
 

 
 

Continuous variables with missing values 
 
 

1. Treatment of Missing Values 
 

Missing values and incomplete data are almost unavoidable in in social, behavioral, medical and most other areas of 

investigation. One can distinguish between three types of incomplete data: 

 

• Unit nonresponse, for example, a person does not respond at all to an item in a questionnaire. 

• Subject attrition, for example, when a person falls out of a sample after some time in a longitudinal follow-

up study. 

• Item nonresponse, for example, a person responds to some but not all items in a questionnaire. 

 

The literature, e.g., Schafer (1997) distinguishes between three mechanisms of nonresponse. 

 

• MCAR Missing completely at random 

• MAR Missing at random 

• MNAR Missing not at random 

Let 
ijz  be any element on the data matrix. Informally, one can define these concepts as 

• MCAR ( )Pr ijz missing=  does not depend on any variable in the data. 

• MAR ( )Pr ijz missing=  may depend on other variables in the data but not on 
ijz . Example: A missing value 

of a person’s income may depend on his/her age and education but not on his/her actual income. 

• MNAR ( )Pr ijz missing=  depends on 
ijz . Example: In a questionnaire people with higher income tend not 

to report their income. 

LISREL has several ways of dealing with missing values: 

1. Listwise deletion 

2. Pairwise deletion 

3. Imputation by matching 

4. Multiple imputation 

• EM 

• MCMC 



5. Full Information Maximum Likelihood (FIML)1 

Of these methods the first three are ad hoc procedures whereas the last two are based probability models for 

missingness. As a consequence, the ad hoc methods may lead to biased estimates under MAR and can only be 

recommended under MCAR. 

 

Listwise deletion means that all cases with missing values are deleted. This leads to a complete data matrix with no 

missing values which is used to estimate the model. This procedure can lead to a large loss of information in that the 
resulting sample size is much smaller than the original. Listwise deletion can give biased, inconsistent, and inefficient 

estimates under MAR. It should only be used under MCAR. 

 

Pairwise deletion means that means and variances are estimated using all available data for each variable and 

covariances are estimated using all available data for each pair of variables. These means, variances and covariances 
are then combined to form a mean vector and a covariance matrix which are used to estimate the model. While some 

efficiency is obtained compared to listwise deletion, it is difficult to specify a sample size N to be used in the 

estimation of the model, since the variances and covariances are all based on different sample sizes and there is no 
guaranty that the covariance matrix will be positive definite which is required by the maximum likelihood method. 

Although pairwise deletion is available in LISREL, it is not recommended. Its best use is for data screening for then 

it gives the most complete information about the missing values in the data. 

 

Imputation means that real values are substituted for the missing values. Various ad hoc procedures for imputation 

have been suggested in the literature. One such is imputation by matching which is available in LISREL. It is based 
on the idea that individuals who have similar values on a set of matching variables may also be similar on a variable 

with missing values. This will work well if the matching variables are good predictors of the variable with missing 

values. 

 

Methods 4 and 5 are both based on the assumption of multivariate normality and missingness under MAR. Method 4 

uses multiple imputation methods to generate a complete data matrix. The multiple imputation procedure 

implemented in LISREL is described in detail in Schafer (1997) and uses the EM algorithm and the method of 
generating random draws from probability distributions via Markov chains (MCMC). The EM algorithm generates 

one single complete data matrix whereas the MCMC method generates several complete data matrices and uses the 

average of these. As a consequence, the MCMC method is more reliable than the EM algorithm. In both cases, the 

complete data matrix can be used to estimate the mean vector and the covariance matrix of the observed variables 
which can be used to estimate the model. However, in LISREL it is not necessary to do these steps separately as they 

are done automatically as will be described in what follows. 

 

Method 5 is the default method in LISREL when there are missing data. This is the recommended method for dealing 

with the problem of missing data. So this is described first. 

 

If the variables have a multivariate normal distribution all subsets of the variables also have that distribution. So the 

likelihood function for the observed values can be evaluated for each observation without using any missing values. 

  

2. Latent Curve Models: Example of treatment of Prostate Cancer (PSAVAR) 
 

A medical doctor offered all his patients diagnosed with prostate cancer a treatment aimed at reducing the cancer 

activity in the prostate. The severity of prostate cancer is often assessed by a plasma component known as prostate 
specific antigen (PSA), an enzyme that is elevated in the presence of prostate cancer. The PSA level was measured 

regularly every three months. The data contains five repeated measurements of PSA. The age of the patient is also 

included in the data. Not every patient accepted the offer initially and several patients chose to enter the program 

 
1 Of course, the maximum likelihood (ML) used earlier is also a full information maximum likelihood method. 

However, it is convenient to use the term ML for the case of complete data and the term FIML for the case of missing data. 



after the first occasion. Some patients, who accepted the initial offer, are absent at some later occasions for various 

reasons. Thus there are missing values in the data. 

