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1. Introduction to HMLM models   
 
One of the most frequent applications of hierarchical models involves repeated observations (level 
1) nested within persons (level 2). These are described in Chapter 6 of Hierarchical Linear Models. 
In these models, the outcome i jY  for occasion i within person j is conceived as a univariate 
outcome, observed under different conditions or at different times. An advantage of viewing the 
repeated observations as nested within the person is that it allows each person to have a different 
repeated measures design. For example, in a longitudinal study, the number of time points may 
vary across persons, and the spacing between time points may be different for different persons. 
Such unbalanced designs would pose problems for standard methods of analysis such as the 
analysis of variance.  
 
Suppose, however, that the aim of the study is to observe every participant according to a fixed 
design with, say, T observations per person. The design might involve T observation times or T 
different outcome variables or even T different experimental conditions. Given the fixed design, 
the analysis can be reconceived as a multivariate repeated measures analysis. The multivariate 
model is flexible in allowing a wide variety of assumptions about the variation and covariation of 
the T repeated measures (Bock, 1985). In the standard application of multivariate repeated 
measures, there can be no missing outcomes: every participant must have a full complement of T 
repeated observations. 

 
Advances in statistical computation, beginning with the EM algorithm (Dempster, Laird, & Rubin, 
1977; see also Jennrich & Schluchter, 1986), allow the estimation of multivariate normal models 
from incomplete data. In this case, the aim of the study was to collect T observations per person, 
but only jn  observations were collected ( jn T≤ ). These jn  observations are indeed collected 



according to a fixed design, but jT n−  data points are missing at random. 
 

Model specification for HMLM analysis are specified via the Basic Settings dialog box as shown 
below.  
 

 
 

2. Description of the model   
 
HMLM allows estimation of multivariate normal models from incomplete data. Within the 
framework of HMLM, it is possible to estimate models having  
 

1. An unrestricted covariance structure, that is a full T T×  covariance matrix. 
2. A model with homogenous level-1 variance and random intercepts and/or slopes at 

level-2. 
3. A model with heterogeneous variances at level 1 (a different variance for each 

occasion) and random intercepts and/or slopes at level 2. 
4. A model that includes a log-linear structure for the level-1 variance and random 

intercepts and/or slopes at level 2. 
5.  A model with first-order auto-regressive level-1 random errors and random intercepts 

and/or slopes at level 2. 
 
We note that applications 2 - 4 are available within the standard HLM2. However, within HMLM, 
models 2 - 4 can be compared to the unrestricted model (model 1), using a likelihood ratio test. No 
“unrestricted model” can be meaningfully defined within the standard HLM2; such a model is 
definable only within the confines of a fixed design with T measurements. 

 



This model is appropriate when the aim of the study is to collect T observations per participant 
according to a fixed design. However, one or more observations may be missing at random. We 
assume a constant but otherwise arbitrary T T×  covariance matrix for each person's “complete 
data.” 

 
The level-1 model relates the observed data, Y, to the complete data, *Y : 

Equation Section 9 *
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where hiY  is the r-th outcome for person i associated with time h. Here *
tiY  is the value that person 

i would have displayed if that person had been observed at time t, and thim  is an indicator variable 
taking on a value of 1 if the h-th measurement for person i did occur at time t, 0 if not. Thus, *

tiY , 
t = 1, ..., T, represent the complete data for person i while hiY , h = 1, ..., iT  are the observed data, 
and the indicators thim  tell us the pattern of missing data for person i. 
 
To make this clear, consider T = 5 and a person who has data at occasions 1,2, and 4, but not at 
occasions 3 and 5. Then Equation 9.1 expands to 
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or, in matrix notation, 
*

i i iY M Y=  
This model says simply that the three observed data points for person i were observed at times 1, 
2, and 4, so that data were missing at times 3 and 5. Although these data were missing, they do 
exist, in principle. Thus, every participant has a full 5 1×  vector of  “complete data” even though 
the 1iT ×  vector of observed data will vary in length across persons. 
 
