
 

 

 

Spatial design model and estimation 

In many multilevel models, the focus is on the possible relationship between an outcome variable of interest 

and some characteristics of respondents nested within some form of hierarchy. This may be students nested 

within schools or respondents nested within geographical units as is often the case with census data or data 

from sample designs where final sampling units are chosen within geographically defined areas. Spatial 

dependence becomes relevant if, apart from the relationship between the outcome and predictors of interest 

at level-1 of the hierarchy, the actual geographical proximity of level-2 units may impact this relationship 

as well, essentially adding a third dimension Z to the relationship between the predictor(s) X and the 

outcome Y.  

If we want to make provision for the possibility of spatial heterogeneity, we have to consider that 

respondents’ characteristics of interest may vary by location, in which case the assumption of constant 

variance may no longer be realistic. The closer the respondents are geographically, the more likely that one 

observation may influence another; the larger the distance between them, the smaller the potential influence 

may be. This type of spatial connectivity can be modelled by assigning a spatial weight to each observation, 

with the weight assigned a reflection of how much the value of a nearby observation may impact on another.  

In the standard hierarchical linear model, it is assumed that the covariance between level-1 and level-2 

random effects is equal to zero. It is also assumed that the neighborhood random effects are independent. 

When dealing with data from contiguous sites, this assumption may no longer be realistic and it may become 

necessary to take the spatial dependence of neighborhood social processes into account as well.  

A model incorporating an autocorrelation term is a good way to model such a situation, as autocorrelation 

will allow the impact of proximity to fade with geographical distance and is appropriate when the 

assumption of independence between neighboring values is no longer tenable.   

In matrix notation, we can write this model as 

 

( )N= + +Y 1 Vb ε  

where  



•   is a fixed (scalar) effect,  

• b  is a 1J    vector of level-2 random spatially autoregressive effects,  

• V  a N j  block diagonal design matrix that assigns to each level-2 unit j the appropriate element 

jb  of the random effects vector b , and  

• ε   is the 1N   vector of level-1 errors, ( )20, NN ε I  . 

The vector b can, in turn, be expressed as 

,= +b Wb u  

where  

•   is the spatial dependence parameter, 

• W  is a non-symmetric spatial weight matrix defined in such a way that the element 'jj
w  is 

negatively related to the distance between neighborhoods j   and 
'j , and  

• u  a 1J   vector of level-2 errors, ( )0, JN u I  . 

It is further assumed that u  is independent of ε , and that 
2  and   are scalar level-1 and level-2 variances 

respectively.  

The contiguity matrix W may be a binary contiguity matrix indicating that sites are contiguous to each 

other. It could, in other circumstances, be more complex and incorporate the distance between sites along 

with characteristics of the areas such as relative area, the proportion of common boundary, etc. The matrix 

W  implemented in the HLM program is a binary contiguity matrix where 'jj
w  =1 if neighborhoods j  and 

'j are contiguous, and 0 if not. In addition, the rows of the weight matrix are standardized so that the total 

distance between neighborhood j  and all other neighborhoods is unity. This row-standardization is 

performed so that the sum of the contiguous neighbor contributions has an upper limit of 1: 
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This helps to ensure that the spatial dependence parameter   will have an absolute value less than 1. The 

spatial dependence parameter may be interpreted as follows in the following cases: 



• 0  : spatial dependence between sites is present.  

• 0 = : no spatial dependence is present, and the model reduces to a standard one-way random-

effects ANCOVA model ( )N= + +Y 1 Vu ε  . 

• 0  : Indicates that a site is typically surrounded by other sites with similar values on the 

outcome of interest. 

• 0   : High-value sites are typically surrounded by low-value sites, and vice versa.    

If the equations above are rewritten in terms of b , we get 

( ) ( )
1

.N J 
−

= + − +Y 1 V I W u ε  

This is a special case of HLM where the design matrix for the random effects u  is ( )
1
.J 

−
−V I W  As this 

expression involves the inversion of the matrix J −I W , it is necessary for this matrix to be non-singular. 