 

The aim of this study is to answer the following questions: What is the average initial PSA value? Do all patients 

have the same initial PSA value? Is there an overall effect of treatment. Is there a decline of PSA values over time, 

and, if so, what is the average rate of decline? Do all patients have the same rate of decline? Does the individual 

initial PSA value and/or the rate of decline depend on the patient’s age? 

 

This is a typical example of repeated measurements data, the analysis of which is sometimes done within the 

framework of multilevel analysis. It represents the simplest type of two-level model but it can also be analyzed as a 
structural equation model, see Bollen & Curran (2006). In this context it illustates a mean and covariance structure 

model estimated from longitudinal data with missing values. 

 

The data file for this example is psavar.lsf, where missing values are shown as -9.0002. This data file is stored in 

the SIMPLIS Examples folder. 

 

 

In this kind of data it is inevitable that there are missing values. For example, a patient may be on vacation or ill or 
unable to come to the doctor for any reason at some occasion or a patient may die and therefore will not come to the 

doctor after a certain occasion. It is seen in that 

 

• Patients 9 and 10 are missing at 3 months 

• Patient 15 is missing at 3 and 6 months 

• Patient 16 is missing at 0, 3, and 12 months 

 

In the following analysis it is assumed that data are missing at random (MAR), although there may be a small 

probability that a patient will be missing because his PSA value is high. 

 

Whenever one starts an analysis of a new data set, it is recommended to begin with a data screening. To do so click 

on Statistics at the top of the screen and select Data Screening from the Statistics menu. This will reveal the 

following information about the data. 

 

Number of Missing Values per Variable 
 PSA0 PSA3 PSA6 PSA9 PSA12 Age 

 
2 If the data is imported from an external source which already have a missing value code, the missing values will show up 

in the lsf file as -999999.000, which is the global missing data code in LISREL. 



-------- -------- -------- -------- -------- -------- 
 17 14 13 12 11 0 
This table says that there are 17 patients missing initially, 14 missing at 3 months, 13 
at 6 months, etc. 
Distribution of Missing Values 
Total Sample Size = 100 
Number of Missing 
Values 

0 1 2 3 

Number of Cases 46 43 9 2 
     

 

This table says that there are only 46 patients with complete data on all six occasions. Thus, if one uses listwise 

deletion 54% of the sample will be lost. 43 patients are missing on one occasion, 9 patients are missing at two 
occasions, 2 patients are missing on three occasions. This table does not tell on which occasions the patients are 

missing. The next table gives more complete information about the missing data patterns. 

 

Missing Data Map 
Frequency PerCent Pattern 
 46 46.0 0 0 0 0 0 0 
 9 9.0 1 0 0 0 0 0 
 8 8.0 0 1 0 0 0 0 
 2 2.0 1 1 0 0 0 0 
 8 8.0 0 0 1 0 0 0 
 2 2.0 1 0 1 0 0 0 
 2 2.0 0 1 1 0 0 0 
 9 9.0 0 0 0 1 0 0 
 1 1.0 1 0 0 1 0 0 
 1 1.0 1 1 0 1 0 0 
 1 1.0 0 0 1 1 0 0 
 9 9.0 0 0 0 0 1 0 
 1 1.0 1 0 0 0 1 0 
 1 1.0 1 1 0 0 1 0 

 

The columns under Pattern correspond to the variables in the order they are in psavar.lsf. A 0 means a non-missing 
value and a 1 means a missing value. Recall that the last variable is the patient’s age. This has no missing values. 

Here one can see for example that two patients are missing at both 0 and 3 months and another patient is missing at 

6 and 9 months. 

 

The following information about the univariate distributions of the variables have been obtained using all available 

data for each variable, i.e., 83 patients for PSA0, 86 patients for PSA3, etc. 

