
 
 
 
 

GLIMs for count data using substance abuse data 
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1. Introduction 

Variables measured in scientific studies come in a wide assortment. When statisticians refer to a "count" 

variable, they mean a variable that is ordinal, typically scored 0, 1, 2, …, without fractional values such as 2.4 

or 6.75. They also mean that the variable is a tally that records how often some behavior occurred, or of how 

many incidents of a particular kind were observed in each subject of a study. 

 

In many situations, count variables are skewed. The percentage of subjects with a score of zero or 1 is very 

large, those with a score of 4 or 5 or 6 considerably less common, and those with a score of 11 or 12 rare. For 

example, the number of delinquent acts committed by a teenager is a count variable. It is zero for the great 

majority. A young person who commits 1 or 2 or 3 delinquent acts is relatively rare compared to those who 

have no offenses. The frequencies of 1 or 2 or 3 decrease rapidly compared to those with no offenses. Juveniles 

who commit as many as 9 or 10 delinquent acts are very rare. As another example, the number of visits that a 

person makes to his or her primary care physician in a year is a count. The great majority visit the doctor not at 

all or once or twice in a year. Some may seek help 5, 6, or 7 times. A very few chronically ill may visit on as 

many as 15 occasions. 

 

Count variables are often analyzed in exactly the same way that a continuous variable is handled, most often 

with a method that incorrectly assumes the count is a bell-shaped normal distribution. But counts are ordinal 

variables, usually skewed with a small range. They have none of the characteristics of a continuous variable. 

While in many instances there are few practical problems treating them as if they were continuous variables, it 

is easy to find examples where an inappropriate analysis of a count variable loses important information that a 

better approach would convey. GLIMs for counts are a special kind of model that is designed to represent the 

unique features of count variables in a statistically optimal way. 



 

GLIMs for counts usually assume a Poisson distribution for the response variable. In this section, we illustrate 

the use of the SurveyGLIM module of LISREL by using some practical examples based on health-related count 

data. More specifically, a Poisson-log and a Negative Binomial-log model are fitted to substance abuse data. A 

description of the data follows. 

 

2. The data 

The data set forms part of the data library of the Alcohol and Drug Services Study (ADSS). The ADSS is a 

national study of substance abuse treatment facilities and clients. Background data and data on the substance 

abuse of a sample of 1752 clients were obtained. The sample was stratified by census region and within each 

stratum a sample was obtained for each of three facility treatment types within each of the four census regions. 

The specific data set is provided in the Generealized Linear Modeling examples folder as the LSF cntdiag.lsf. 

The first portion of this file is shown in the following LSF window. 

 

 
 

A brief description of the variables to be used in the subsequent GLIM analyses follows. 

 

o CENREG is the census region of the client (1 for Northeast, 2 for Midwest, 3 for South and 4 for West). 

o FACTYPE is the facility treatment type of the client (1 for residential treatment, 2 for outpatient 

methadone treatment, 3 for outpatient non-methadone treatment and 4 for more than one type of 

treatment). 

o A2TWA0 is the design weight of the client. 

o cntdiag is the number of abuse diagnoses of the client (0, 1, 2 or 3). 

o sex is the value of a dummy variable for the gender (0 for male and 1 for female) of the client. 

o race_d is the value of a dummy variable for the race (0 for nonwhite and 1 for white) of the client. 

 

More information on the ADSS and the data are available at http://www.icpsr.umich.edu. 

 

3. The models 

The sampling distributions 

 

The sampling distribution of the Poisson-log GLIM is the Poisson distribution whose probability density function 

is given by 

 

http://www.icpsr.umich.edu/cgi/archive.prl?study=3088&path=SAMHDA&regex=&dslist=&email=&agree=yes&I+Agree=I+Agree
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where ky  denotes the response variable y  for respondent k  and k  denotes the mean of ky . The Poisson 

sampling distribution has the unique feature that its variance is equal to its mean. A common empirical finding 

in fitting a Poisson variable is that the actual variance is somewhat larger or smaller than the mean value. The 

data are said to have over-dispersion or under-dispersion compared to the original model. When this occurs, the 

variance can be freed up so that it is not exactly equal to the mean. This is handled by adding a scale parameter 

for the variance. When this change is implemented, the model is no longer a Poisson process. But one still can 

use the algorithm for generalized linear models and obtain good parameter estimates with the modified 

approach. Another approach for dealing with the over-dispersion problem would be to consider a more 

appropriate sampling distribution for the data. In this regard, the Negative Binomial distribution can be very 

useful. The probability density function of the Negative Binomial distribution is given by 
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where   denotes the dispersion parameter. The variance of the Negative Binomial distribution is given by 

( )2 2

k k ky  = + . 