We now pose a structural model for the within-person variation in *Y : 
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or, in matrix notation 
 

* ,i i iY Aπ ε= +                   
where we assume that iε  is multivariate normal in distribution with a mean vector of 0 and an 
arbitrary T T×  covariance matrix Δ . In fact, Δ  is not a “within-person” covariance. Rather, it 
captures all variation and covariation among the T repeated observations. The level-2 model 
includes covariates, iX , that vary between persons: 



0

Q

pi p pq qi
q=1

 =  + X∑β βπ  

or in matrix notation 

i iπ = X β  

Note there is no random variation between persons in the regression coefficients pi π  because all 
random variation has been absorbed into Δ . 

 
Substituting the level-2 model into the level-1 model gives the combined model for the complete 
data, in matrix form: 
 

* , ~ (0, )i i i iY AX β ε ε N= + ∆  
 
Here the design matrix captures main effects of within-person covariates (the as), main effects of 
person-level covariates (Xs), and two-way interaction effects between them ( a X×  terms).  
 
In sum, our reformulation poses a “multiple measures” model that relates the observed data iY  to 
the “complete data” *

iY , that is, the data that would have been observed if the researcher had been 
successful in obtaining outcome data at every time point. Our combined model is a standard 
multivariate normal regression model for the complete data.  
 
Algebraically substituting the combined model expression for *

iY  into the model for the observed 
data yields the combined model 
 

.i i i i iY M AX β M ε= +  
Under the unrestricted model, the number of parameters estimated is ( 1) / 2f T T+ + , where f is 
the number of fixed effects and T is the number of observations intended for each person. The 
models below impose constraints on the unrestricted model, and therefore include fewer 
parameters. The fit of these simpler models to the data can be compared to the fit of the unrestricted 
model using a likelihood ratio test. 
 
This is the first of a set of three HMLM models fitted to the NYS data. 
 

6. Creating the MDM file 
 
The range of options for data input are the same as for HLM2 and HLM3. We will use SPSS file 
input in our example.  

 
The level-1 file, NYS1.SAV, has 1,079 observations collected from interviewing annually 239 
eleven-year-old youths beginning at 1976 for five consecutive years. Therefore, T = 5. The 
variables and the T indicator variables are:  



 
ATTIT  a 9-item scale assessing attitudes favorable to deviant behavior.  

 
Subjects were asked how wrong (very wrong, wrong, a little bit wrong, not 
wrong at all) they believe it is for someone their age to, for example, 
damage and destroy property, use marijuana, use alcohol, sell hard drugs, 
or steal.  
 
The measure was positively skewed, so a logarithmic transformation was 
performed to reduce the skewness.    
 

EXPO Exposure to deviant peers.   
 
Subjects were asked how wrong their best friends thought the nine deviant 
behaviors surveyed in the ATTIT scale were. 
 

AGE  age of the participant 
AGE11  age of participant at a specific time minus 11 
AGE13  age of participant at a specific time minus 13 
AGE11s  AGE11* AGE11 
AGE13s  AGE13* AGE13 
IND1  indicator for measure at time 1 
IND2  indicator for measure at time 2 
IND3  indicator for measure at time 3 
IND4  indicator for measure at time 4 
IND5  indicator for measure at time 5 

 
The five indicators were created to facilitate use of HMLM. Data for the first two children are shown 
below. Child 15 had data at all five years. Child 33, however, did not have data for the fourth year. 
 
While the structure of HMLM input files is almost the same as in HLM2, there is one important 
difference: the indicator variables. In order to create these, one first needs to know the maximum 
number of level-1 records per level-2 group; this determines the number of indicators. We shall 
call them the number of “occasions.” (This is the number of time points in a repeated measures 
study or the number of outcome variables in a cross-sectional multivariate study. Also note that 
each person does not need to have this number of occasions.) Then create the indicator variables 
so that a given variable takes on the value of 1.0 if the given occasion is at this time point, 0.0 
otherwise. Looking at  the level-1 data file shown below, we see that IND1 is 1 if AGE11 is 0, IND2 
is 1 if AGE11 is 1, IND3 is 1 if AGE11 is 2, and so on. 
 

