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A censored variable has a large fraction of observations at the minimum or maximum. Because the
censored variable is not observed over its entire range ordinary estimates of the mean and variance
of a censored variable will be biased. Ordinary least squares (OLS) estimates of its regression
on a set of explanatory variables will also be biased. These estimates are not consistent, i.e., the
bias does not become smaller when the sample size increases. This note explains how maximum
likelihood estimates can be obtained using PRELIS 2.53. The maximum likelihood estimates are
consistent, i.e., the bias is small in large samples.

Examples of censored variables are

Econometrics The first example of censored regression appears to be that of Tobin (1958).
This is a study of the demand for capital goods such as automobiles or major household
appliances. Households are asked whether they purchased such a capital good in the last 12
months. Many households report zero expenditures. However, among those households that
made such an expenditure, there will be a wide variation in the amount of money spent.

Greene (2000) p. 205 lists several other examples of censored variables:

1. The number of extramarital affairs (Fair, 1978)

2. The number of hours worked by a woman in the labor force (Quester & Greene, 1982)

3. The number of arrests after release from prison (Witte, 1980)

4. Vacation expenditures (Melenberg & van Soest, 1996)

Biomedicine or Epidemiology Censored variables are common in biomedical, epidemiological,
survival and duration studies. For example, in a five year follow-up study, time to death
or time to recovery after surgery, medical treatment or diagnosis, are censored variables if,
after five years, many patients are still alive or not yet recovered.

Educational Testing If a test is too easy or too difficult there will be a large number of exam-
inees with all items or no items correctly answered.

In econometrics dependent censored variables are often called limited dependent variables and
censored regression is sometimes called the tobit model1.

1This model was first discussed by Tobin (1958). Goldberger (1964, p. 253) gave it this nickname (Tobin’s
probit) in analogy with the probit model.
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1 Censored Normal Variables

A censored variable can be defined as follows. Let y� be normally distributed with mean µ and
variance σ2. An observed variable y is censored below if

y = c if y� ≤ c
= y� otherwise ,

where c is a given constant. This is illustrated in Figure 1.
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c

Figure 1: Normal Variable y� and Censored Variable y

Let φ and Φ be the density and distribution functions of the standard normal distribution. The
density function of y is

f(y) =

[
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σ

)]j [ 1√
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σ
)2
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, (1)

where j = 1 if y = c and j = 0, otherwise. This may be regarded as a mixture of a binary and a
normal variable.

The mean and variance of y are (see, e.g., Greene, 2000, p. 907)

E(y) = πc+ (1− π)(µ+ λσ) , (2)

V ar(y) = (1− π)[(1− δ) + (α− λ)2π]σ2 , (3)

where

α =
c− µ
σ

, (4)

π = Φ(α) , (5)

λ =
φ(α)

1− Φ(α) , (6)

δ = λ2 − λα . (7)

A consequence of (2) and (3) is that the sample mean and variance of y are not consistent
estimates of µ and σ2. The bias of the mean E(y)− µ as a function of c is shown in Figure 2 for
µ = 0 and σ = 1.
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E(y)− µ

c

Figure 2: Bias E(y)− µ as a function of c

An observed variable y is censored above if

y = c if y� ≥ c
= y� otherwise ,

A variable can be censored both below and above. In all three cases, the mean µ and variance
σ2 can be estimated by maximum likelihood as described in the Appendix.

2 Censored Normal Regression

Consider estimating the regression equation

y� = α+ γ′x+ z , (8)

where α is an intercept term and γ is a vector of regression coefficients on the explanatory variables
x. The error term z is assumed to be normally distributed with mean 0 and variance ψ2. If y�

is observed as y throughout its entire range, the estimation of (8) is straightforward. However, if
the observed variable y is censored below or above, then ordinary least squares (OLS) estimates
of y on x are biased. However, α and γ can be estimated by maximum likelihood as described in
the Appendix and these maximum likelihood estimates are unbiased in large samples.

3 PRELIS Implementation

The features described here have been implemented in PRELIS 2.53, released with LISREL 8.53 in
December 2002.

