
 

 

 

Confirmatory Factor Analysis with nine psychological 
variables 

 

It is important to distinguish between exploratory and confirmatory analysis. In an exploratory analysis, 

one wants to explore the empirical data to discover and detect characteristic features and interesting 

relationships without imposing any definite model on the data. An exploratory analysis may be structure 

generating, model generating, or hypothesis generating. In confirmatory analysis, on the other hand, one 

builds a model assumed to describe, explain, or account for the empirical data in terms of relatively few 

parameters. The model is based on a priori information about the data structure in the form of a specified 

theory or hypothesis, a given classificatory design for items or subtests according to objective features of 

content and format, know experimental conditions, or knowledge from previous studies based on extensive 

data. 

Exploratory factor analysis is a technique often used to detect and assess latent sources of variation and 

covariation in observed measurements. It is widely recognized that exploratory factor analysis van be quite 

useful in the early stages of experimentation or test development. Thurstone’s (1938) primary mental 

abilities, French’s (1951) factors in aptitude and achievement tests and Guilford’s (1956) structure of 

intelligence are good examples of this. The results of an exploratory analysis may have heuristic and 

suggestive value and may generate hypotheses which are capable of more objective testing by other 

multivariate methods. As more knowledge is gained about the nature of social and psychological 

measurements, however, exploratory factor analysis may not be a useful tool and may even become a 

hindrance. 

Most studies are to some extent both exploratory and confirmatory since they involve some variables of 

known and other variables of unknown composition. The former should e chosen with great care in order 

that as much information as possible about the latter may be extracted. It is highly desirable that a hypothesis 

which has been suggested by mainly exploratory procedures should subsequently be confirmed, or 

disproved, by obtaining new data and subjecting these to more rigorous statistical techniques. Although 

LISREL is most useful in confirmatory studies, it can also be used to do exploratory analysis by means of 

a sequence of confirmatory analyses. It must be emphasized, however, that one must at least have a tentative 

theory or hypothesis to start out with.  



The basic idea of factor analysis is the following. For a given set of response variables 1 2, , , qx x x  one 

wants to find a set of underlying latent factors 
1 2, , , n    , fewer in number than the observed variables. 

These latent factors are supposed to account for the intercorrelations of the response variables in the sense 

that when the factors are partialed out from the observed variables, there should no longer remain any 

correlations between these. This leads to the model (see Jöreskog, 1979a) 

 1 1 2 2 ,i i i in n ix       = + + + +   

where i , the unique part of ix , is assumed to be uncorrelated with  
1 2, , , n    and with 

j  for j i . 

The unique part i  consists of two components: a specific factor is  and a pure random measurement error 

ie . These are indistinguishable, unless the measurements ix  are designed in such a way that they can be 

separately identified (panel designs and multitrait-multimethod designs). The term i  is often called the 

measurement error in  ix  even though it is widely recognized that this term may also contain a specific 

factor as stated above. We shall continue this tradition and use this term in our documentation. 

In a confirmatory factor analysis, the investigator has such knowledge about the factorial mature of the 

variables that he/she is able to specify that each measure ix  depends only on a few of the factors 
j . If ix  

does not depend on 
j , 0ij = . In a path diagram, this means that there is no one-way arrow from 

j  to 

ix . In many applications, the latent factor 
j  represents a theoretical construct and the observed measures 

ix  are designed to be indicators of this construct. In this case there is only one non-zero 
ij  in each equation.  

We shall illustrate confirmatory factor analysis by means of a detailed example. In particular, this example 

illustrates the assessment of model fit and the use of the model modification index.     

Holzinger & Swineford (1930) collected data on twenty-six psychological tests administered tto 145 

seventh- and eighth-grade children in the Grant-White school in Chicago. Nine of these tests were selected 

and for this example it was hypothesized that these measure three common factors: visual perception (P), 

verbal ability (V) and speed (S), such that the first three variables measure P, the next three measures V, 

and the last three measures S. The nine selected variables and their intercorrelations are given in the table 

below, followed by a path diagram of the model.  