 



 
 

The level-2 data file, NYSB.SAV, consists of three variables on 239 youths. The file has the same 
structure as that for HLM2. The variables are: 
 

FEMALE  an indicator for gender (1 = female, 0 = male) 
MINORITY  an indicator for ethnicity (1 = minority, 0 = other) 
INCOME  income 

 
The first few lines of the level-2 data file are shown below. 
 

 
 
Start by selecting the File, Make new MDM file, Stat package data option from the main menu 
bar.  

  



 
 

Indicate that the MDM file to be made is for a HMLM model on the Select MDM type dialog box. 
 

 
 

After selecting the type of input to be used (SPSS in this case) browse for the level-1 data file and 
complete the Choose variables – HMLM dialog box as shown below. Note that the 5 indicator 
variables created prior to importing the data are selected in the Indicator column.  

 



 
 

Next, browse for the level-2 data file and complete the selection of variables for inclusion at this 
level. The completed Make MDM -HMLM dialog box is shown below. Note that for HMLM 
models there is no missing data options. As the model itself can be seen as a way to deal with 
missing data, no provision is made in either HMLM or HMLM2 for missing data in the data files.  

 



 
 

After assigning a name for the MDM file and saving the MDM template (*.mdmt) file, click Make 
MDM. After the MDM has been created, the descriptive statistics for the contents will be displayed 
automatically.  
 

 



7. Creating the command file  
 
 
Start by selecting the Create a new model using an existing MDM file option from the File menu 
and open the MDM file NYS.MDM.  

 

 
 
Select the outcome variable ATTIT by clicking on the variable name at left and selecting Outcome 
variable from the pop-up menu.  
 

 
 
The unconditional HMLM model appears, as shown below. 
 

 
Next, add the variables AGE13 and AGE13S to the model by selecting the uncentered option from 
the pop-up menu. 



 

 
 

 
After specifying the basic model, click the Outcome button at the top of the variable list box to 
the left of the main HLM window to open the Basic Model Specifications – HMLM dialog box. 
In addition to the unsaturated model described previously in this example, HMLM offers a selection 
of other ways in which the level-1 variance may be modelled. A brief description of each is given 
below.  
 
HLM with varying level-1 variance 
 
One can model heterogeneity of level-1 variance as a function of the occasion of measurement. 
Such a model is suitable when we suspect that the level-1 residual variance varies across occasions. 
The models that can be estimated are a subset of the models that can be estimated within the 
standard HLM2 (see Section 2.8.8.2 on the option for heterogeneity of level-1 variance).The level-
1 model is the same as in the case of homogenous variances except that now 

{ }2( ) ,i tVar e diag σ= Σ =  

that is, Σ  is now diagonal with elements 2
tσ , the variance associated with occasion t, t = 1, …, T. 

 
The number of parameters estimated is ( 1) / 2f r r T+ + + . Now r must be no larger than 1T − . 
When 1r T= − , the results will duplicate those based on the unrestricted model. 

 
HLM with a log-linear model for the level-1 variance 
 
The model with varying level-1 variance, described above, assumes a unique level-1 variance for 
every occasion. A more parsimonious model would specify a functional relationship between 
aspects of the occasion (e.g. time or age) and the variance. We would again have { }2

tdiag σΣ = , 
but now 
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Thus, the natural log of the level-1 variance may be a linear or quadratic function of age. If the 
explanatory variables Ic  are 1T −  dummy variables, each indicating the occasion of measurement, 
the results will duplicate those of the previous section. 
 