Non-singularity is a requirement for the existence of a unique inverse of a matrix.  No site can appear in 

the data as its own neighbor. 

In HLM, this model is estimated by using maximum likelihood via the EM algorithm. The spatial 

dependence parameter   is re-estimated on each iteration.  

 

Example 

We consider the example provided with the program. Data on 7 720 residents from 342 Chicago 

neighborhoods collected by the Project of Human Development in Chicago Neighborhoods are used. The 

outcome variable of interest is collective efficacy, which is defined as social cohesion among neighbors 

combined with their willingness to intervene on behalf of the common good. This variable is measured on 

a scale consisting of ten items, indicating whether people in the neighborhood know each other, trust each 

other, share common values, and can be relied on in various ways to maintain public order. The individual 

scores serving as outcome in this example was based on the responses to these items.  

 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

Collective Efficacy 7729 1.00 5.00 3.4175 .71014 

Valid N (listwise) 7729     

 
The number of respondents from the neighborhoods varied between 7 and 60. 

 

  



Creating a spatial dependence matrix for use in HLM 

The data set described above is now used to illustrate the creation of the spatial dependence matrix for use 

in creating an MDM in HLM. Information on the geographical proximity of neighborhoods are typical given 

in the form shown below. In this example, the ID represents the neighborhood ID, and the variable 

NEIGHBORHOOD any neighborhood adjacent to the neighborhood given in column 1.  

 

 

 

The first neighborhood shares borders with 2 others, namely neighborhoods 2 and 3. Neighborhood 3 shares 

borders with all four other neighborhoods shown, that is 1,2,4 and 5. Neighborhoods 4 and 5 also share 

borders with neighborhood 17.  While neighborhood 1 shares borders with only two neighborhoods, 

neighborhoods 4 and 5 have 5 neighbors each.  



To use this information as a spatial design matrix in HLM, the data must to be presented in a different form. 

Instead of having multiple rows of information for each neighborhood ID, a single row for each is needed. 

Additional columns are introduced into the data set to represent the neighborhoods adjacent to each. In the 

example below, the data shown above has been reformatted. 

 

 

 

The variables n1 to n5 represent the IDs of neighborhoods adjacent to each of the 5 neighborhoods shown 

above. As at most 5 neighborhoods were adjacent to each of the 5 neighborhoods in the data shown above, 

only 5 columns (n1 to n5) are needed. The number of columns required is be equal to the maximum number 

of neighbors for any neighborhood in the data set of interest. 

The count variable records the actual number of adjoining neighborhoods: neighborhood 3, for example, 

had 5 neighbors are recorded by n1 to n5 and thus the value of count for this neighborhood is 5. 

Neighborhood 4 with three neighbors have values on 3 of the columns n1 to n5, and subsequently a count 

of 3. The maximum value of the variable count is thus equal to the number of columns used to represent 

adjoining neighborhoods. No neighborhood can appear in the reformatted data as its own neighbor.  

 

Interpreting the results of the model 

The following model is fitted to PHDCN data. In this model 0b  represents the level-2 random spatially 

autoregressive effects (corresponding to the vector b in the model discussed in the introduction), W  the 

spatial weight matrix and   the spatial dependence parameter. Keep in mind that in this model 
2  and   

are scalar level-1 and level-2 variances respectively. 



 

 

 

A spatial dependence analysis produces two sets of results: one for the standard 2-level model with no 

autoregressive component, and one for the model with potential spatial dependence. The first set of results 

is for the standard 2-level model: 

 

Final Results - Iteration 6 

Iterations stopped due to small change in likelihood function 

 

σ2 = 0.42136 

 

Standard error of σ2 = 0.00693 

 

τ 

INTRCPT1,β0      0.08904 

 

Standard error of τ 

INTRCPT1,β0      0.00850 

 

Note that for the standard model,   is not assumed to be scalar, and thus both estimate and standard error 

appears in the first section of output and in the final table of variance components (see below).  

