively higher rates of smoking 
experimentation at the latter two waves. 
 

Table 8.9: Unit-specific probabilities for gender groups across waves 
 

Gender 

 
WaveB 

(TimeC = 0, 
TimeD = 0) 

 

WaveC 
(TimeC = 1, 
TimeD = 0) 

WaveD 
(TimeC = 0, 
TimeD = 1) 

Female 
(SexM = 0) 
 

0.1593 0.2016 0.2565 

Male 
(SexM = 1) 
 

0.2099 0.1768 0.2248 

 



Estimated population-average probabilities 

Table 8.9 contains estimated unit (school) specific probabilities. These are sometimes 
referred to as conditional estimates, conditional on the school effects. In other words, they 
are estimates controlling for the effect of school on the individual student outcomes. To 
obtain population-average probabilities, adjusted ijz  – values are used in the computation of 
the probabilities.  
 
For the current example the design effect is equal to 

 
2

2

0.0023 / 6 1.0014.
/ 6

d π
π

∧ +
= =  

The estimated population-average probabilities are obtained in a similar fashion as the unit-

specific probabilities, but with replacing  ikz
∧

 by /ik ikz d
∧

. For this example, due to the fact 

that 1.000d
∧

≈ , the estimated unit-specific and population-average probabilities are, for all 
purposes, identical. 
 
Table 8.10 shows the estimated population-average probabilities for all of the 24 subgroups. 
These probabilities were calculated using the observed data values on all included predictors. 
 

Table 8.10: Population-average probabilities for all groups 
 

Gender CC TV 

 
WaveB 

(TimeC = 0, 
TimeD = 0) 

 

WaveC 
(TimeC = 1, 
TimeD = 0) 

WaveD 
(TimeC = 0, 
TimeD = 1) 

Female 0 0 0.1547 0.1960 0.2496 
 1 0 0.1615 0.2043 0.2598 
 0 1 0.1577 0.1997 0.2542 
 1 1 0.1646 0.2081 0.2645 

Male 0 0 0.2040 0.1718 0.2187 
 1 0 0.2126 0.1792 0.2278 
 0 1 0.2079 0.1751 0.2227 
 1 1 0.2166 0.1826 0.2320 

 
With the interaction terms included in the model, the trend in the differences between the 
estimated probabilities and observed proportions have disappeared to a large extent. The 
differences between estimated probabilities and observed proportions are slightly smaller for 
the larger model when results of Tables 8.11 and 8.6 are compared. We conclude that there is 



evidence of an interaction between the gender of respondents and the time of measurement, 
and that it would not be appropriate for these data to assume that the ratio of the estimated 
hazards over time will be constant for the two gender groups. 
 

Table 8.11: Difference between estimated probabilities and observed proportions of 
failure for all subgroups 

 

Gender CC TV 
Difference at 

WaveB 
(estimated – 
observed) 

Difference at 
WaveC 

(estimated – 
observed) 

Difference at 
WaveD 

(estimated – 
observed) 

Female 0 0 –0.0012 0.0100 –0.0004 
 1 0 –0.0065 0.0033 –0.06117 
 0 1 0.0068 –0.0223 0.0072 
 1 1 0.0006 0.0111 0.0785 

Male 0 0 0.0307 –0.0282 0.0307 
 1 0 –0.0113 0.01622 –0.0112 
 0 1 0.0099 –0.0219 –0.0542 
 1 1 –0.0454 0.0426 0.0470 
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