I illustrate the case of 3 censored variables and 4 explanatory variables. Let Y1 Y2 Y3 be the
names of the censored variables and let X1 X2 X3 X4 be the names of the regressors.

Censored regression of y1 on x1, x2, x3, x4 is obtained by the PRELIS command

CR Y1 on X1 X2 X3 X4
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One can select any subset of y-variables and any subset of x-variables to be included in the
equation. Thus, one can obtain the regression for all the censored variables simultaneously. For
example, the command

CR Y1 Y2 Y3 on X1 X2 X3 X4

will estimate three regression equations, namely the regression equation of each yi on all xj . Note
the word on (or ON) separating the censored variables from the regressors.

One can have several CR commands in the same input file. For example,

CR Y1 on X1

CR Y1 on X1 X2

CR Y1 on X1 X2 X3

CR Y1 on X1 X2 X3 X4

will introduce one regressor at a time in the order x1, x2, x3, x4.

General rules:

• All y and x-variables appearing on CR lines must be declared continuous before the first CR
command, or else they must have at least 16 different values.

• A censored regression equation can only be estimated from raw data. If there are missing
values in the data, the estimation will be based on all cases without missing values on the
variables included in the regression equation. Thus, the number of cases used depends on
the variables included in the equation. Alternatively, one can impute missing values by
multiple imputation2 before estimating the regression equation.

• If several regression equations are estimated, the regression residuals in each equation are
assumed to be uncorrelated.

4 Examples

I give four examples of censored regression. The starting point for each of these is a PRELIS
system file (PSF file), see du Toit & du Toit (2001, pp. 384—385). You can create a PSF file from
data in other formats such as Excel, SPSS and SAS. If the data is in text (ASCII) format it can
be read into the PSF file directly from the Windows interface, or alternatively the PSF file can
be created by running a simple PRELIS command file of the form

da ni=number-of-variables

la

labels-of-variables

ra=filename !filename for the data in text (ASCII) form

ou ra=filename.PSF

If the data requires a variable format statement, include the format as the first line(s) in the
ASCII data file.

2See Du Toit & Du Toit, (2001, pp. 165—170). Note that this assumes multivariate normality and missingness
at random.
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4.1 Examples 1 and 2

I begin with two small examples based on generated data. Both of them consists of two variables
y and x and a sample of 10000 observations. In the first example, y is censored below and in the
second example y is censored both below and above. The data are in files cr1.psf and cr2.psf,
respectively. Both of these were generated from the true regression line E(y� | x) = 5+ x. In the
first example y was censored below at 3 and in the second example y was censored above at 6, in
addition.

To estimate the censored regression of y on x for the first example, use the following PRELIS
command file (cr1.pr2).

sy=ex1.psf

cr Y on X

ou

The output file reveals the following.

Total Sample Size = 10000

Univariate Summary Statistics for Continuous Variables

Variable Mean St. Dev. T-Value Skewness Kurtosis Minimum Freq. Maximum Freq.

-------- ---- -------- ------- -------- -------- ------- ----- ------- -----

Y 5.654 2.689 210.237 0.745 -0.439 3.000 3041 16.372 1

X -0.008 2.913 -0.278 -0.010 -1.222 -4.999 1 4.999 1

Test of Univariate Normality for Continuous Variables

Skewness Kurtosis Skewness and Kurtosis

Variable Z-Score P-Value Z-Score P-Value Chi-Square P-Value

Y 27.295 0.000 -8.957 0.000 825.252 0.000

X -0.402 0.687 -24.942 0.000 622.268 0.000

Variable Y is censored below.

It has 3041 (30.41%) values = 3.000

Estimated Mean and Standard Deviation based on 10000 complete cases.