The number of parameters estimated is now ( 1) / 2 1f r r L+ + + + . Again, r must be no larger than 

1T −  and L must be no larger than 1T − .  
 

First-order auto-regressive model for the level-1 residuals 
 
This model allows the level-1 residuals to be correlated under Markov assumptions (a level-1 
residual depends on previous level-1 residuals only through the immediately preceding level-1 
residuals). This leads to the level-1 covariance structure 

2 | |
'( , ) .

't t
ti t iCov e e σ ρ −=  

Thus, the variance at each time point is 2σ  and each correlation diminishes with the distance 
between time points, so that the correlations are 2 3, , , ...ρ ρ ρ  as the distance between occasions is 
1, 2, 3,  .... The number of parameters estimated is now ( 1) / 2 2f r r+ + + . Again, r must be no 
larger than 1T − . 

 
Note that level-1 predictors are assumed to have the same values for all level-2 units of the 
complete data. This assumption can be relaxed. However, if the design for pt ia  varies over i, its 
coefficient cannot vary randomly at level 2. In this regard, the standard 2-level model  is more 
flexible than HMLM. 

 
In this example we specify AGE13 and AGE13S as predictors at level 1. At level 2, the model 
is unconditional. We shall compare three alternative covariance structures: 

 
• an unrestricted model, 
• the homogeneous model, 2 2

tσ σ=  for all t, and 
• the heterogeneous model, which allows 2

tσ  to vary over time. 
 

These three models are requested simply by checking the Heterogeneous option in the Basic 
Model Specifications – HMLM dialog box. 

 



 
 
Click OK to return to the main window and remember to save the command file prior to running 
the analysis.  

 

8. Interpreting the output  
 

The data source for this run = NYS.MDM 
The command file for this run = nys1.hlm 
Output file name = nys1.html 
The maximum number of level-1 units = 1079 
The maximum number of level-2 units = 239 
The maximum number of iterations = 100 
 
The outcome variable is ATTIT  
 
The model specified for the fixed effects was: 
 
 

Level-1 
Coefficients 

Level-2 
Predictors 

INTRCPT1, π0 INTRCPT2, β00 
# AGE13 slope, π1 INTRCPT2, β10 
# AGE13S slope, π2 INTRCPT2, β20 

 
'#' - The residual parameter variance for this level-1 coefficient has been set 
    to zero. 
 
  



Level-1 Model 
    ATTITmi = (IND1mi)*ATTIT1i* + (IND2mi)*ATTIT2i* + (IND3mi)*ATTIT3i* + (IND4mi)*ATTIT4i* + 
(IND5mi)*ATTIT5i* 
 
    ATTITti* = π0i + π1i*(AGE13ti) + π2i*(AGE13Sti) + εti 
 
The level-1 model relates the observed data, Y, to the complete data, *Y . 
 
Level-2 Model 
    π0i = β00 
    π1i = β10 
    π2i = β20 
 
 
For the restricted model, there is no random variation between persons in regression coefficient 

0β , 1β , and 2β  because all random variation has been absorbed into Δ. 
 
Var(εi) = Δ 
 
Δ(0) 

IND1     0.03507    0.01671    0.01889    0.02149    0.02486 
IND2     0.01671    0.04458    0.02779    0.02468    0.02714 
IND3     0.01889    0.02779    0.07272    0.05303    0.04801 
IND4     0.02149    0.02468    0.05303    0.08574    0.06636 
IND5     0.02486    0.02714    0.04801    0.06636    0.08985 

 
The 5 5×  matrix Δ contains the maximum likelihood estimates of the five variances (one for each 
time point) and ten covariances (one for each pair of time points). The associated correlation matrix 
is printed below. 
 
