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The basic idea of exploratory factor analysis is the following. For a given set of observed
response variables one wants to find a set of latent factors, fewer in number than the observed
variables. These factors are supposed to account for the intercorrelations of the response
variables in the sense that when the factors are partialed out from the observed variables,
there should no longer remain any correlations between these. The term exploratory means
that one does not know how many factors are needed nor does one know the factorial nature
of the observed variables. Before 1970 the term factor analysis was used without the word
exploratory ; this term was added later to distinguish it from confirmatory factor analysis

introduced around 1969 (see, e.g., Jöreskog, 1969)

The term MINRES (MINimum RESiduals) was first introduced by Harry Harman (1960)
as a way of doing factor analysis by least squares. This was at a time when nobody cared
about where the data came from or what distributions it had. It was only a matter of fitting
a matrix of factor loadings to the correlation matrix.

A program EFAP for exploratory factor analysis was written by Jöreskog & Sörbom around
1977 based on algorithms for unweighted least squares (ULS), generalized least squares (GLS),
and maximum likelihood (ML) by Jöreskog (1977). EFAP is obsolete and no longer available.
However, exploratory factor analysis was reintroduced in LISREL 8.30, but only for ML, see
Jöreskog, et al. (2000).

In this note I show that MINRES and ULS are equivalent and give the same solution except
for an orthogonal transformation of the factor loadings. The MINRES presented here and
introduced in LISREL 8.54 is based on the direct minimization of least squares rather the
ULS minimization in Jöreskog (1977) which is based on eigenvalues and eigenvectors of the
reduced correlation matrix.

Although ULS has been available for general covariance structures in LISREL since the
introduction of LISREL V in 1985, see Sörbom (2001), it is seldom used. However, ULS is quite
robust (see, textsle.g., Balderjahn, 1985) and deserves more attention. It does not require
any distributional assumptions1. It can be used with small samples even when the number
of variables is large and when the correlation matrix is not positive definite for other reasons
(for example, this might be the case for a matrix of tetrachoric or polychoric correlations).
It is particularly suited for exploratory factor analysis where only parameter estimates (and
not standard error estimates and chi-square values) are of interest. For further explanation
of exploratory factor analysis see Jöreskog (1979) and Jöreskog, et al. (2000) pp. 143—156.

1In the LISREL implementation, a normality assumption is used only to obtain standard error estimates
and t-values for the reference variable solution.
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1 Equivalence of MINRES and ULS

Let R be a given correlation matrix of order p×p and let Λ be a matrix of order p×k, where
p is the number of variables and k is the number of factors. The latter is usually much less
than p. The problem is to estimate Λ by minimizing the sum of squares

f(R,Λ) =
p∑
i=2

i−1∑
j=1

(rij −
k∑

m=1

λimλjm)
2 , (1)

with respect to Λ subject to the constraints that

k∑
m=1

λ2im ≤ 1 , i = 1, 2, . . . , p . (2)

If equality holds for variable i in (2) we say that this variable is a Heywood case.

The ULS fit function is (see Jöreskog & Sörbom, 1999, p. 20)

F (S,Σ) =
1

2
tr [(S−Σ)2] , (3)

where S is a covariance matrix and Σ = ΛΛ′ +Θ in this case, where Θ is a diagonal matrix
of unique variances. Applying this to a correlation matrix gives

F (R,Λ,Θ) =
1

2
tr [(R−ΛΛ′ −Θ)2] (4)

=
p∑
i=2

i−1∑
j=1

(rij −
k∑

m=1

λimλjm)
2 +

1

2

p∑
i=1

(1−
k∑

m=1

λ2im − θi)
2 , (5)

where θi is the ith diagonal element of Θ. Disregarding the constraints (2) for the moment
and minimizing (5) with respect to Θ for given Λ, gives

Θ̂ = I− diag ΛΛ′ . (6)

such that the second term in (5) vanishes. Hence, minimizing (5) is equivalent to minimizing
the first term in (5) with respect to Λ, which is the same as (1).