Mean = 4.963( 0.039)

Standard Deviation = 3.609( 0.033)

The table Univariate Summary Statistics for Continuous Variables shows that the
smallest value of y in the sample is 3.000 and this occurs 3041 times. A consequence of this
is that y is highly non-normal. This table also gives the mean and standard deviation of y as
5.654 and 2.689, respectively. These are wrong values. Taking censoring into account gives the
maximum likelihood estimates of the mean and standard deviation of y as 4.963 and 3.609, re-
spectively. If we take the standard error estimates of these estimates into account, it is clear
that the ordinary mean and standard deviations are far outside of the 95% confidence interval.
This demonstrates that the ordinary mean and standard deviation can be considerably biased if
a variable is highly censored.
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The estimated regression equation is given in the output as

Estimated Censored Regression based on 10000 complete cases.

Y = 5.022 + 0.995*X + Error, R2 = 0.542

(0.0227) (0.00828)

221.344 120.238

Error Variance = 3.889

This can be compared with the OLS regression obtained by replacing CR by RG in cr1.pr2. The
estimated OLS regression is

Y = 5.659 + 0.737*X + Error, R2 = 0.637

(0.0162) (0.00556)

349.494 132.576

Error Variance = 2.622

Hence, it is clear that the OLS estimates of the intercept, the regression coefficient, and the error
variance are highly biased.

Note that PRELIS automatically determines

• The sample size.
• The smallest value of y and the degree of censoring.
• The maximum likelihood estimates of the mean µ and standard deviation σ of y and their
asymptotic standard error estimates.

• The maximum likelihood estimates of the intercept α, the regression coefficient γ and the
error standard deviation ψ with their asymptotic standard error estimates and t-values.

For example 2 run the PRELIS command file cr2.pr2. This is the same as cr1.pr2 but with
the name of the data file changed to cr2.psf. The output shows

Variable Y is censored below and above.

It has 3041 (30.41%) values = 3.000 and 4037 (40.37%) values = 6.000

Estimated Mean and Standard Deviation based on 10000 complete cases.

Mean = 5.026( 0.045)

Standard Deviation = 3.972( 0.065)

Estimated Censored Regression based on 10000 complete cases.

Y = 5.016 + 0.987*X + Error, R2 = 0.231

(0.0257) (0.0143)

195.361 68.979

Error Variance = 3.770
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The y-variable is censored both below and above. 30.41% of the observations are censored below
and 40.37% are censored above. Thus there are only 29.22% uncensored observations. A conse-
quence of this is that ordinary estimates of the mean and standard deviation of y are even more
biased than in the previous example. Similarly, one can demonstrate that the OLS estimates are
also more severely biased than in the previous example.

4.2 Example 3: Affairs

Fair (1978) published an example of censored regression. His study concerns the number of extra-
marital affairs and its determinants. From a large data set, the results of which were published in
the July 1970 issue of Psychology Today, Fair extracted 601 observations on men and women who
were then currently married for the first time. His data set consisting of 15 variables is available
on the Internet at http://fairmodel.econ.yale.edu/rayfair/workss.htm. For present purposes the
following nine variables are used.

GENDER 0 = female, 1 = male
AGE in years
YEARS number of years married3

CHILDREN 0 = no, 1 = yes
RELIGIOUS 1 = anti, . . ., 5 = very religious
EDUCATION number of years of schooling, 9 = grade school, 12 = high school, 20 = PhD
OCCUPATION Hollingshead scale of 1 to 7
HAPPINESS self rating of quality of marriage, 1 = very unhappy, . . ., 5 = very happy
AFFAIRS number of affairs in the past year, 1, 2, 3, 4—10 coded as 7, monthly, weekly,

and daily coded as 12

I have selected these nine variables from the data set on the Internet. A text (ASCII) file is given
in affairs.dat and the corresponding PSF file is given in affairs1.psf. Some of these variables
are ordinal. For the purpose of data screening they are all declared ordinal in affairs1.psf. A
data screening is obtained by running the following simple PRELIS command file (affairs0.pr2).

!Data Screening of Affairs Data

sy=affairs1.psf

ou

The data screening reveals interesting characteristics of the distribution of the variables.

