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1. Introduction to HCM3 models   
 
In a HCM2 models data that display structures in which the lower-units are cross-classified by two 
higher-level factors  are used. Suppose, however, that one of the higher-level factors is itself nested 
within a yet-higher level factor. The three-level hierarchical and cross-classified random effects 
models (HCM3) represent this case, where level-1 units are cross-classified by two higher-level 
factors, with units from one of the higher-level factors nested within a next higher-level unit. 
 
Hong and Raudenbush (2008) used three-level hierarchical and cross-classified random effects 
models to investigate how schools and their teachers may contribute to student growth, taking into 
account also the student-level variables. In their study, students were moving over time across 
teachers and the teachers were nested within schools. We can say that the repeated measures (level-
1) were cross-classified by students (rows) and teachers (columns) with teachers nested within 
schools (clusters). The model is sufficiently flexible to allow the students also to change schools 
over the course of the study. In general, we may say that level-1 observations are crossed by rows 
and columns and the columns are nested within clusters. 

 

2. Description of the model   
 
A general three-level hierarchical and cross-classified model consists of three sub-models: level-
1 or within-cell, level-2 or between-cell, and a level-3 or between-cluster model. As in HCM2, the 
cells refer to the cross-classifications by rows and columns. The columns, however, are nested 
within clusters.  
 
For example, if the research problem consists of repeated developmental data on students cross-



classified by student and teachers, with teachers clustered within schools, the level-1 or within-
cell model will represent the relationship between time and development for each child. The level-
2 or between-cell model will capture the influences of student- and teacher-level predictors, and 
the level-3 or between-cluster model will examine the effects of school-level variables. Formally, 
there are i=1,2,…, njkl level-1 units (e.g., repeated measurement of student achievement) nested 
within cells cross-classified by j = 1,…, J rows (e.g., students) and k = 1,…., K columns,  with 
columns with cluster l = 1, …., L.  
 
Here is an example of a data layout for three waves of developmental data (njkl = 3) for J = 4 
students crossed by K = 9 teachers, with the teachers nested within L = 3 schools: 
 
Organization of data of the HCM3 example 

 
  School1   School2   School3  
 Teacher

11 

Teacher
21 

Teacher
31 

Teacher
12 

Teacher
22 

Teacher
32 

Teacher
13 

Teacher
23 

Teacher
33 

Stud 1 Y1111 Y2121 Y3131       
Stud 2    Y1212 

 

Y2222 Y3232    

Stud 3       Y1313 

 

 Y3333 

Stud 4 Y1411     Y2422    Y3433 
 
The table indicates that the repeated assessments are cross-classified by students and teachers, with 
teachers clustered within schools. Student 1 stayed in school 1 over three years of observation, 
changing teachers each year. Similarly, Student 2 stayed in school 2 while changing teachers each 
year. Student 3 stayed in the same school but was not observed during year 2. Student 4 had all 
three observations but changed schools after year 1 and year 2.  
 
HCM3 can handle continuously distributed as well as binary outcomes. We use the continuous 
outcome models in the following discussion. The logic of HGLM, as described and illustrated in 
Chapter 7, applies and extends to analyses with binary outcomes with HCM3. 

 
Level-1 or “within-cell” model 
We represent in the level-1 or within-cell model the outcome for case i in individual cells cross-
classified by level-2 units j and k, with unit k nested within cluster l. 
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where 

0 jklπ  is the intercept, the expected value of i jklY  when all explanatory variables are set to 
zero; 

pjklπ  are level-1 coefficients of predictors pjkla (p=1, 2, …, P) for case i in cell jkl;  



ijkle  is the level-1 or within-cell random effect, and; 
2σ  is the variance of ijkle , that is the level-1 or within-cell variance. Here we assume that 

the random term ),0(~ 2σNeijkl . 
 

