
 

 

Growth curves 
 

 

 
 

A general form of the multivariate linear model may be formulated as follows. Rows of the data matrix Y of order N p  

are independently distributed with the same covariance matrix Σ  and with means of the form 

 

 ( ) ,E =Y XΞP   

where : N qX  and : r pP  are fixed design matrices of ranks q and r respectively, and : q rΞ  is a matrix of 

parameters. If r = p and P is nonsingular, this is a multivariate regression model with regression matrix 
' '

PΞ , with elements 

which are linear functions of the parameters in Ξ .  

 

This can be specified in LISREL as a submodel 3A in the form of 
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with Fixed-x. Put 
'

y =Λ P , 
'

y =Γ Ξ , =Ψ Σ  and leave 
yτ , α , κ  and B default. 

 

This model is often used to estimate growth curves from panel data or longitudinal data in which the outcome variable is 

measured repeatedly on the same persons over several periods of time. 
 

Consider a response variable y being measured on N individuals at T points in time 1 2, ,..., Tt t t . The raw data take the form 

of a data matrix Y of order N T , where 
ijy  is the observed measurement on individual i at time 

jt . It is assumed that the 

rows of Y are independently distributed with the same covariance matrix Σ . Also, the mean vectors of the rows are assumed 

to be the same, namely  '

1 2, ,..., .T  =μ   

 

However, here we focus attention on the mean t  as a function of t. This gives a growth curve describing how the mean of 

y changes over time. 
 

We consider polynomial growth curves of the form 
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The degree of the polynomial h is assumed to be less than or equal to T – 1. When h < T – 1, the mean vector   is constrained 

and there is not a one-to-one correspondence between 1 2, ,..., T    and the polynomial coefficients 0 1, ,..., h   . In this 

example we consider the estimation of these polynomial coefficients. 

 
The above generalizes easily to the case of several groups of individuals with possibly different mean vectors. Suppose, for 

example, that there are two groups with 1n  and 2n  individuals in each group. Let the first 1n  rows of Y be the measurements 

on individuals in Group 1 and let the last 2n  rows of Y be the measurements on individuals in Group 2. The growth curves 

for the two groups may differ, so we assume that there are two distinct growth curves to be estimated, that is, 

            

 ( )( ) ( ) ( ) ( )

0 1 ... , 1,2.g g g g h

it hE y t t g  = + + + =   

In multiple-group comparisons one may be interested in the following type of questions: 

 

• Should the growth curves be represented by third-degree polynomials, or are quadratic or linear growth curves 

adequate? 

• Should separate growth curves be used for different groups or do all groups have the same growth curve? 

 
Often we conceive of the effect of treatment as represented by a parallel displacement of the whole growth curve for one 

group in relation to another. This cannot be taken for granted, however, but must be tested by means of data. In addition, 

growth curves can differ in terms of the degree of the polynomial but also in the shape for the same degree of polynomial. 

The covariance matrices Σ  may be the same in different groups, or the correlation matrices may be the same and the 

standard deviations different, or the covariance matrices may be all different. The covariance matrices may also be structured 

in various ways. 
 

Growth curves can be estimated more efficiently and tests about the growth curves will be more powerful if the covariance 

structure, which arises naturally in repeated measurements, is taken into account. This covariance structure very often has 

an autoregressive nature. Therefore, we focus attention to the deviation t t te y = −  of ty  from its mean value t  on the 

growth curve and consider various autoregressive models for this. 

 
The first-order autoregressive model is 

 

  

 1 , 2,3,..., ,t t t te e z t T −= + =   

where the residual tz  is uncorrelated with 1te − . It is also assumed that 2 3, ,..., Tz z z  are all uncorrelated. 

 

It is readily verified that 

 

 ( ) ( ) 2

1 1 1, , ,t t t t t tCov y y E e e  − − −= =   

where 

 

 ( ) ( )2 2

1 1 1 ,t t tVar y E e − − −= =   

 



and that 
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Hence, the covariance matrix of y is (in the case T = 4) 
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Σ   

It is seen that Σ  is constrained; its 10 variances are functions of only seven parameters. Since the variances are free 

parameters, it is the six covariances that are functions of the three parameters 2 , 3  and 4 .  