AGE Frequency Percentage YEARS Frequency Percentage

17.5 6 1.0 0.1 11 1.8

22 117 19.5 0.4 10 1.7

27 153 25.5 0.8 31 5.2

32 115 19.1 1.5 88 14.6

37 88 14.6 4 105 17.5

42 56 9.3 7 82 13.6

47 23 3.8 10 70 11.6

52 21 3.5 15 204 33.9

57 22 3.7

3I don’t know how this was coded. In addition to integer values, there are values 0.12, 0.42, 0.75, and 1.50 on
this variable.
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GENDER Frequency Percentage OCCUPATI Frequency Percentage

0 315 52.4 1 113 18.8

1 286 47.6 2 13 2.2

3 47 7.8

CHILDREN Frequency Percentage 4 68 11.3

0 171 28.5 5 204 33.9

1 430 71.5 6 143 23.8

7 13 2.2

RELIGIOU Frequency Percentage

1 48 8.0 HAPPINES Frequency Percentage

2 164 27.3 1 16 2.7

3 129 21.5 2 66 11.0

4 190 31.6 3 93 15.5

5 70 11.6 4 194 32.3

5 232 38.6

EDUCATIO Frequency Percentage

9 7 1.2 AFFAIRS Frequency Percentage

12 44 7.3 0 451 75.0

14 154 25.6 1 34 5.7

16 115 19.1 2 17 2.8

17 89 14.8 3 19 3.2

18 112 18.6 7 42 7.0

20 80 13.3 12 38 6.3

It is seen that 75% of the respondents report having no extramarital affairs. Thus, the dependent
variable is highly censored at 0. It is also seen that 38 persons (6.3%) report having extramarital
affairs monthly, weekly, or daily (code 12). To estimate censored regression equations, all variables
in the equation must be continuous. This can be specified by including the line

co all

in the PRELIS command file. Furthermore, I have changed one value on AFFAIRS from 12.000
to 12.001, since I want to treat AFFAIRS as censored below4. Otherwise, PRELIS will treat
AFFAIRS as censored both below and above. This change of a single data value has no other
effects whatsoever. The data file with this change is given in affairs2.psf in which all variables
are declared continuous.

One can use long names of variables but PRELIS truncates all variable names to 8 characters.
To estimate the censored regression of AFFAIRS using all the other variables as explanatory
variables, use the following PRELIS command file (affairs1.pr2).

Censored Regression of Affairs

sy=affairs2.psf

cr AFFAIRS on GENDER - HAPPINESS

ou

The output reveals the following.

4I do this primarily because this is the way the AFFAIRS variable has been treated earlier, see Fair (1978) and
Greene (2000). In Table 1 I report the results for the case when AFFAIRS is treated as censored both below and
above.
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Total Sample Size = 601

Univariate Summary Statistics for Continuous Variables

Variable Mean St. Dev. T-Value Skewness Kurtosis Minimum Freq. Maximum Freq.

-------- ---- -------- ------- -------- -------- ------- ----- ------- -----

GENDER 0.476 0.500 23.340 0.097 -1.997 0.000 315 1.000 286

AGE 32.488 9.289 85.742 0.889 0.232 17.500 6 57.000 22

YEARS 8.178 5.571 35.984 0.078 -1.571 0.125 11 15.000 204

CHILDREN 0.715 0.452 38.843 -0.958 -1.087 0.000 171 1.000 430

RELIGIOU 3.116 1.168 65.440 -0.089 -1.008 1.000 48 5.000 70

EDUCATIO 16.166 2.403 164.959 -0.250 -0.302 9.000 7 20.000 80

OCCUPATI 4.195 1.819 56.519 -0.741 -0.776 1.000 113 7.000 13

HAPPINES 3.932 1.103 87.374 -0.836 -0.204 1.000 16 5.000 232

AFFAIRS 1.456 3.299 10.820 2.347 4.257 0.000 451 12.001 1

Variable AFFAIRS is censored below.

It has 451 (75.04%) values = 0.000

Estimated Mean and Standard Deviation based on 601 complete cases.

Mean = -6.269( 0.774)

Standard Deviation = 9.420( 0.644)

Estimated Censored Regression based on 601 complete cases.