Level-2 or “between-cell” model 
 

Each of the pjklπ  coefficients in the level-1 or within-cell model becomes an outcome variable in 
the level-2 or between-cell model: 
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(14.2) 
 
where 

plθ  is the level-2 model intercept, the expected value of p jklπ  when all explanatory 
variables are  set to zero; 

pqlβ  are the level-2 coefficients of column-specific predictors , 1,...,qkl pX q Q= ,  

pqjb  are the random effects associated with column-specific predictors qkX . They vary 
randomly  over rows j = 1,..., J; 

prlγ  are the level-2 coefficients of row-specific predictors , 1,...,rjl pW r R= ; 

pr klc  are the random effects associated with row-specific predictors rjlW . They vary 
randomly  over columns k = 1,…, Kl and clusters l = 1,…, L; and 

0p jb  and 0p klc  are residual row- and column-specific random effects, respectively, on pjklπ
, after  taking into account qklX  and rjlW .  

 
The vector of row random effects, containing  ,0 jpb ,…, PQjb  is assumed multivariate normal with 
a mean zero and a full covariance matrix τ . Similarly the vector with elements 0p klc ,…, PRklc  is 
assumed multivariate normal with mean vector zero and full covariance matrix ∆ .  
 
Level-3 model 
Each of the level-2 coefficients become an outcome variable at level 3: 
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where 
 

00pδ  is the intercept, the expected value of plθ  when all explanatory variables are set to 
zero; 

0p sδ are the coefficients of cluster-specific predictors slZ  for plθ ; 

0pqδ  is the intercept, the expected value of pqlβ  when all explanatory variables are set to 
zero; 

pqsδ are the coefficients of cluster-specific predictors , 1,...,sl pqZ s S= for pqlβ  ; 

pq sjb  are the random effects associated with cluster-specific predictors slZ . They vary 
randomly  over rows j = 1,..., J; 

0prδ  is the intercept, the expected value of prlγ  when all explanatory variables are set to 
zero; 

prsδ are the coefficients of cluster-specific predictors slZ  for prlγ ; 

pr sjb  are the random effects associated with cluster-specific predictors slZ . They vary 
randomly  over rows j = 1,..., J ; and 

0p ld , pqld , and prld  are residual random effects. We assume these to be multivariate normal 
in  distribution with zero means and variances 0 , ,p pq prτ τ τ , respectively. 

 

3. Creating the MDM file 
 
In constructing the MDM file, there is the same range of options for data input as for HCM2. HCM3 
requires three IDs, one for each of two level-2 factors, and one for the level-3 clusters. The two 
level-2 factors in our examples are student and teacher. As teachers (N = 498) were clustered 
within schools (N = 67) and the model allows students (N = 4216) to change schools, we will 
designate teacher as the column factor and student as the row factor. 

 
Note: The level-1 file is to be sorted on ascending row (student) IDs, and, in this file, sorting by 
column IDs within clusters. The level-2 row file is to be sorted on ascending row (student) IDs. The 



level-2 column file is to sorted by column IDs within clusters. The cluster file is to be sorted by 
cluster IDs. 

 
Data input requires a level-1 file (a time-series student achievement data file in our example), a 
level-2 row-factor (student-level) file, a level-2 column-factor (teacher-level) file, and a level-3 
cluster-level (neighborhood-level) file. Our illustration uses SPSS file input, but the procedure for 
all other statistical packages is analogous. 
 
Level-1 file. The level-1 or within-cell file, GROWTH.SAV has 7342 repeated measures collected on 
4216 students. The time series data for the first four students are shown below. Following the 
school, student, and teacher ID fields are students' values on six variables: 
 

• MATH  
A Stanford Achievement Test math test score. 

• YEAR (year of the study minus 2) 
This variable can take on values of -1, 0, and 1 for the three years of data collection 
from grade 3 to grade 5. 