 

The mean model 

 

The mean model for the Poisson-log and Negative Binomial-log GLIMs is given by 

 

( )1 1 2 2expk k k r rkx x x    = + + + +  

 

where k  denotes the mean value of the response variable for client k , jkx  denotes the value of the j -th 

predictor ( 1,2, ,j r= ) for client k , and  , 1 , 1r − , and r  denote unknown parameters. In practice, it 

can occur that the coefficient of some covariate is assumed to be unity. This covariate is commonly known as 

an offset variable. Offsets are typically used when the response variable is a rate rather than a number or count. 

For this specific example, the mean model may be expressed as 

 

  ( )1 2E cntdiag exp *sex *race_dk k k  = + +  

 

where  E cntdiagk  denotes the mean number of diagnoses for client k , sexk  and race_dk  denotes the values 

of the variables sex and race_d respectively and  , 1  and 2  denote unknown parameters. From this model, 

it follows that the ratio of the mean numbers of diagnoses for female ( sex 1k = ) and male (sex 0k = ) clients 

may be expressed as 
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Similarly, it follows that ( )2exp   is the ratio of the mean numbers of diagnoses for white and nonwhite 

clients. The model fitted value is a mean number of diagnoses for client k  and is given by 

 

  ( )1 2
ˆ ˆˆ ˆE cntdiag exp *sex *race_dk k k  = + +  

 

where ̂ , 
1̂  and 

2̂  denote the maximum likelihood estimates of   , 1  and 2  respectively. 

 

4. Analyzing counts from a complex sampling design 

A question that a researcher may want to address is whether ethnicity and gender effects are associated with the 

number of substance abuse diagnoses. An appropriate statistical model for this type of count variable is a GLIM 

with a Poisson distribution and a log link function.  

 

Setting up the analysis 

 

The first step is to open the LSF shown above in the LISREL LSF window. This is accomplished as follows. Use 

the Open option on the File menu of the root window of LISREL to load the Open dialog box and select the 

Lisrel Data (*.lsf) option from the Files of type drop-down list box. 

Browse for and open the file cntdiag.lsf. Click on the SurveyGLIM menu to produce the following LSF window.  

 

 
 

The next step is complete the sequence of four dialog boxes of the SurveyGLIM GUI described. The Title and 

Options dialog box is the first dialog box and is accessed by selecting the Title and Options option on the 

SurveyGLIM menu above. In order to identify the analysis, enter the string Poisson-Log Model for ADSS Data 

into the Title string field to produce the following Title and Options dialog box. 

 



 
 

 

Since the default options will be used for this example, no changes are necessary. Click the Next button to 

access the Distributions and Links dialog box. Since we intend to fit a Poisson-log model, select the Poisson 

option from the Distribution type drop-down list box. For this example, we will estimate the scale parameter of 

the model by using the Pearson 2  estimate. Select the Pearson option from the Estimate scale? drop-down 

list box to produce the following Distributions and Links dialog box.  

 

 



 

 
 

Move on to the Dependent and Independent Variables dialog box by clicking on the Next button. Specify the 

response variable cntdiag by selecting it from the Variables in data list box and clicking on the Add button of the 

Dependent variable section. In a similar fashion, add the covariates sex and race_d to the Independent variables 

list box to produce the following Dependent and Independent Variables dialog box. 

 

Since the data are not frequency table data and no offset variable is used for this example, go to the Survey 

Design dialog box by clicking on the Next button. The strata are the census regions (CENREG) and are specified 

by selecting the variable CENREG from the Variables in data list box and clicking on the Add button of the 

Stratification variable section. Similarly, add the PSU variable FACTYPE and the design weight variable 

A2TWA0 to the Cluster variable and Weight variable boxes respectively to produce the following Survey Design 

dialog box.  

 



 
 

Since no finite population information is available, we are done. The next step is to click on the Finish button 

to open the following text editor window for cntdiag.prl. 

 

 
 

We are now ready to submit our GLIM analysis. This is achieved by clicking on the Run Prelis toolbar icon to 

produce the text editor window for cntdiag.out. 

 

  



Discussion of results – Poisson-log model 

 

A portion of the results of the Poisson-log GLIM analysis is shown in the following text editor window. 

 

 
 

SurveyGLIM reports the Adjusted Wald F  and 2  test statistic values for testing the null hypothesis that all the 

regression weights are equal to zero which may be expressed as (cf. American Institutes for Research & Cohen, 

2003) 
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respectively where H  denotes the number of strata, 
1

H

h

h

n
=

  denotes the number of PSUs, r  denotes the number 

of covariates of the model, β̂  denotes the estimate of the parameter vector, β , of regression weights and ̂  

denotes the estimated asymptotic covariance matrix of the estimators of the elements of β . If the null 

hypothesis is correct, wF  and 
2

wX  approximately follow an F  distribution with r  and 
1

1
H

h

h

n H r
=

− − +  degrees 

of freedom and a 
2  distribution with r  degrees of freedom respectively. 



 

Both the values of the Wald F  and 2  test statistics are not statistically significant if a significance level of 

5% is used. Hence, there is insufficient evidence to conclude that both gender and race influence the number of 

diagnoses of a client. This finding is supported by the non-significant z  test statistic values for the significance 

of the individual parameters.  