Broadly speaking, there are two basic problems that are important in the social and behavioral sciences. 

The first problem is concerned with the measurement properties – validities and reliabilities – of the 

measurement instruments. The second problem concerns the causal relationships among the variables and 

their relative explanatory power.  

Most theories and models in the social and behavioral sciences are formulated in terms of theoretical or 

hypothetical concepts, or constructs, or latent variables, which are not directly measurable or observable.  

  



Table: Correlations matrix for nine psychological variables 

VIS PERC 1.000         

CUBES 0.318 1.000        

LOZENGESL 0.436 0.419 1.000       

PAR COMP 0.335 0.234 0.323 1.000      

SEN COMP 0.304 0.157 0.283 0.722 1.000     

WORDMEAN 0.326 0.195 0.350 0.714 0.685 1.000    

ADDITION 0.116 0.057 0.056 0.203 0.246 0.170 1.000   

COUNTDOT 0.314 0.145 0.229 0.095 0.181 0.113 0.585 1.000  

S-C CAPS 0.489 0.239 0.361 0.309 0.345 0.280 0.408 0.512 1.000 

 

 

We want to examine the fit of the model implied by the stated hypothesis. If the model does not fit the data 

well, we want to suggest an alternative model that first the data better. 



The model is very similar to the measurement model for Ability and Aspiration described in the previous 

example. The only differences are that there are nine observed variables instead of six and that there are 

three factors instead of two. However, as will e seen, the example will illustrate how the initial model can 

be evaluated and modified when it is found not to fit the data sufficiently well. 

The SIMPLIS input (EX5A.SPL in the Simplis Examples folder) is almost a copy of the input file for 

EX4A.SPL: 

Nine Psychological Variables - A Confirmatory Factor Analysis 
Observed Variables 
   'VIS PERC' CUBES LOZENGES 'PAR COMP' 'SEN COMP' WORDMEAN 
    ADDITION COUNTDOT 'S-C CAPS'  
Correlation Matrix From File EX5.COR 
Sample Size 145 
Latent Variables: Visual Verbal Speed  
Relationships: 
   'VIS PERC' - LOZENGES = Visual 
   'PAR COMP' - WORDMEAN = Verbal 
    ADDITION - 'S-C CAPS' = Speed 
Number of Decimals = 3 
Wide Print 
Print Residuals 
Path Diagram 
End of Problem 
 

This time we specify the measurement model as relationships rather than as paths, as we did previously. 

The two new elements in this input file are: 

Number of Decimals = 3 
Wide Print 
 

The first of these specifies that we wish to have the results in the output file given to three decimals. Since 

most users can only interpret at most two decimals, LISREL uses two decimals by default. This example 

illustrated how this default value can be overridden. The second of these lines is used to specify output with 

132 characters per line. Otherwise, there will be 80 characters per line. 

Look at the output file obtained for this model. Apart from the estimated relationships and the factor 

correlation matrix, which all look reasonable, many goodness-of-fit statistics are given. For the moment we 

will only use the chi-square: 

Degrees of Freedom for (C1)-(C2)                      24 
Maximum Likelihood Ratio Chi-Square (C1)              52.991 (P = 0.0006) 

 

A chi-square of 52.991 with 24 degrees of freedom indicates that the model does not fit the data well. How 

should the model be modified to fit the data better? A very powerful tool for answering this question is the 

modification index. There is a modification index for each fixed parameter in the model, i.e., for every path 

that is missing in the path diagram. For each such path, the modification index is an estimate or predictor 



of the decrease in chi-square that will be obtained if that particular path is introduced in the model. LISREL 

lists all the large modification indices as follows: 