AFFAIRS = 7.609 + 0.946*GENDER - 0.193*AGE + 0.533*YEARS + 1.019*CHILDREN

(3.936) (1.071) (0.0816) (0.148) (1.289)

1.933 0.883 -2.362 3.610 0.791

- 1.699*RELIGIOU + 0.0254*EDUCATIO + 0.213*OCCUPATI

(0.409) (0.229) (0.324)

-4.159 0.111 0.658

- 2.273*HAPPINES + Error, R2 = 0.0203

(0.419)

-5.431

Error Variance = 69.239

As judged by the t-values, the effects of GENDER, CHILDREN, EDUCATION, and OCCUPA-
TION are not statistically significant. The number of extramarital affairs seem to increase with
number of years of marriage, and decrease when age, religiousness, and happiness increase.

To illustrate the concept of a fit file, I consider entering one variable at a time in the regression
equation. The order of variables corresponds to the size of the t-values in the previous run. The
PRELIS command file is (affairs2.pr2)

Sequential Censored Regression of Affairs

sy=affairs2.psf

cr AFFAIRS on HAPPINESS

cr AFFAIRS on HAPPINESS RELIGIOUS

cr AFFAIRS on HAPPINESS RELIGIOUS YEARS

cr AFFAIRS on HAPPINESS RELIGIOUS YEARS AGE
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cr AFFAIRS on HAPPINESS RELIGIOUS YEARS AGE GENDER

cr AFFAIRS on HAPPINESS RELIGIOUS YEARS AGE GENDER CHILDREN

cr AFFAIRS on HAPPINESS RELIGIOUS YEARS AGE GENDER CHILDREN OCCUPATION

cr AFFAIRS on HAPPINESS RELIGIOUS YEARS AGE GENDER CHILDREN OCCUPATION EDUCATION

ou xu

The xu on the ou line tells PRELIS to skip the results of univariate data screening in the output.
For each regression equation estimated, PRELIS produces a fit file with the same name as the
PRELIS command file but with suffix FIT. In this case, the fit file affairs2.fit is:

Variable -2lnL Chi-square df Covariates

-------- ---------- ---------- -- ----------

AFFAIRS 1168.622 45.172 1 HAPPINES

AFFAIRS 1156.071 57.723 2 HAPPINES RELIGIOU

AFFAIRS 1141.496 72.298 3 HAPPINES RELIGIOU YEARS

AFFAIRS 1137.129 76.665 4 HAPPINES RELIGIOU YEARS AGE

AFFAIRS 1134.924 78.870 5 HAPPINES RELIGIOU YEARS AGE GENDER

AFFAIRS 1134.426 79.368 6 HAPPINES .....................CHILDREN

AFFAIRS 1133.793 80.000 7 HAPPINES ........................ OCCUPATI

AFFAIRS 1133.781 80.013 8 HAPPINES ............................ EDUCATIO

The first column gives the name of the dependent variable. The second column gives the
minimum value of the deviance −2 lnL. This value decreases as one adds explanatory variables in
the regression equation. The third column gives a chi-square value for testing the hypothesis that
all regression coefficients are zero. Thus, this chi-square is a test of the hypothesis that none of
the covariates has any effect. The fourth column gives the degrees of freedom of this chi-square.
This equals the number of explanatory variables. The remaining columns gives the names of the
explanatory variables included in the equation.

The first line indicates that the effect of HAPPINESS is statistically significant. The second
line shows that chi-square increases considerably when RELIGIOUS is added into the equation.
The chi-square difference 57.723 — 45.172 = 12.551 is a chi-square with 1 degree of freedom for
testing the hypothesis the regression coefficient of RELIGIOUS is zero when HAPPINESS is
included in the equation. This hypothesis is rejected. Thus, both variables must be included.
Note that this chi-square difference is the same as the difference between the two deviances in
reverse order, i.e., 1168.622 — 1156.071 = 12.551. In a similar way, one concludes that the effect
of YEARS is also statistically significant when this variable is added into the equation that
already includes HAPPINESS and RELIGIOUS, the chi-square difference being 72.298 — 57.723
= 14.575. By further adding AGE into the equation, the chi-square difference is 4.367 which is
statistically significant at the 5% level but not at the 1% level. Adding more variables into the
equation does not improve the fit significantly. For example, if all eight variables are included
one obtains a chi-square of 80.013 which can be compared with 76.665 obtained if only the first
four variables are included. The chi-square difference 3.348 with 4 degrees of freedom is far
from statistically significant. The conclusion is that the equation which includes HAPPINESS,
RELIGIOUS, YEARS, and AGE is the best equation for predicting AFFAIRS. The estimated
regression coefficients for this equation, with their standard error estimates in parentheses, are
given in column 2 of Table 1.