Standard errors of Δ 

IND1     0.00347    0.00304    0.00375    0.00413    0.00429 
IND2     0.00304    0.00434    0.00430    0.00457    0.00473 
IND3     0.00375    0.00430    0.00678    0.00631    0.00625 
IND4     0.00413    0.00457    0.00631    0.00811    0.00736 
IND5     0.00429    0.00473    0.00625    0.00736    0.00853 

 
Δ (as correlations)  

IND1    1.000   0.423   0.374   0.392   0.443 
IND2    0.423   1.000   0.488   0.399   0.429 
IND3    0.374   0.488   1.000   0.672   0.594 
IND4    0.392   0.399   0.672   1.000   0.756 
IND5    0.443   0.429   0.594   0.756   1.000 

 
The 5 5×  matrix above contains estimated standard errors for each element of Δ. 
 
The value of the log-likelihood function at iteration 8 = 1.891335E+002 
 
Final estimation of fixed effects:  
 



Fixed Effect  Coefficient  Standard 
      error  t-ratio  Approx. 

d.f.  p-value 

For INTRCPT1, π0 
    INTRCPT2, β00 0.320244 0.014981 21.377 238 <0.001 
For AGE13 slope, π1 
    INTRCPT2, β10 0.059335 0.004710 12.598 238 <0.001 
For AGE13S slope, π2 
    INTRCPT2, β20 0.000330 0.003146 0.105 238 0.917 

 
The expected log attitude at age 13 is 0.320244. The mean linear growth rate of increase is 
estimated to be 0.059335, t = 12.598, indicating a highly significantly positive average rate of 
increase in deviant attitude at age 13. The quadratic rate is not statistically significant.  
 
Statistics for the current model 
 
Deviance = -378.266936 
Number of estimated parameters = 18 
 
There are 3 fixed effects (f = 3) and five observations in the “complete data” for each person (T = 
5). Thus, there are a total of ( 1) / 2 3 5(5 1) / 2 18f T T+ + = + + =  parameters. This is the end of the 
unrestricted model output. 
 
Next follows the results for the homogeneous level-1 variance. 
 
 Summary of the model specified 
 
Level-1 Model 
 
    ATTITmi = (IND1mi)*ATTIT1i* + (IND2mi)*ATTIT2i* + (IND3mi)*ATTIT3i* + (IND4mi)*ATTIT4i* + 
IND5mi)*ATTIT5i* 
 
    ATTITti* = π0i + π1i*(AGE13ti) + π2i*(AGE13Sti) + εti 
 
Level-2 Model 
 
    π0i = β00 
    π1i = β10 
    π2i = β20 
 
The above equation, written with subscripts and Greek letters, is  
 

* '( )Var Y ATA= ∆ = +Σ  
where 2

TIσΣ = . 
 
  



A 
IND1     1.00000    -2.00000    4.00000 
IND2     1.00000    -1.00000    1.00000 
IND3     1.00000    0.00000    0.00000 
IND4     1.00000    1.00000    1.00000 
IND5     1.00000    2.00000    4.00000 

 
The above matrix describes the design matrix on occasions one through five. 
 
Note: The results below duplicate exactly the results produced by a standard HLM2 run using 
homogeneous level-1 variance. 
 
Final Results - Iteration 5 
 

               Parameter Standard Error 
σ2 0.02421 0.001672 

 
τ 

INTRCPT1,r0    0.04200    0.00808    -0.00242 
AGE13,r1    0.00808    0.00277    -0.00012 
AGE13S,r2    -0.00242    -0.00012    0.00049 

 
Standard errors of τ 

INTRCPT1,r0    0.00513    0.00127    0.00089 
AGE13,r1    0.00127    0.00054    0.00024 
AGE13S,r2    0.00089    0.00024    0.00025 

 
τ (as correlations)  

INTRCPT1,r0   1.000   0.749  -0.532 
AGE13,r1   0.749   1.000  -0.101 
AGE13S,r2  -0.532  -0.101   1.000 

 
Δ 

IND1     0.03536    0.01388    0.01616    0.01801    0.01943 
IND2     0.01388    0.04870    0.03150    0.03488    0.03464 
IND3     0.01616    0.03150    0.06620    0.04766    0.04849 
IND4     0.01801    0.03488    0.04766    0.08056    0.06095 
IND5     0.01943    0.03464    0.04849    0.06095    0.09625 

 
The 5 5×  matrix above contains the five variance and ten covariance estimates implied by the 
“homogeneous level-1 variance“ model. 
 