 

This model is the perfect Markov simplex. If all i =1, we have the perfect Wiener simplex, see Jöreskog (1970a).  Higher-

order autoregressive models may also be considered. For example, a second-order model has 
 

    

, 1 1 , 2 2 , 3,4,..., .t t t t t t t te e e z t T − − − −= + + =  

 

The model can be estimated directly with LISREL using the following specification corresponding to the equations at the 
beginning of the document: 
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where T  in the case of a second-order autoregressive model, is a square matrix whose subdiagonal non-zero elements are 

 
21 31 32 42 43 53 54 , 2 , 1, , , , , , ,..., , .T T T T        − −

  

The matrix P is the fixed matrix of order ( 1)T h + . When T  is present in the above set of equations, the covariance 

matrix of z should be diagonal. The case of an unstructured Σ  is obtained by setting T  to zero and letting the covariance 

matrix of z to be free. 

 

As an illustration of growth curve estimate, we use data on stature for boys and girls aged 3-7 (T = 5) (Tudenham & Snyder 

(1954)). The means, variances, and covariances of the stature measurements for the two groups are given in the table below. 

 

We began by testing the hypothesis that the covariance matrix of the measured variables are equal for boys and girls. This 

was done in a previous example. The means were not involved and the likelihood ratio test statistics gave 
2  = 21.59 with 

15 degrees of freedom. The p – value is 0.12, so the hypothesis is not rejected. 



          ETA 1      ETA 2      ETA 3      ETA 4      ETA 5      ETA 6    
            --------   --------   --------   --------   --------   -------- 
    ETA 1     12.628 
             (1.537) 
               8.216 
  
    ETA 2     12.569     14.506 
             (1.590)    (1.766) 
               7.907      8.216 
  
    ETA 3     13.270     14.962     16.423 
             (1.685)    (1.850)    (1.999) 
               7.873      8.087      8.216 
  
    ETA 4     14.133     15.760     17.378     19.797 
             (1.825)    (1.992)    (2.155)    (2.410) 
               7.743      7.913      8.063      8.216 
  
    ETA 5     15.051     16.593     18.407     20.664     22.462 
             (1.944)    (2.110)    (2.290)    (2.541)    (2.734) 
               7.742      7.863      8.039      8.132      8.216 
 

Table: Berkeley Guidance study 

Observed and fitted means 
Age 3 4 5 6 7 

Girls      
Observed 95.45 102.99 110.26 117.25 123.41 
Fitted 95.46 102.95 110.27 117.18 123.39 
Boys      
Observed 96.71 104.27 111.13 117.47 124.01 
Fitted 96.70 104.32 111.11 117.54 124.03 

Observed (above) and fitted (below) covariance matrices 
Girls      

3 
12.110 
12.628 

    

4 
12.454 
12.569 

15.132 
14.506 

   

5 
13.491 
13.270 

16.074 
14.962 

18.148 
16.423 

  

6 
14.061 
14.133 

16.424 
15.760 

18.567 
17.378 

20.612 
19.797 

 

7 
14.822 
15.051 

17.133 
16.593 

19.587 
18.407 

21.534 
20.664 

23.426 
22.462 

Boys      

3 
13.177 
12.628 

    

4 
12.693 
12.570 

13.838 
14.504 

   

5 
13.055 
13.270 

13.784 
14.963 

14.592 
16.423 

  

6 
14.211 
14.134 

15.049 
15.757 

16.118 
17.379 

18.923 
19.793 

 

7 
15.294 
15.051 

16.018 
16.592 

17.156 
18.408 

19.738 
20.663 

21.437 
22.461 

 

 



We now test the hypothesis of equal mean vectors for boys and girls without assuming equal covariance matrices. For this 

we use Submodel 1 in the form of  

 x xx = + +τ Λ ξ δ . 

Take x =Λ I  and . =Θ 0  Then the mean vector is xτ  and the covariance matrix is Φ . The command file (EX104B.LIS  

in the LISREL Examples folder) for this is as follows: 

Example 10.4b: Testing Equality of Mean Vectors. Input for Girls 
DA NG=2 NI=5 NO=70 
CM FI=GIRLS.COV 
ME FI=GIRLS.MEA 
MO NX=5 NK=5 TX=FR LX=ID TD=ZE 
OU 
Example 10.4b: Testing Equality of Mean Vectors. Input for Boys 
DA NO=66 
CM FI=BOYS.COV 
ME FI=BOYS.MEA 
MO TX=IN 
OU 
  

The test gives 
2  =25.87 with 5 degrees of freedom, so the hypothesis is rejected. Boys and girls have different mean 

vectors.  