In this analysis, the AFFAIRS variable is treated as continuous. This means that the values 0,
1, 2, 3, 7, and 12 that this variable takes are assumed to be numbers on an interval scale. One
could also treat AFFAIRS as censored both below and above, see file affairs3.pr2. Another way
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is to treat AFFAIRS as an ordinal variable with six categories5 or as a binary variable where 0
is used in one category and all values larger than 0 are used in the other category. One can then
use logistic or probit regression. To do so with PRELIS, use affairs1.psf, include the lines

or AFFAIRS

co GENDER - HAPPINESS

and replace cr (censored regression) by lr (logistic regression) or pr (probit regression). To use
AFFAIRS as a binary variable, include the line

re AFFAIRS old=1-12 new=1

see files affairs4.pr2 - affairs7.pr2. The results obtained from these files are not directly com-
parable because the variable y� is scaled differently for different methods. However, they can be
made comparable by multiplying the regression coefficients and their standard error estimates by
a suitable scale factor. The probit regressions (columns 4 and 6 in Table 1) are scaled such that
the error variance is 1 (standard parameterization, see Jöreskog, 2002). Using this as a standard,
we must scale the other solutions by 1/ψ̂. If AFFAIRS is treated as censored below (column 2 in
Table 1), this scale factor is 1/

√
69.031 = 0.12036, see file affairs2.out. If AFFAIRS is treated

as censored below and above (column 3 in Table 1), this scale factor is 1/
√
123.39 = 0.09002,

see file affairs3.out. For the logistic regressions (columns 5 and 7 in Table 1) the scale factor is√
3/π = 0.55133, because the variance of the standard logistic distribution is π2/3. The t-values

are not affected by this scaling. After this scaling the results are shown in Table 1.

Table 1: Estimated Regression Coefficients with Different Methods

Censored Ordinal Binary
Variable Below &Above Probit Logit Probit Logit

HAPPINESS -.273(.049) -.281(.052) -.284(.049) -.278(.047) -.270(.052) -.254(.049)
RELIGIOUS -.207(.049) -.208(.051) -.209(.049) -.200(.048) -.187(.052) -.181(.049)
YEARS .065(.016) .067(.017) .067(.016) .067(.016) .058(.017) .056(.016)
AGE -.019(.009) -.020(.010) -.021(.010) -.023(.009) -.020(.010) -.019(.010)

It is seen that all methods give similar results. For most practical purposes these results are
the same. The binary methods does not make use of all information in the AFFAIRS variable.
Nevertheless, the results are very close to the other methods which make use of all available
information. Which of these methods should be used to estimate the model? The question arises
because of the nature of the dependent variable. This is not fully continuous (as if it were an
amount of money spent). Neither is it fully ordinal as if the responses were classified as never,
sometimes, and often. It is somewhere in between. Censored regression is a method for continuous
variables and probit and logit regressions are methods for ordinal variables.

4.3 Example 4: Reading and Spelling Tests

The file readspel.psf contains scores on 11 reading and spelling tests for 90 school children used
in a study of the meta-phonological character of the Swedish language. It is of particular interest

5It may be better to use the exact counts (number of extramarital affairs) and treat this as a Poisson variable,
but such data is not available to me.
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to predict one of these tests, V23, using the other 10 variables as predictors and to determine
which of these variables are the best predictors. However, a data screening of readspel.psf
reveals that V23 may be censored both below and above. Hence, we must use censored regression
to estimate the prediction equation. The PRELIS command file is (readspel1.pr2)

Eleven Reading and Spelling Tests

sy=READSPEL.PSF

co all

cr V23 on V01 - V22 V24 V25

ou

The output shows

Variable V23 is censored below and above.