It is well known that if k > 1 the minimizing matrix Λ is only determined up to an
orthogonal matrix. This is most easily seen from (4) for if Λ is replaced by Λ� = ΛT, where
T is an orthogonal matrix of order k×k satisfying TT′ = T′T, then ΛΛ′ = Λ�Λ�′. Hence Λ�

and Λ minimize F . The LISREL implementation of MINRES resolves this indeterminacy by
setting λij = 0 for i < k , j > i, i.e., it fixes zeros in the upper right corner of Λ. The matrix
Λ determined in this way can then be rotated to any other orthogonal or oblique solution
to facilitate interpretation of the factors. Varimax and promax rotations, and a reference
variables solution is included in LISREL just as in the ML case, see Jöreskog, et al. (2000)
pp. 143—156.

Let Λ̂R be a matrix Λ that minimizes f(R,Λ) and let Λ̂S be a matrix Λ that minimizes
f(S,Λ). A desirable property is that

Λ̂S = DsΛ̂R , (7)

where Ds = (diag S)
1

2 is a diagonal matrix of standard deviations. However, unlike ML, this
property does not hold for MINRES or ULS, i.e., applying MINRES to S and to R does not
give factor loadings that are properly related. It is therefore best to use MINRES with a
correlation matrix. If it is applied to a covariance matrix, LISREL will first scale this to a
correlation matrix, then estimate Λ̂R, and then scale this by Ds such that (7) will hold.
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2 LISREL Implementation

The general LISREL syntax for exploratory factor analysis is

FA [NF=k] [ML] [MR]

where the parameters in brackets are optional. NF=k is used to specify the number of factors
k, ML or MR are used to specify ML or MINRES, respectively. If neither ML nor MR is
specified, ML will be used. If NF is not specified, the number of factors will be determined by
LISREL. With ML this is done by a decision procedure described in Jöreskog, et al. (2000)
pp. 153—155. With MINRES this is determined by “Kaiser’s little jiffy” which says that the
number of factors should be equal to the number of eigenvalues of R which are greater than
one2.

The factor analysis will be done on all variables in the data unless a subset of variables is
selected by a line

SE varlist

where varlist is a list of variable names.

Exploratory factor analysis can also be used with SIMPLIS syntax. The command line is
then

Factor Analysis [with k factors]

To obtain the MINRES solution include the line

Method of Estimation: MINRES

or

Method of Estimation: Unweighted Least Squares

Shorter versions of these are

Options: MR

or

Options: ULS

To select a subset of variables in the SIMPLIS command language, use3

Select varlist

If raw data is the starting point of the analysis (rather than a correlation or covariance
matrix), one can use the PRELIS command

2Henry Kaiser gave this rule in his dissertation 1956, see Kaiser (1970). Actually, this is the first part of
the little jiffy; the second part says that the factors should be rotated by varimax.

3This is new in LISREL 8.54.
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FA [NF=k] [ML] [MR] [FS]

where FS is used to specify that one wants factor scores, see Jöreskog, et al. (2000), pp. 155—
156. These factor scores are estimated for the reference variable solution which is given at
the end of the output. For details, see http://www.ssicentral.com/lisrel/column6.htm.
The factor scores require continuous variables. However, if some of the variables are ordinal,
they will be converted to normal scores (see Jöreskog, et al. (2000), pp. 161—168) before the
factor scores are computed.

3 Examples

To illustrate exploratory factor analysis with MINRES I give three examples. The first
example is based on the nine psychological variables used in Jöreskog, et al. (2000) pp. 147—
156. The second example is based on the polychoric correlations of eight ordinal variables
used in Jöreskog & Sörbom (2002a) pp. 111—114. The third example illustrates a Heywood
case.

3.1 Nine Psychological Variables

The correlation matrix is given in Table 3.4 on p. 148 in Jöreskog, et al. (2000). It is also
given in the file NPV.KM in the LIS850EX subdirectory. Using the SIMPLIS command
language (see Jöreskog & Sörbom, 2002b), one can do MINRES exploratory factor analysis
of the nine psychological variables with the following input

Exploratory Factor Analysis of Nine Psychological Variables

Observed Variables

’VIS PERC’ CUBES LOZENGES ’PAR COMP’ ’SEN COMP’ WORDMEAN

ADDITION COUNTDOT ’S-C CAPS’

Covariance Matrix from File NPV.KM

Sample Size 145

Factor Analysis

Method of Estimation: MINRES

End of Problem

This is the same file as NPV2.SPL in the LIS850EX subdirectory but with the line

Method of Estimation: MINRES

added.