 



Approximate confidence intervals of tau variances 

INTRCPT1: (0.074,0.107) 

 

Random level-1 coefficient   Reliability estimate 

INTRCPT1,β0 0.799 

 

The value of the log-likelihood function at iteration 6 = -7.911855E+03 

 

Final estimation of fixed effects: 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

d.f. 
 p-value 

For INTRCPT1, β0 

    INTRCPT2, γ00 3.433243 0.018056 190.142 341 <0.001 

 

 

Final estimation of fixed effects 

(with robust standard errors) 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

d.f. 
 p-value 

For INTRCPT1, β0 

    INTRCPT2, γ00 3.433243 0.018056 190.144 341 <0.001 

 

 

Final estimation of variance components 

Random Effect 
Standard 

 Deviation 

Variance 

 Component 
  d.f. χ2 p-value 

INTRCPT1, u0 0.29839 0.08904 341 1870.37148 <0.001 

level-1, r 0.64913 0.42136       

Statistics for the current model 

Deviance = 15823.710765 

Number of estimated parameters = 3  



The results for the spatial dependence model are given next: 

 

Iterations stopped due to small change in likelihood function 
 
σ2 = 0.42149 
 
τ 

INTRCPT1,β      0.03477 

 

ρ 

INTRCPT1,β      0.81701 

 

The estimated  of 0.81701 indicates that a site is typically surrounded by other sites with similar values 

on the outcome of interest and that spatial dependence is present. 

 

Final estimation of fixed effects: 

Fixed Effect  Coefficient 
 Standard 

error 
 t-ratio 

 Approx. 

d.f. 
 p-value 

For INTRCPT1, β0 

    INTRCPT2, γ00 3.404181 0.056443 60.312 341 <0.001 

 

Statistics for the current model 

Deviance = 15671.980461 

Number of estimated parameters = 4 

 

The fixed effects results are not all that different between the two models ( 00


= 3.4332 versus 00


= 

3.4042). When the standard errors of  00


 (0.018 versus 0.056) is compared over the models, it indicates 

that, given that 


 = 0.8170, there is an underestimation of the standard errors when spatial dependence is 

ignored. Note that there is no table of results for variance components: in the spatial dependence model   

is assumed to be a scalar. Comparison of the two models using deviance statistics is included in the output. 

From the result (given below) it can be concluded that the model with spatial dependence provides a better 

fit. 



 

    Regular HLM vs. HLM with spatial dependence model comparison test 

     χ2 statistic = 151.73030 

     Degrees of freedom = 1 

     p-value = <0.001 

 

The final results given provide information on the neighborhood-specific variance and the average 

covariance between pairs of adjacent neighborhoods. Note that these depend on  , the magnitude of the 

spatial dependence correlation  , and the configuration of neighborhoods near that neighborhood. 

A comparison of the standard errors for 00̂  the regular HLM and HLM with spatial dependence (.018 vs 

.056) suggests that, given ̂  is equal to .8, that there is an underestimation of the standard errors when 

spatial dependence is ignored.  

 

Average Level-2 Variance = 0.088502 

 

Average Level-2 Covariance = 0.005961 

 

It is also possible to obtain spatial empirical Bayes estimates of the neighborhood collective efficacy 

measures by requesting the level-2 residual file via the Basic Settings dialog box. The contents of this file 

are shown below for the first 20 neighborhoods. The variable u_intrcp represents empirical Bayes estimates 

for the standard 2-level model, while b_intrcp represents the empirical Bayes estimates for the model with 

spatial dependence.  

 



 

 

Descriptive statistics for the two sets of empirical Bayes estimates are given below. It is clear 

that there is more variation in b_intrcp, that is in the empirical Bayes estimates for the model with 

spatial dependence. This is also clear from a scatterplot of the estimates.  

 

 

Descriptive Statistics 

 N Minimum Maximum Mean Std. Deviation 

u_intrcp 342 -.438 .575 -.00057 .147520 

b_intrcp 342 -.668 .955 .03218 .277098 

Valid N (listwise) 342     



 

 
 

Spatial dependence models can be fitted to continuous as well as discrete outcomes such as binary 

outcomes, counted data, ordinal and multinomial outcomes.  