        The Modification Indices Suggest to Add the 
  Path to  from      Decrease in Chi-Square    New Estimate 
 ADDITION  Visual             10.5                -0.37 
 COUNTDOT  Verbal             10.1                -0.28 
 S-C CAPS  Visual             24.7                 0.57 
 S-C CAPS  Verbal             10.0                 0.26 
 
 The Modification Indices Suggest to Add an Error Covariance 
  Between    and     Decrease in Chi-Square    New Estimate 
 COUNTDOT  ADDITION           25.1                 0.62 
 S-C CAPS  VIS PERC            9.1                 0.18 
 S-C CAPS  COUNTDOT            8.3                -0.38 
 
The largest modification index is 24.7 for the path from Visual to S-C CAPS. This indicates that we can 

expect a large decrease in chi-square if we include this path in the model. Therefore, if we can interpret this 

path substantively (see below), we can modify the model by adding this path and running the modified 

model. It is also predicted that the new path will be 0.57. 

The fact that the model is misspecified can also be seen from the standardized residuals in the output file: 

        Standardized Residuals   
 
            VIS PERC      CUBES   LOZENGES   PAR COMP   SEN COMP   WORDMEAN   
ADDITION   COUNTDOT   S-C CAPS    
            --------   --------   --------   --------   --------   --------   ---
-----   --------   -------- 
 VIS PERC      0.000 
    CUBES     -0.312      0.000 
 LOZENGES     -0.266      0.772      0.000 
 PAR COMP      0.220     -0.097      0.009      0.000 
 SEN COMP      0.012     -0.878     -0.672      0.027      0.000 
 WORDMEAN      0.334     -0.412      1.158     -0.020     -0.004      0.000 
 ADDITION     -1.623     -1.586     -2.186      0.268      0.854     -0.040      
0.000 
 COUNTDOT      0.532     -0.802     -0.650     -1.525     -0.434     -1.108      
0.602      0.000 
 S-C CAPS      3.363      0.736      1.466      1.644      2.159      1.604     -
0.491     -0.595      0.000 
 

This shows a large standardized residual of 3.363 between VIS PERC and S-C CAPS, indicating that these 

two variables correlate more than the model accounts for. Although this shows where the lack of fit is, it 

does not tell how the model should be modified to fit the data better. From this point of view, modification 

indices are often more useful than standardized residuals for detecting specification errors in the model.  

To run the modified model, change the line (see file EX5B.SPL) 

   'VIS PERC' - LOZENGES = Visual 



to 

'VIS PERC' - LOZENGES 'S-C CAPS' = Visual 
 
The chi-square for the modified model is: 

Degrees of Freedom for (C1)-(C2)                      23 
 Maximum Likelihood Ratio Chi-Square (C1)              29.062 (P = 0.1783) 
 

This indicates that the fit of the modified model is acceptable. Note that the reduction in chi-square is 52.991 

- 29.062 = 23.929 which is roughly the same as what the modification index precited. Also note that the 

estimated loading of S-C CAPS on Visual is 0.46 which is a little smaller than the prediction. The -t-value 

is 5.16. Hence this loading is “significant”. Thus, S-C CAPS is not a pure measure of Speed, but rather a 

composite measure of both Visual and Speed.  

The substantive interpretation of the results of these analyses may be as follows. The first factor is “visual 

perception” as represented by the first three variables containing spatial problems with geometrical 

configurations. The third factor is a “speed” factor supposed to measure the ability to perform very simple 

tasks quickly and accurately. However, unlike the two measures “Addition” and “Counting dots”, which 

are purely numerical, variable nine “Straight-curved capitals” requires the ability to distinguish between 

capital letters which contain curved parts (like P) from those which contain only straight lines (like L), and 

to do this quickly and accurately. It is therefore conceivable that “straight-curved capitals” contains a 

component correlated with “visual perception” as represented in this data and also that it contains a 

component of “speed”. Thus, the variable “Straight-curved capitals” is a composite measure unlike all the 

other measures in this example, which are all pure measures.  

 

 

  