The results are:

MINRES Factor Analysis for 3 Factors

Unrotated Factor Loadings
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Factor 1 Factor 2 Factor 3 Unique Var

-------- -------- -------- ----------

VIS PERC 0.73 0.00 0.00 0.47

CUBES 0.48 0.00 0.00 0.77

LOZENGES 0.68 0.05 -0.04 0.53

PAR COMP 0.46 0.69 0.27 0.24

SEN COMP 0.41 0.63 0.37 0.30

WORDMEAN 0.44 0.66 0.24 0.32

ADDITION 0.15 -0.11 0.77 0.37

COUNTDOT 0.40 -0.33 0.63 0.33

S-C CAPS 0.60 -0.10 0.41 0.46

Varimax-Rotated Factor Loadings

Factor 1 Factor 2 Factor 3 Unique Var

-------- -------- -------- ----------

VIS PERC 0.69 0.19 0.13 0.47

CUBES 0.45 0.12 0.09 0.77

LOZENGES 0.65 0.21 0.07 0.53

PAR COMP 0.24 0.83 0.07 0.24

SEN COMP 0.18 0.79 0.19 0.30

WORDMEAN 0.24 0.79 0.06 0.32

ADDITION -0.03 0.17 0.77 0.37

COUNTDOT 0.28 0.00 0.77 0.33

S-C CAPS 0.49 0.19 0.52 0.46

Promax-Rotated Factor Loadings

Factor 1 Factor 2 Factor 3 Unique Var

-------- -------- -------- ----------

VIS PERC 0.72 0.02 -0.01 0.47

CUBES 0.48 0.01 -0.01 0.77

LOZENGES 0.68 0.06 -0.07 0.53

PAR COMP 0.07 0.85 -0.04 0.24

SEN COMP 0.00 0.81 0.09 0.30

WORDMEAN 0.08 0.80 -0.05 0.32

ADDITION -0.19 0.13 0.81 0.37

COUNTDOT 0.20 -0.14 0.76 0.33

S-C CAPS 0.43 0.04 0.44 0.46

Factor Correlations

Factor 1 Factor 2 Factor 3

-------- -------- --------

Factor 1 1.00

Factor 2 0.45 1.00

Factor 3 0.36 0.26 1.00
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Reference Variables Factor Loadings Estimated by TSLS

Factor 1 Factor 2 Factor 3 Unique Var

-------- -------- -------- ----------

VIS PERC 0.73 0.00 0.00 0.47

CUBES 0.48 -0.01 0.00 0.77

(0.21) (0.14) (0.15)

2.34 -0.04 0.01

LOZENGES 0.67 0.06 -0.06 0.53

(0.26) (0.14) (0.18)

2.57 0.39 -0.32

PAR COMP 0.00 0.87 0.00 0.24

SEN COMP -0.04 0.81 0.13 0.30

(0.15) (0.11) (0.11)

-0.27 7.16 1.12

WORDMEAN 0.01 0.82 -0.01 0.32

(0.14) (0.11) (0.11)

0.06 7.47 -0.10

ADDITION 0.00 0.00 0.79 0.37

COUNTDOT 0.41 -0.28 0.74 0.33

(0.18) (0.13) (0.21)

2.26 -2.10 3.52

S-C CAPS 0.54 -0.05 0.44 0.46

(0.18) (0.13) (0.14)

2.94 -0.37 3.12

Factor Correlations

Factor 1 Factor 2 Factor 3

-------- -------- --------

Factor 1 1.00

Factor 2 0.52 1.00

Factor 3 0.19 0.28 1.00

This may be compared with the results obtained with maximum likelihood given on pp. 149—
151 in Jöreskog, et al. (2000), see particularly the explanations of the different results given
in the bottom half of p. 151.

The first solution is the unrotated MINRES solution computed. Note that this has zeros
in the upper right corner of the factor matrix. The second solution is the varimax solution
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of Kaiser (1958). Both of these are orthogonal solutions, i.e., the factors are uncorrelated.
The third solution is the promax solution of Hendrickson & White (1964). This is an oblique
solution, i.e., the factors are correlated. The varimax and the promax solutions are transfor-
mations of the unrotated solution and as such they are still MINRES solutions. The fourth
solution is a reference variables solution. This uses instrumental variables methods developed
by Hägglund (1982) to obtain the factor loadings and the factor covariance matrix. The ref-
erence variables are chosen as those variables in the promax solution that have the largest
factor loadings in each column. This gives VIS PERC, PAR COMP, and ADDITION as reference
variables. The advantage of this solution is that standard error estimates can be obtained
for all the variables except for the reference variables. This makes it easy to determine which
loadings are statistically significant or not. The standard error estimates are given in paren-
theses below the loading estimate and the t-values are given below the standard errors. A
simple rule to follow is to judge a factor loading statistically significant if its t-value is larger
than 2 in magnitude.