 

We proceed by estimating a growth curve for boys and girls under the assumption that the covariance matrices are equal. 

The model is the one defined by  
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with T = 0 and ( )Cov z  equal in the two groups but otherwise unconstrained. We assume that the growth curves are cubic, 

i.e. h = 3. Measuring time as age – 5, the matrix P (one can of course use orthogonal polynomials instead): 
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In LISREL we take p = 5, m = 9,   , ,y  = =Λ I P Θ 0 is a 9 1  vector, where the last four elements are the coefficients 

of the growth curve polynomial, ( )9 9 =B 0 , and Ψ  a 9 9  symmetric matrix where the last four rows are fixed zeros. 

 

 
 



The command file (EX104C.LIS) is as follows: 
 
Example 10.4c: Estimating Third Degree Growth Curve for Girls 
Assuming Sigma(Girls) = Sigma(Boys) 
DA NG=2 NI=5 NO=70 
CM FI=GIRLS.COV 
ME FI=GIRLS.MEA 
MO NY=5 NE=9 AL=FR PS=SY,FI TE=ZE 
MA LY 
1 0 0 0 0 1 -2 4 -8 
0 1 0 0 0 1 -1 1 -1 
0 0 1 0 0 1  0 0  0 
0 0 0 1 0 1  1 1  1 
0 0 0 0 1 1  2 4  8 
FI AL 1 - AL 5 
FR PS 1 1 - PS 5 5 
MA PS 
12.110 
12.454     15.132 
13.491     16.074     18.148 
14.061     16.424     18.567     20.612 
14.822     17.133     19.587     21.534     23.426 / 
OU NS RS SE TV AD=OFF 
Example 10.4c: Estimating Third Degree Growth Curve for Boys 
Assuming Sigma(Girls) = Sigma(Boys) 
DA NO=66 
CM FI=BOYS.COV 
ME FI=BOYS.MEA 
MO AL=PS LY=PS PS=IN 
OU 
  

Since NE is larger than NY, starting values must be provided and NS must be entered on the OU command. It is sufficient 

to provide starting values for the first five rows of Ψ  for the first group. These starting values are taken to be the covariance 

matrix for girls. Note that the slash is necessary because Ψ  is actually of order 9 9 . 
yΛ  is the same fixed matrix in both 

groups. Ψ  is specified to be invariant. The joint covariance matrix of boys and girls is in the upper left 5 5  submatrix of 

Ψ . All other elements of Ψ  are fixed zeros. The polynomial coefficients are the last 4 elements of α . The first 5 elements 

of α  are fixed zeros. AD is set to OFF because 
yΛ  does not have full column rank and Ψ  is not positive definite. 

 

This model gives an overall 
2  of 23.29 with 17 degrees of freedom. The p-value is 0.14. The polynomial growth curves 

are estimated as 

 
 
Girls: 

2 3110.278 7.165 0.214 0.046

(0.486) (0.119) (0.030) (0.025)

t t t t = + − −
  

 
Boys: 

2 3111.112 6.537 0.186 0.074

(0.500) (0.122) (0.03`) (0.025)

t t t t = + − −
  

 

The quantities in parentheses are the standard errors of the polynomial coefficients. In the table given earlier in this example, 
the observed and fitted means and the observed and fitted variances and covariances are given. It is seen that the differences 

between the observed and fitted quantities are generally small so the overall fit of the model can be regarded as good.  

 
Do boys and girls have the same growth curves? We can test this hypothesis by re-estimating the model under the constraint 

that the polynomial coefficients are the same and calculating the difference in 
2 -values. This gives 

2 = 24.46 with 4 

degrees of freedom, so the hypothesis is rejected. Inspection of the polynomial coefficients in relation to their standard 



errors suggest that each coefficient is different for boys and girls. Also, the coefficient 3  for girls is not significant. So a 

quadratic curve would be sufficient fir girls. However, in the range of t from -2 to 2 (t = age – 5), the two curves are in fact 

close to each other. 

Further analysis can be done by including 
T  in  
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and letting Ψ  be diagonal. A test of the Wiener simplex structure gives an overall 
2  = 59.63 with 27 degrees of freedom. 

Although the Wiener simplex is fairly consistent with the observed covariance matrices, the fit is not sufficiently good. A 

test of the Markov simplex gives 
2  = 46.93 with 23 degrees of freedom. This model does not fit the data either. For this 

data it seems best to retain the model with a joint but unstructured covariance matrix.  