• G4D1 is an indicator that that takes on a value of 1 if a child receives intensive math 
instruction in grade 4 and if the outcome is observed at grade 4. This will be used 
to assess the effect of grade-4 intensive math instruction on grade-4 outcome. 

• G4D21 is an indicator that a child receives intensive math instruction in grade 4 and 
if the outcome is observed at grade 5. This will be used to test the effect of grade-4 
intensive math instruction on grade-5 outcome for those who do not receive 
intensive math instruction in grade 5. 

• G5D22 
An indicator that a child receives intensive math instruction in grade 5 and if the 
outcome is observed at grade 5. This will be used to test the effect of intensive 
math instruction in grade 5 on grade 5 outcome for those who did not have 
intensive math instruction in grade 4. 

• TWOWAY 
A product term of a two-way interaction between G4D21 with G5D22. It will thus be 
an indicator that the child received intensive math instruction in both grades 4 and 
5 and if the outcome is observed at grade 5. This will test whether having intensive 
math instruction in both years has an effect that exceeds the sum of the separate 
effects. 

 



 
 
We see that student 1 attended school 15 and was taught by teachers 83, 104, and 135. None of the 
teachers adopted intensive math instruction. In addition, student 3 had data for the second and third 
year only. 
 
Level-2 row-factor file. The level-2 row-factor units in the illustration are 4216 students. The data 
are stored in the file STUDENT.SAV. The level-2 data for the first ten children are shown below. 
The file has one dummy variable. 
 

 
 
Level-2 column-factor file. The level-2 column-factor (teacher) file, TEACHER.SAV, has two IDs 
and a dummy variable. The first ID is the level-3 (i.e., school) ID and the second ID is the level-
2 column factor (i.e., teacher) ID. Figure 15.3 lists the data for the first ten records. 

 



 
 
Level-3 file. The level-3 (school) level file, SCHOOL.SAV, has the level-3 (school) ID and a 
dummy variable. Figure 15.4 lists the data for the first ten records. 
 

 
 
In sum, there are six variables at level 1 and one dummy variable for each of the level-2 row- 
and column-factor files and the level-3 file. The steps for the construction of the MDM for HCM3 
are similar to the ones for HCM2. The user will select HCM3 in the Select MDM type dialog 
box. Note that the program can handle missing data at level 1 or within cell only. The MDM 
template file, GROWTH.MDMT, contains a log of the input responses used to create the MDM 
file, GROWTH.MDM, using GROWTH.SAV, STUDENT.SAV, TEACHER.SAV, and SCHOOL.SAV. 
The completed Make MDM dialog box used to create the MDM file is shown below.  

 



 
 

The images below show the dialog boxes for the level-1 file. 
 
 

 

4. Creating the command file  
 
 
Once the MDM file is constructed, it can be used as input for the analysis. Model specification has 
five steps: 
 



1. Specification of the level-1 model. In our case we shall model mathematics 
achievement (MATH) as the outcome, to be predicted by YEAR, G4D1, G4D21, 
G5D22, and TWOWAY. Hence, the level-1 model will have six coefficients for each 
student: the intercept and the partial slopes for the five variables. For longitudinal 
analysis, it is possible to select a cumulative effect model to allow carry-over 
treatment effects by specifying a cumulative Z-structure model (see Hierarchical 
Linear Models, p.390); we use this option in the analysis. 

2. Specification of the level-2 row- or column-factor prediction model. Here each 
level-1 coefficient – the intercept and the five slopes in our example – becomes an 
outcome variable. One may use variables on student and teacher characteristics (not 
supplied with the example data files) to predict each of these level-1 coefficients.  

3. Specification of row- or column effects as random or non-random. We shall model 
the intercept and the YEAR slope as varying randomly over rows and columns.  

4. Specification of the level-3 prediction model. Here each level-2 coefficient 
becomes an outcome, and one may select school variables (not included in the 
example data files) to predict school-to-school in these level-2 coefficients.  