It has 3 ( 3.33%) values = 3.000 and 21 (23.33%) values = 16.000

Estimated Mean and Standard Deviation based on 90 complete cases.

Mean = 13.142( 0.483)

Standard Deviation = 4.397( 0.412)

Estimated Censored Regression based on 90 complete cases.

V23 = - 1.724 - 0.0731*V01 + 0.122*V02 + 0.384*V07 - 0.129*V08

(2.414) (0.0815) (0.0900) (0.262) (0.213)

-0.714 -0.897 1.359 1.463 -0.605

+ 0.0954*V09 + 0.117*V10 + 0.208*V21 + 0.0679*V22 + 0.0276*V24

(0.0688) (0.0838) (0.177) (0.149) (0.163)

1.388 1.403 1.178 0.456 0.170

+ 0.208*V25 + Error, R2 = 0.374

(0.158)

1.319

Error Variance = 9.848

None of the predictors are statistically significant. However, in terms of the t-values, the most
important predictors seem to be V02, V07, V09, and V10. Using only these as predictors (see file
readspel2.pr2) gives the following prediction equation.

V23 = 1.652 + 0.210*V02 + 0.283*V07 + 0.0775*V09 + 0.169*V10

(1.843) (0.0663) (0.151) (0.0656) (0.0801)

0.896 3.170 1.877 1.181 2.114

+ Error, R2 = 0.328

Error Variance = 10.392

Here it is seen that the effects V02 and V10 are statistically significant.

Appendix: Computational Notes

The estimation of a censored regression equation is described in Chapter 6 of Maddala (1983) for
the case of a variable that is censored below at 0. The development outlined here covers the cases
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when the observed variable y is censored below, censored above, censored both below and above,
and not censored at all. It also covers the case when there are no regressors in which case one
can estimate the mean and standard deviation of y.

Changing notation slightly from Section 2, consider the estimation of the regression equation

y� = α� + γ�′x+ z , (9)

where α� is the intercept term, γ� is the vector of regression coefficients, and x the regressors.
The error term z is assumed to be normally distributed with mean 0 and variance ψ�2. If there
are no regressors, the second term in (9) is not included.

The observed variable

y = c1 if y
� ≤ c1

= y� if c1 < y
� < c2

= c2 if y
� ≥ c2 ,

where c1 and c2 are constants. If y is censored below set c2 = +∞. If y is censored above set
c1 = −∞. If y is not censored set both c1 = −∞ and c2 =∞.
Let (yi,xi) be the observed values of y and x of case i in a random sample of N independent

observations. The likelihood of (yi,xi) is

Li =

[
Φ(
c1 − α� − γ�′xi

ψ�
)

]j1i [ 1√
2πψ�

e−
1

2
(
yi−α

�
−γ�′xi
ψ�

)2
]1−j1i−j2i [

1− Φ(c2 − α
� − γ�′xi
ψ�

)

]j2i
,

where ji1 = 1 if y = c1 and ji1 = 0 otherwise and ji2 = 1 if y = c2 and ji2 = 0 otherwise. Note
that ji1 and ji2 cannot be 1 simultaneously.

The log likelihood is

lnL =
N∑
i=1

lnLi .

This is to be maximized with respect to the parameter vector θ�′ = (α�,γ�′, ψ�).

First and second derivatives of lnL with respect to θ� are very complicated. They will be
considerably simplified and the maximization of lnL will be considerably more efficient if another
parameterization due to Tobin (1958) is used.

This parameterization uses the parameter vector θ′ = (α,γ′, ψ) instead of θ�, where α = α�/ψ�,
γ = γ�/ψ�, and ψ = 1/ψ�.

Multiplication of (9) by ψ = 1/ψ� gives

ψy� = α+ γ′x+ v , (10)

where v = ψz = z/ψ� which is N(0, 1). Then

y = c1 ↔ y� ≤ c1 ↔ ψy� ≤ ψc1 ↔ v ≤ ψc1 − α− γ′x ,
y = c2 ↔ y� ≥ c2 ↔ ψy� ≥ ψc2 ↔ v ≥ ψc2 − α− γ′x .