 

Univariate Summary Statistics for Continuous Variables 

Variable Mean St. Dev. Skewness Kurtosis Minimum Freq. Maximum Freq. 
-------- ---- -------- ------- -------- ------- ----- ------- -

---- 
PSA0 31.164 5.684  0.068 -0.852 19.900 1 44.100 1 

PSA3 30.036 6.025 -0.248 -0.732 14.500 1 42.100 1 

PSA6 27.443 6.084 -0.335 -0.961 13.700 1 37.600 1 

PSA9 25.333 6.391 -0.331 -1.066 10.600 1 36.200 1 

PSA12 23.406 6.306 -0.309 -1.069 9.600 1 35.800 1 

Age 55.450 7.896 -0.329 -0.234 32.000 1 70.000 1 
 

It is seen that the mean age is 55.45 years and that average initial PSA value is 31.164 with a minimum at 19.9 and 
maximum at 44.1. At 12 months the corresponding values are 23.406, 9.6, and 35.8, respectively. Thus there is some 

evidence that the PSA values are decreasing over time. 



 

The model to be estimated is 
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An interpretation of this is as follows. Each patient has his own linear growth curve3, represented by (1) which is the 

regression of ity  on time with intercept ia  and slope ib  varying across patients. In principle, the intercepts ia  and 

slopes ib could all be different across patients. It is of interest to know if the intercepts and/or the slopes are equal 

across patients. The four cases are illustrated in Figure 1. If there is variation in intercepts and/or the slopes across 

patients, one is interested in whether a covariate iz  (in this case age) can predict the intercept and/or the slope. 

 

 

 
Figure 1: Four Cases of Intercepts and Slopes 

 

 
3 In general, the growth curves are not restricted to be linear, but can be quadratic, cubic, or other types of functions of time, 

see Jöreskog, Sörbom, Du Toit, & Du Toit (2003). 



Path diagrams for the models without and with a covariate are illustrated in Figures 2 and 3, respectively, with 

1tT t= −  for four occasions. 

 

The model in Figure 1 can be estimated with FIML using the following SIMPLIS syntax file (psavar1a.spl): 

 

Linear Growth Curve for psavar Data 
Raw Data from File psavar.LSF 
Latent Variables: a b 
Relationships 
PSA0 = 1*a 0*b 
PSA3 = 1*a 3*b 
PSA6 = 1*a 6*b 
PSA9 = 1*a 9*b PSA12 = 1*a 12*b a b = CONST 
Equal Error Variances: PSA0 - PSA12 
Path Diagram 
End of Problem 

 

There are two latent variables a and b in the model. They represent the intercept and slope of the patients’ linear 

growth curves. The objective is to estimate the mean vector and covariance matrix of a and b and the error variance 

of the PSA measures. The error variance is assumed to be the same at all occasions. 

 

In the current example, a and b are latent variables, and the line in the input file psavar1a.spl 

 
a b = CONST 
 

specifies that the means of a and b should be estimated. 

 

The output gives the following information 

 

-------------------------------- 
                EM Algorithm for missing Data:  
               -------------------------------- 
      
           Number of different missing-value patterns=       14 
           Effective sample size:      100 
 
           Convergence of EM-algorithm in     9 iterations 
           -2 Ln(L) =     1997.49237 
           Percentage missing values=  13.40 

     

The EM algorithm is first used to estimate a saturated model where both the mean vector and covariance matrix are 

unconstrained. This also gives the value −2ln(L) = 1997.492. 



 

Figure 2: Path Diagram for a Linear Curve Model with Four Occasions 

These are used to obtain starting values for the FIML method. After convergence the FIML method gives the following 

information about the fit of the model. 

  Global Goodness of Fit Statistics, FIML case 
 
   
                -2ln(L) for the saturated model =        1997.492 
                -2ln(L) for the fitted model    =        2008.601 
 
 Degrees of Freedom = 14 
 Full Information ML Chi-Square                        11.108 (P = 0.6775) 
 Root Mean Square Error of Approximation (RMSEA)       0.0 
 90 Percent Confidence Interval for RMSEA              (0.0 ; 0.0775) 
 P-Value for Test of Close Fit (RMSEA < 0.05)          0.844 
 

The FIML estimates of the model parameters are given as 

Covariance Matrix of Independent Variables   
 
                   a          b    
            --------   -------- 
        a     30.899 
             (4.612) 
               6.700 
  
        b      0.302      0.004 
             (0.108)    (0.005) 
               2.811      0.728 
  
 
         Mean Vector of Independent Variables     
 
                   a          b    



            --------   -------- 
              31.934     -0.742 
             (0.571)    (0.019) 
              55.927    -39.871 

 

The conclusions from this analysis are 

 

• The average initial PSA value is 31.9 with a variance of 30.9. 