5. Specification of the level-2 coefficients as random or non-random. We let two of 
the six level-2 intercepts vary over schools. 

 
 

Specification of the level-1 model 
We start by selecting the Create a new model using an existing MDM file option from the File 
menu and selecting the MDM file just created (growth.mdm) 
 

 
 
 

Select MATH as outcome variable. The fully unconditional model is now displayed in the main 
window. 

 



 
 
Add the variables YEAR, G4D1, G4D21, G5D22, and TWOWAY. To the level-1 equation by 
selecting the add variable uncentered from the pop-up menu. 
 

 
 
To specify a cumulative z-structure, open the Basic Settings dialog box from the main menu 
and select Cumulative instead of the default Independent option in the Z structure model 
field.  
 



 
 
Specification of the level-2 row- or column-factor prediction model 
Here each level-1 coefficient – the intercept and the five slopes in our example – becomes an 
outcome variable. One may use variables on student and teacher characteristics (not supplied with 
the example data files) to predict each of these level-1 coefficients.  

 
Specification of row- or column effects as random or non-random 
We now model the intercept and the YEAR slope as varying randomly over rows and columns. To 
do this, click on the 2 jklπ  equation and activate both random effects by clicking on them.  

 

 
 

Activate the 10d  effect in the same way to obtain the final model displayed below. 
 



 
 

                     

 
 
Save the model before running the analysis.  

5. Interpreting the output  
 

The results of the analysis are given below. 
 
Problem Title: Unweighted model  
The data source for this run = growth.mdm 
The command file for this run = growth1.hlm 
Output file name = growth1.html 
The maximum number of level-1 units = 7342 
The maximum number of row units = 4216 
The maximum number of column units = 498 

The level-1 intercept and YEAR slope   
vary randomly over rows and columns 

These two level-3 
coefficients are specified 
as randomly varying 
 

Outcome 

Intercept 
 YEAR slope 

 
 



The maximum number of cluster units = 67 
The maximum number of iterations = 100 
Method of estimation: full maximum likelihood 
Z-structure: cumulative across columns 
Data design: (row by column) within clusters 
 
The outcome variable is MATH  
 

Summary of the model specified 
 
Level-1 Model 
 
     MATHijkl = π0jkl + π1jkl*(YEARijkl) + π2jkl*(G4D1ijkl) + π3jkl*(G4D21ijkl) + π4jkl*(G5D22ijkl)  
                       + π5jkl*(TWOWAYijkl) + eijkl  

 
Level-2 Model 
     
 π0jkl = θ0l + b00jl + c00kl 
     π1jkl = θ1l + b10jl + c10kl 
 π2jkl = θ2l 
     π3jkl = θ3l 
     π4jkl = θ4l 
     π5jkl = θ5l 

 
Level-3 Model 
 
 θ0l = δ000 + d00l 
     θ1l = δ100 + d10l 
     θ2l = δ200 
     θ3l = δ300 
     θ4l = δ400 
     θ5l = δ500 

 

For starting values, data from 5299 level-1 records, 2173 rows, 498 column, and 65 cluster 
records  
    were used 

Final Results - iteration 485 
 
Iterations stopped due to small change in likelihood function  

 
σ2 = 304.82130 
 
τπ  

         YEAR  
   θ0,b00    θ1,b10 
   769.17514    -18.09880 
   -18.09880    21.22623 

 
 τπ (as correlations)  

  1.000  -0.142 
 -0.142   1.000 

 
  



τβ  
       YEAR  
  θ0,c00   θ1,c10 
   133.52764    -24.04565 
   -24.04565    48.79836 

 
τβ (as correlations)  

  1.000  -0.298 
  
 -0.298   1.000 
  

 
τγ  

         YEAR  
   θ0,d00    θ1,d10 
   169.31794    28.10279 
   28.10279    29.76755 

 
τγ (as correlations)  