Hence the likelihood Li becomes

Li =
[
Φ(ψc1 − α− γ′xi)

]j1i [ 1√
2π
ψe−

1

2
(ψyi−α−γ ′xi)2

]1−j1i−j2i [
1− Φ(ψc2 − α− γ′xi)

]j2i .
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Let
δi = ψyi − α− γ′xi . (11)

Then lnLi becomes

lnLi = − ln
√
2π + (1− j1i − j2i)(lnψ − 1

2
δ2i ) + j1i lnΦ(δi) + j2i ln[1− Φ(δi)] . (12)

First and second derivatives of lnLi are straightforward by noting that ∂δi/∂α = −1, ∂δi/∂γ =
−xi, and ∂δi/∂ψ = yi. Furthermore, Φ′(t) = φ(t), φ′(t) = −tφ(t) and if A(t) = φ(t)/Φ(t), then
A′(t) = −A(t)[t+A(t)] = B(t), say.
Omitting index i, the required derivatives are

∂ lnL/∂α = (1− j1 − j2)δ − j1A(δ) + j2A(−δ)
∂ lnL/∂γ = (1− j1 − j2)δ x− j1A(δ)x+ j2A(−δ)x

∂ lnL/∂ψ = (1− j1 − j2)(1/ψ − δy) + j1A(δ)y − j2A(−δ)y
∂2 lnL/∂α∂α = −(1− j1 − j2) + j1B(δ) + j2B(−δ)

∂2 lnL/∂γ∂α = −(1− j1 − j2)x+ j1B(δ)x+ j2B(−δ)x
∂2 lnL/∂γ∂γ′ = −(1− j1 − j2)xx′ + j1B(δ)xx′ + j2B(−δ)xx′

∂2 lnL/∂ψ∂α = (1− j1 − j2)y − j1B(δ)y − j2B(−δ)y
∂2 lnL/∂ψ∂γ′ = (1− j1 − j2)yx′ − j1B(δ)yx′ − j2B(−δ)yx′

∂2 lnL/∂ψ∂ψ = −(1− j1 − j2)(1/ψ2 + y2) + j1B(δ)y2 + j2B(−δ)y2

Maximizing lnL is equivalent to minimizing the fit function F (θ) = − lnL. Let g(θ) = ∂F/∂θ
be the gradient vector and H(θ) = ∂2F/∂θ∂θ′ be the Hessian matrix. Amemiya (1973) proved
that H is positive definite everywhere.

The fit function F (θ) is minimized using a Newton-Raphson procedure which converges very
fast. The starting values θ0 are the parameters estimated by OLS. Successive estimates are
obtained by the formula

θs+1 = θs −H−1
s gs , (13)

where gs = g(θs) and Hs = H(θs).

Let θ̂ = (α̂, γ̂, ψ̂) be the maximum likelihood estimates of θ. The asymptotic covariance matrix
of θ̂ is E = H−1(θ) evaluated at the true parameter θ. Since the transformation from θ to θ�

is one-to-one, the maximum likelihood estimates of θ� is θ̂
�
= (α̂�, γ̂�, ψ̂�), where α̂� = α̂/ψ̂,

γ̂� = γ/ψ̂, and ψ̂� = 1/ψ̂.

To obtain the asymptotic covariance matrix of θ̂
�
, we evaluate the matrix ∂θ�/∂θ′. This is

∂θ�/∂θ′ = (1/ψ2)

 ψ 0′ −α
0 ψ1 γ

0 0′ −1

 = A(θ), say , (14)

where 0 and 1 are column vectors of zeros and ones, respectively. The asymptotic covariance
matrix of θ̂

�
is AEA′, where A and E are evaluated at the true parameter values. An estimate

of the asymptotic covariance matrix of θ̂
�
is AEA′ obtained by using the estimated parameter

values in A and E. Asymptotic standard error estimates of the parameter estimates are obtained
as the square roots of the diagonal elements of this matrix.
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