• Thus, the initial PSA value varies considerably from patient to patient 

• The effect of treatment is highly significant. 

• The PSA value decreases by 0.7 per quarter (0.23 per year) and this rate of decrease is the same for all 

patients. 

 

 
Figure 3: The Linear Curve Model with Covariate 

 

To estimate the model in Figure 3 one can just add Age on the lines for a and b. The SIMPLIS syntax file is 

psavar2a.spl: 

 

Linear Growth Curve with Covariate for psavar Data 
Raw Data from File psavar.LSF 
Latent Variables: a b  
Relationships 
PSA0 = 1*a 0*b 
PSA3 = 1*a 3*b  
PSA6 = 1*a 6*b  
PSA9 = 1*a 9*b  
PSA12 = 1*a 12*b  
a b = CONST Age 
Let the Errors on a and b correlate 
Equal Error Variances: PSA0 - PSA12 
Path Diagram 
End of Problem 
 



However, since we already know that all patients have the same slope b, it is not meaningful to predict b from Age. 

Thus instead of the line 

 

a b = CONST Age 

 

one should use (see file psavar2aa.spl) 

a = CONST Age b = CONST 

0*Age 

The prediction equation for the intercept a is estimated as 

 

        a = 15.288 + 0.300*Age, Errorvar.= 25.817, R² = 0.177 
 Standerr  (3.691)  (0.0659)              (3.891)             
 Z-values   4.141    4.555                 6.634              
 P-values   0.000    0.000                 0.000   

 

Thus, the intercept a depends on age. The intercept increases by 0.30 per year of age, on average. 

 

There is an alternative method of estimation, based on the same two assumptions. One can use multiple imputation 

to obtain a complete data set and then analyze this by maximum likelihood or robust maximum likelihood method. 

Since the sample size N = 100 is small it is best to use maximum likelihood. 

 

For the model in the last analysis the SIMPLIS syntax will be (see file psavar3a.spl): 

 
!Linear Model with Covariate for psavar Data 
!Estimated by ML using Multiple Imputation 
Raw Data from File psavar.lsf 
Multiple Imputation with MC 
Latent Variables: a b  
Relationships 
PSA0  = 1*a 0*b 
PSA3  = 1*a 3*b  
PSA6  = 1*a 6*b  
PSA9  = 1*a 9*b  
PSA12 = 1*a 12*b  
a = CONST Age 
b = CONST 0*Age 
Let the Errors of a and b correlate 
Equal Error Variances: PSA0 - PSA12 
Path Diagram 
End of Problem 
 

The only difference between this input file and psavar2aa.spl is the line 

 

Multiple Imputation  
 

which has been added. The output gives the following estimated equation for a: 

       a = 15.000 + 0.306*Age, Errorvar.= 26.020, R² = 0.183 



 Standerr  (3.570)  (0.0637)              (3.849)             
 Z-values   4.202    4.798                 6.761              
 P-values   0.000    0.000                 0.000   

 

which is very similar to previous results. 

 

An advantage of this approach is the one can get more measures of goodness of fit: 

 

  Log-likelihood Values 
 
                        Estimated Model          Saturated Model 
                        ---------------          --------------- 
 Number of free parameters(t)         9                       27 
 -2ln(L)                       1787.430                 1764.336 
 AIC (Akaike, 1974)*           1805.430                 1818.336 
 BIC (Schwarz, 1978)*          1828.877                 1888.675 
 
*LISREL uses AIC= 2t - 2ln(L) and BIC = tln(N)- 2ln(L) 
 
 
                           Goodness-of-Fit Statistics 
 
 Degrees of Freedom for (C1)-(C2)                      18 
 Maximum Likelihood Ratio Chi-Square (C1)              23.095 (P = 0.1870) 
 Due to Covariance Structure                           0.0 
 Due to Mean Structure                                 0.0 
 Browne's (1984) ADF Chi-Square (C2_NT)                0.0 (P = 1.0000) 
  
 Estimated Non-centrality Parameter (NCP)              5.095 
 90 Percent Confidence Interval for NCP                (0.0 ; 21.634) 
  
 Minimum Fit Function Value                            0.231 
 Population Discrepancy Function Value (F0)            0.0509 
 90 Percent Confidence Interval for F0                 (0.0 ; 0.216) 
 Root Mean Square Error of Approximation (RMSEA)       0.0532 
 90 Percent Confidence Interval for RMSEA              (0.0 ; 0.110) 
 P-Value for Test of Close Fit (RMSEA < 0.05)          0.426 