The interpretation of these results is that the first factor is Visual Perception, the second
is Verbal Ability, and the third is Speed. The large loadings of COUNTDOT and S-C CAPS
on the first factor suggests that these variables do not measure Speed solely, like ADDITION,
but also Visual Perception. This interpretation is just the same as for maximum likelihood
factor analysis. For most practical purposes these two methods give the same results.

To illustrate how one can get factor scores for the factors in the reference variables solution,
I use the file NPV7C.PR2 with MR added on the FA line:

Computing Factor Scores

Data NI = 9

Labels

’VIS PERC’ CUBES LOZENGES ’PAR COMP’ ’SEN COMP’

WORDMEAN ADDITION COUNTDOT ’S-C CAPS’

Rawdata=NPV.RAW

Continuous ’VIS PERC’ - ’S-C CAPS’

FA NF=3 MR FS

Output MA=KM

The results are the same as before. The factor scores are found in the file NPV7C.FSC.
These factor scores may be merged with the original variables in NPV.RAW and may be
used for any suitable purpose as if they were observed, see file NPV7D.PR2. Both these
files are available in the LIS850EX subdirectory.

3.2 Ordinal Measures of Equality and Morality

Swedish school children in grade 9 were asked questions about their attitudes on social issues
in family, school, and society. Among the questions asked were the following eight items (in
free translation from Swedish).

For me, questions about . . .

HUMRGHTS human rights

EQUALCON equal conditions for all people

RACEPROB racial problems
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EQUALVAL equal value of all people

EUTHANAS euthanasia

CRIMEPUN crime and punishment

CONSCOBJ conscientious objectors

GUILT guilt and bad conscience

are:

unimportant not important important very important

The file DATA.EX2 in the PR2EX subdirectory contains data on a subsample of 200
cases. Responses to the eight questions were scored 1, 2, 3, and 4 (4 = very important).
Missing values were scored 0.

The PRELIS syntax file EX2.PR2 in the PR2EX subdirectory can be used to compute
the matrix of polychoric correlations under pairwise deletion. With the line

FA MR

added, MINRES factor analysis can be obtained at the same time. The PRELIS syntax file
then is

EXAMPLE 2: ATTITUDES OF MORALITY AND EQUALITY

DA NI=8 NO=200 MI=0 TR=PA

LA

HUMRGHTS EQUALCON RACEPROB EQUALVAL EUTHANAS CRIMEPUN CONSCOBJ GUILT

RA FI=DATA.EX2

FA MR

OU MA=PM

There is no guarantee that the matrix of polychoric correlations estimated under pairwise
deletion is positive definite4. If it is not, maximum likelihood factor analysis is impossible.
But MINRES still works.

PRELIS finds two factors with the following results

MINRES Factor Analysis for 2 Factors

Unrotated Factor Loadings

Factor 1 Factor 2 Unique Var

-------- -------- ----------

HUMRGHTS 0.491 0.000 0.759

EQUALCON 0.796 -0.128 0.350

RACEPROB 0.377 0.340 0.743

EQUALVAL 0.802 0.112 0.344

EUTHANAS 0.882 -0.206 0.180

CRIMEPUN 0.390 0.451 0.645

4Positive definiteness cannot be guaranteed even if it were estimated under listwise deletion.
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CONSCOBJ 0.382 0.407 0.688

