Full Information Maximum Likelihood (FIML) for Continuous Variables

Suppose that $\mathbf{y} = (y_1, y_2, \dots, y_p)'$ has a multivariate normal distribution with mean $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{\Sigma}$ and that $\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n$ is a random sample of the vector \mathbf{y} .

Specific elements of the vectors \mathbf{y}_k , k = 1, 2, ..., n may be unobserved so that the data set comprising of *n* rows (the different cases) and *p* columns (variables 1, 2, ..., *p*) have missing values.

Let \mathbf{y}_k denote a vector with incomplete observations, then this vector can be replaced by $\mathbf{y}_k^* = \mathbf{X}_k \mathbf{y}_k$ where \mathbf{X}_k is a selection matrix, and \mathbf{y}_k has typical elements $(y_{k1}, y_{k2}, \dots, y_{kp})$ with one or more of the y_{kj} s missing, $j = 1, 2, \dots, p$.

Example:

Suppose p = 3, and that variable 2 is unobserved, then

$$\mathbf{y}_{k}^{*} = \begin{bmatrix} y_{k1} \\ y_{k3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} y_{k1} \\ y_{k2} \\ y_{k3} \end{bmatrix}.$$

From the above example it can easily be seen that \mathbf{X}_k is based on an identity matrix with rows deleted according to missing elements of \mathbf{y}_k .

If an observed vector \mathbf{y}_k contains no unobserved values, then \mathbf{X}_k is equal to the identity matrix and hence $\mathbf{y}_k^* = \mathbf{y}_k$.

Without loss in generality, $(\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_n)$ can be replaced with $(\mathbf{y}_1^*, \mathbf{y}_2^*, \dots, \mathbf{y}_n^*)$ where \mathbf{y}_k^* , $k = 1, 2, \dots, n$ has a normal distribution with mean $\mathbf{X}_k \mathbf{\mu}$ and covariance matrix $\mathbf{X}_k \Sigma \mathbf{X}_k^{'}$. The log-likelihood for the non-missing data is $\sum_{k=1}^n \log f(\mathbf{y}_k^*, \mathbf{\mu}_k, \mathbf{\Sigma}_k)$, where $f(\mathbf{y}_k^*, \mathbf{\mu}_k, \mathbf{\Sigma}_k)$ is the pdf of $\mathbf{X}_k \mathbf{y}_k$ given the parameters $\mathbf{\mu}_k = \mathbf{X}_k \mathbf{\mu}$ and $\mathbf{\Sigma}_k = \mathbf{X}_k \Sigma \mathbf{X}_k^{'}$. In practice, when data are missing at random, there are usually M patterns of missingness, where M < n. When this is the case, the computational burden of evaluating n likelihood functions is considerably decreased.

It is customary to define the chi-square statistic as $\chi^2 = F_0 - F_1$, where $F_0 = -2 \ln L_0$, $F_1 = -2 \ln L_1$, and where $\ln L_1$ denotes the log-likelihood (at convergence) when no restrictions are imposed on the parameters (μ and Σ). The quantity $\ln L_0$ denotes the log-likelihood value (at convergence) when parameters are restricted according to a postulated model. The degrees of freedom equals ν , where $\nu = p + p(p+1)/2 - k$ and k is the number of parameters in the model.