  1.000   0.396 
  0.396   1.000 

 
The value of the log-likelihood function at iteration 485 = -3.536565E+004 

 
Final estimation of fixed effects: 

 

Fixed Effect  Coefficient  Standard 
error  t-ratio  Approx. 

d.f.  p-value 

For INTRCPT1  
   For INTERCEPT 

    θ0,δ000 609.850986 1.962504 310.751 66 <0.001 
For YEAR  
   For INTERCEPT 

    θ1,δ100 21.064011 1.140716 18.466 66 <0.001 
For G4D1  
   For INTERCEPT 

    θ2,δ200 2.753381 2.371599 1.161 7338 0.246# 
For G4D21  
   For INTERCEPT 

    θ3,δ300 0.231710 3.584218 0.065 7338 0.949# 
For G5D22  
   For INTERCEPT 

    θ4,δ400 7.507799 2.332107 3.219 7338 0.002# 
For TWOWAY  
   For INTERCEPT 

    θ5,δ500 1.160337 4.322456 0.268 7338 0.788# 
 

The p-vals above marked with a “#” should regarded as a rough approximation. 
 



Final estimation of fixed effects (with robust standard errors) 
 

Fixed Effect  Coefficient  Standard 
error  t-ratio  Approx. 

d.f.  p-value 

For INTRCPT1  
   For INTERCEPT 

    θ0,δ000 609.850986 1.954775 311.980 66 <0.001 
For YEAR  
   For INTERCEPT 

    θ1,δ100 21.064011 1.112653 18.931 66 <0.001 
For G4D1  
   For INTERCEPT 

    θ2,δ200 2.753381 2.927131 0.941 7338 0.347# 
For G4D21  
   For INTERCEPT 

    θ3,δ300 0.231710 4.389057 0.053 7338 0.958# 
For G5D22  
   For INTERCEPT 

    θ4,δ400 7.507799 3.019164 2.487 7338 0.013# 
For TWOWAY  
   For INTERCEPT 

    θ5,δ500 1.160337 6.470068 0.179 7338 0.858# 
 

The p-vals above marked with a “#” should regarded as a rough approximation. 
 

Final estimation of row and level-1 variance components: 
 

Random Effect Standard 
 Deviation 

Variance 
 Component   d.f. χ2 p-value 

θ0,b00 27.73401 769.17514 2172 11413.58016 <0.001 
YEAR/θ1,b10 4.60719 21.22623 2172 2177.42726 0.463 
level-1, e 17.45913 304.82130       
 
Note: The chi-square statistics reported above are based on only 2173 of 4216 units that had 
sufficient data for computation. Fixed effects and variance components are based on all the data. 

 
Final estimation of column level variance components: 
 

Random Effect Standard 
 Deviation 

Variance 
 Component   d.f. χ2 p-value 

θ0,c00 11.55542 133.52764 429 539.50878 <0.001 
YEAR/θ1,c10 6.98558 48.79836 429 0.01770 >0.500 
 
Note: The chi-square statistics reported above are based on only 495 of 498 units that had sufficient 
data for computation. Fixed effects and variance components are based on all the data. 

 
Final estimation of cluster level variance components: 
 

Random Effect Standard 
 Deviation 

Variance 
 Component   d.f. χ2 p-value 

θ0,d00 13.01222 169.31794 64 256.96222 <0.001 
YEAR/θ1,d10 5.45596 29.76755 64 136.92770 <0.001 
 



Note: The chi-square statistics reported above are based on only 65 of 67 units that had sufficient 
data for computation. Fixed effects and variance components are based on all the data. 

 

As reported by Hong and Raudenbush (2008), no significant causal effect of Grade 4 treatment on 
Grade 4 outcomes. A positive and significant effect of Grade 5 treatment on Grade 5 outcome,    

400δ̂  = 7.51 (SE = 3.019, t = 2.487). 
 

Statistics for the current model 
 
Deviance = 70731.304874 
Number of estimated parameters = 16 
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