 

The scale parameter estimate is less than unity which indicates under-dispersion for the response variable. In 

other words, the sample variance of the variable cntdiag is less than its mean. 

 

Estimated outcomes for different groups 
 

The fitted model follows from the output file above as 

 

  ( )Ê cntdiag exp 0.33 0.06*sex 0.12*race_dk k k= + +  

 

Although gender and race did not significantly affect the number of diagnoses, the following examples 

illustrate how the fitted model can be used to calculate the mean of number of diagnoses for various subgroups 

when there are statistically significant differences among them. This fitted model implies that the mean number 

of diagnoses for a white female client ( sex 1k =  and race 1k = ) is given by 

 

( ) ( )exp 0.33 0.06 0.12 exp 0.51 1.67+ + = =  

 

Similarly, the mean number of diagnoses for a nonwhite female client ( sex 1k =  and race 0k = ) is 1.48. It also 

follows from the output above that ( ) ( )1
ˆexp exp 0.06 1.06 = =  is the multiplicative effect of gender on the 

fitted number of diagnoses for a client. This implies that, on the average, female clients have a 6% higher 

estimated mean number of diagnoses than male clients. Similarly, it follows that ( ) ( )2
ˆexp exp 0.12 1.13 = =  

which implies that, on the average, the fitted number of diagnoses is 13% higher for white clients than for 

nonwhite clients. 

 

5. Ignoring stratification and clustering in the sample 

 

Setting up the analysis 

 

The stratification and clustering can be ignored by not specifying the stratification and cluster variables on the 

Survey Design dialog box. However, it is recommended to change the title of the analysis to distinguish it from 

the previous analysis. This is done by selecting the Title and Options option on the SurveyGLIM menu to go to 

the Title and Options dialog box and then by entering the string Fitting a Poisson-Log model with design 

weights only in the Title string field. Since our model remains the same, click on the Next buttons of the Title 

and Options, the Distributions/Links and the Dependent and Independent Variables dialog boxes respectively to 

go to the Survey Design dialog box. Remove the stratification and cluster variables by clicking on the Remove 

buttons of the Stratification variable and Cluster variable sections to produce the following Survey Design 

dialog box.  

 



 
 

As this completes our modifications, click on the Finish button to open the following text editor window for 

cntdiag.prl. 

 

 

 

As before, submit the analysis by clicking on the Run Prelis toolbar icon to produce the text editor window for 

cntdiag.out. 

 
 

Discussion of results 

 

A portion of the text editor window for cntdiag.out is shown below. 

 



 
 

 
The results above indicate that although the parameter estimates are identical to those obtained when the design 

of the complex survey was taken into account, the standard error estimates are significantly smaller (cf. 

Brogan, 1998). As a consequence, both gender and race appear to have a statistically significant effect on the 

number of substance abuse diagnoses at a p < 0.00001 level of confidence. This is a reversal of the results 

obtained when the complex sampling design was taken into account. As this example indicates, inferences 

based on an analysis that does not correct for the reduced precision of a complex sampling design can be very 

misleading. 

 

6. Correcting for over-dispersion in an analysis of counts 

The results for the Poisson-log model indicated the presence of under-dispersion. Although the negative 

Binomial distribution is intended for dealing with over-dispersion, we will use it here for illustrative purposes. 

 

Setting up the analysis 

 

In order to fit the Negative Binomial-log model interactively to the data in cntdiag.lsf, we only need to re-specify 

the sampling distribution. As in the previous analysis, start by modifying the title to Fitting a Negative Binomial-

Log model by accessing the Title and Options dialog box and clicking the Next button to go to the Distributions 

and Links dialog box. Select the Negative Binomial option from the Distribution drop-down list box to produce 

the following Distributions and Links dialog box. 

 



 
 

Since the rest of the model remains the same, click on the Next buttons of the Distributions and Links and the 

Dependent and Independent Variables dialog boxes respectively to go to the Survey Design dialog box. Specify 

the complex survey design again by selecting the variables CENREG and FACTYPE from the Variables in data 

list box and clicking on the Add buttons of the Stratification variable and Cluster variable sections respectively 

to produce the following Survey Design dialog box. 

 

 
 



Click on the Finish button to open the following text editor window for cntdiag.prl. 

 

 
 

Submit the analysis by clicking on the Run Prelis toolbar icon to open the text editor window for the 

corresponding output file cntdiag.out. 

 

Discussion of results – negative Binomial model 

 

A portion of the text editor window for cntdiag.out is shown below. 

 

 
 

A comparison of these results with those obtained for the Poisson-log model shows that the estimates are the 

same, but that the standard error estimates are different. However, the conclusions are the same as those made 

based on the results for the Poisson-log model. 

 

The zero estimate of the dispersion parameter of the Negative Binomial distribution indicates that over-

dispersion seen with the Poisson distribution does not apply to this particular analysis. This finding is in 

agreement with the Poisson scale estimate less than unity, which indicated the presence of under-dispersion 

rather than over-dispersion. 

 