Δ (as correlations)  

IND1    1.000   0.334   0.334   0.338   0.333 
IND2    0.334   1.000   0.555   0.557   0.506 
IND3    0.334   0.555   1.000   0.653   0.607 
IND4    0.338   0.557   0.653   1.000   0.692 
IND5    0.333   0.506   0.607   0.692   1.000 



 
The value of the log-likelihood function at iteration 5 = 1.741132E+002 
 
 Final estimation of fixed effects:  
 

Fixed Effect  Coefficient  Standard 
error  t-ratio  Approx. 

d.f.  p-value 

For INTRCPT1, π0 
    INTRCPT2, β00 0.327231 0.015306 21.379 238 <0.001 
For AGE13 slope, π1 
    INTRCPT2, β10 0.064704 0.004926 13.135 238 <0.001 
For AGE13S slope, π2 
    INTRCPT2, β20 0.000171 0.003218 0.053 238 0.958 

 
Statistics for the current model 
 
Deviance = -348.226421 
Number of estimated parameters = 10 
 
There are 3 fixed effects (f  = 3); the dimension of τ  is 3, and a common 2σ  is estimated at level-
1. Thus, there are a total of ( 1) / 2 1 3 3(3 1) / 2 10f r r+ + + = + + =   parameters. 
 
This is the end of the output for the “homogeneous level-1 variance“ model. Finally, the 
heterogeneous level-1 variance solution is listed. 
  
Output for Random Effects Model with Heterogeneous Level-1 Variance 
 
Summary of the model specified 
 
Level-1 Model 
    ATTITmi = (IND1mi)*ATTIT1i* + (IND2mi)*ATTIT2i* + (IND3mi)*ATTIT3i* + (IND4mi)*ATTIT4i* + 
(IND5mi)*ATTIT5i* 
 
    ATTITti* = π0i + π1i*(AGE13ti) + π2i*(AGE13Sti) + εti 
 
Level-2 Model 
    π0i = β00 + r0i 
    π1i = β10 + r1i 
    π2i = β20 + r2i 
 
 
Var(εi) = Var(Ari + ei) = Δ = AτA' + σ2I 
 
The above equation, written with subscripts and Greek letters, is  
 

* '( )Var Y ATA= +Σ  
 
where { }2

tdiag σΣ = , i.e. that is, Σ  is now a diagonal matrix with diagonal elements 2
tσ , the 

variance associated with occasion t,  t = 1, 2, …, T. 
 
 



A 
IND1     1.00000    -2.00000    4.00000 
IND2     1.00000    -1.00000    1.00000 
IND3     1.00000    0.00000    0.00000 
IND4     1.00000    1.00000    1.00000 
IND5     1.00000    2.00000    4.00000 

 
 
Iterations stopped due to small change in likelihood function 
 
Final Results - Iteration 8 
 

               σ2 Standard 
Error 

IND1  0.01373 0.005672 
IND2  0.02600 0.003296 
IND3  0.02685 0.003658 
IND4  0.02602 0.003633 
IND5  0.00275 0.007377 

 
The five estimates above are the estimates of the level-1 variance for each time point. 
 
τ 

INTRCPT1,r0    0.04079    0.00736    -0.00241 
AGE13,r1    0.00736    0.00382    0.00025 
AGE13S,r2    -0.00241    0.00025    0.00106 

 
Standard errors of τ 

INTRCPT1,r0    0.00512    0.00124    0.00088 
AGE13,r1    0.00124    0.00066    0.00042 
AGE13S,r2    0.00088    0.00042    0.00030 

 
τ (as correlations)  

INTRCPT1,r0   1.000   0.590  -0.366 
AGE13,r1   0.590   1.000   0.124 
AGE13S,r2  -0.366   0.124   1.000 

 
Δ 

IND1     0.03410    0.01707    0.01646    0.01851    0.02325 
IND2     0.01707    0.05165    0.03103    0.03322    0.03223 
IND3     0.01646    0.03103    0.06764    0.04574    0.04588 
IND4     0.01851    0.03322    0.04574    0.08208    0.06421 
IND5     0.02325    0.03223    0.04588    0.06421    0.08996 

 
The 5 5×  matrix above contains the estimates of five variances and ten covariances implied by the 
“heterogeneous level-1 variance“ model. 
 
 
 
 



Δ (as correlations)  
IND1    1.000   0.407   0.343   0.350   0.420 
IND2    0.407   1.000   0.525   0.510   0.473 
IND3    0.343   0.525   1.000   0.614   0.588 
IND4    0.350   0.510   0.614   1.000   0.747 
IND5    0.420   0.473   0.588   0.747   1.000 

 
The value of the log-likelihood function at iteration 8 = 1.816074E+002 
 
Final estimation of fixed effects:  
 

Fixed Effect  Coefficient  Standard 
error  t-ratio  Approx. 

d.f.  p-value 

For INTRCPT1, π0 
    INTRCPT2, β00 0.327646 0.015252 21.482 238 <0.001 
For AGE13 slope, π1 
    INTRCPT2, β10 0.060864 0.004737 12.849 238 <0.001 
For AGE13S slope, π2 
    INTRCPT2, β20 -0.000541 0.003178 -0.170 238 0.865 

 
  
Statistics for the current model 
 
Deviance = -363.214879 
Number of estimated parameters = 14 
 
There are 3 fixed effects (f  = 3), the dimension of τ  is 3, and there are five observations intended 
for each person, each associated with a unique level-1 variance. Thus, there are a total of 

( 1) / 2 3 3(4) / 2 5 14f r r T+ + + = + + =  parameters. 
 
Summary of Model Fit 
 

Model Number of 
Parameters Deviance 

1. Unrestricted 18 -378.26694 
2. Homogeneous σ2 10 -348.22642 
3. Heterogeneous σ2 14 -363.21488 

 
 

Model Comparison χ2   d.f. p-value 
Model 1 vs Model 2 30.04052 8 <0.001 
Model 1 vs Model 3 15.05206 4 0.005 
Model 2 vs Model 3 14.98846 4 0.005 

 
The model deviances are employed to evaluate the fits of the three models (unrestricted, 
homogeneous 2σ , and heterogeneous 2σ ). Differences between deviances are distributed 
asymptotically  as chi-square variates under the null hypothesis that the simpler model fits the data 
as well as the more complex model does. The results show that Model 1 fits better than does the 
homogeneous sigma squared model 2χ  = 30.04052, df = 8; it also fits better than does the 
heterogeneous sigma squared model 2χ  = 15.05206, df = 4. 



 
In addition to the evaluation of models based on their fit to the data, the above results can be used 
to check the sensitivity of key inferences to alternative specifications of the variance-covariance 
structure. For instance, one could compare the mean and variance in the rate of change at age 13 
obtained in Model 2 and Model 3 to assess how robust the results are to alternative plausible 
covariance specifications. The mean rate, 10γ , for Model 2 is 0.064704 (s.e. = 0.004926), and the 
variance, 22τ , is 0.00277 (s.e. = 0.00054). The mean rate, G10, for Model 3 is 0.060864 (s.e. = 
0.004737), and the variance, 22τ , is 0.00382 (s.e. = 0.00066). The results are basically similar. See 
Raudenbush (2001) for a more detailed analysis of alternative covariance structures for polynomial 
models of individual growth and change using the same NYS data sets employed here for the 
illustrations. 
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