GUILT 0.388 0.142 0.829

Varimax-Rotated Factor Loadings

Factor 1 Factor 2 Unique Var

-------- -------- ----------

HUMRGHTS 0.443 0.211 0.759

EQUALCON 0.774 0.227 0.350

RACEPROB 0.194 0.469 0.743

EQUALVAL 0.676 0.446 0.344

EUTHANAS 0.885 0.193 0.180

CRIMEPUN 0.158 0.575 0.645

CONSCOBJ 0.170 0.532 0.688

GUILT 0.290 0.295 0.829

Promax-Rotated Factor Loadings

Factor 1 Factor 2 Unique Var

-------- -------- ----------

HUMRGHTS 0.410 0.121 0.759

EQUALCON 0.782 0.040 0.350

RACEPROB 0.004 0.505 0.743

EQUALVAL 0.567 0.333 0.344

EUTHANAS 0.925 -0.034 0.180

CRIMEPUN -0.087 0.644 0.645

CONSCOBJ -0.054 0.589 0.688

GUILT 0.194 0.268 0.829

Factor Correlations

Factor 1 Factor 2

-------- --------

Factor 1 1.000

Factor 2 0.590 1.000

Reference Variables Factor Loadings Estimated by TSLS

Factor 1 Factor 2 Unique Var

-------- -------- ----------

HUMRGHTS 0.419 0.126 0.759

(0.12) (0.21)

3.422 0.596

EQUALCON 0.775 0.064 0.350

(0.12) (0.19)

6.293 0.332

9



RACEPROB 0.071 0.471 0.743

(0.15) (0.28)

0.462 1.676

EQUALVAL 0.603 0.329 0.344

(0.11) (0.19)

5.689 1.777

EUTHANAS 0.905 0.000 0.180

CRIMEPUN 0.000 0.596 0.645

CONSCOBJ 0.025 0.546 0.688

(0.17) (0.32)

0.149 1.688

GUILT 0.227 0.256 0.829

(0.13) (0.23)

1.729 1.111

Factor Correlations

Factor 1 Factor 2

-------- --------

Factor 1 1.000

Factor 2 0.465 1.000

I interpret this as follows. The first factor loads on HUMRGHTS, EQUALCON, EQUALVAL, and
EUTHANAS. This is an Equality factor. The second factor loads on RACEPROB, CRIMEPUN,
CONSCOBJ, and GUILT. This is a Morality factor. The loadings on the second factor are not
statistically significant, but this maybe due to the small sample size and the ordinality of the
data.

3.3 A Heywood Case

In a simulation study Hägglund (1982) generated many samples from a specified correla-
tion matrix. To illustrate a Heywood case I use a covariance matrix from Hägglund’s bad
sample, see Jöreskog & Sörbom (1999) pp. 260—264. This covariance matrix is listed in
file EX81.COV in the LS8EX subdirectory. To do a MINRES factor analysis I use file
EX81C.LS8, from the LS8EX subdirectory, modified as follows:

Ex8.1c: Analyzing Gosta’s Bad Sample

DA NI=6 NO=200 MA=KM

CM FI=EX81.COV

FA NF=2 MR

OU

The results show that the first variable is a Heywood case:
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Unrotated Factor Loadings

Factor 1 Factor 2 Unique Var

-------- -------- ----------

VAR 1 1.00 0.00 0.00

W_A_R_N_I_N_G: A Heywood case occurred

VAR 2 0.45 0.48 0.56

VAR 3 0.74 0.13 0.43

VAR 4 0.43 0.41 0.65

VAR 5 0.33 0.55 0.59

VAR 6 0.14 0.20 0.94

Varimax-Rotated Factor Loadings

Factor 1 Factor 2 Unique Var

-------- -------- ----------

VAR 1 0.96 0.28 0.00

W_A_R_N_I_N_G: A Heywood case occurred

VAR 2 0.30 0.59 0.56

VAR 3 0.68 0.34 0.43

VAR 4 0.30 0.51 0.65

VAR 5 0.16 0.62 0.59

VAR 6 0.08 0.23 0.94

Promax-Rotated Factor Loadings

Factor 1 Factor 2 Unique Var

-------- -------- ----------

VAR 1 0.98 0.03 0.00

W_A_R_N_I_N_G: A Heywood case occurred

VAR 2 0.06 0.62 0.56

VAR 3 0.62 0.19 0.43

VAR 4 0.10 0.53 0.65

VAR 5 -0.11 0.71 0.59

VAR 6 -0.02 0.25 0.94

Factor Correlations

Factor 1 Factor 2

-------- --------

Factor 1 1.00

Factor 2 0.62 1.00

Reference Variables Factor Loadings Estimated by TSLS

Factor 1 Factor 2 Unique Var

VAR 1 1.00 0.00 0.00
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VAR 2 0.16 0.57 0.56

(0.20) (0.35)

0.81 1.60

VAR 3 0.66 0.16 0.43

(1.07) (1.20)

0.62 0.13

VAR 4 0.19 0.47 0.65

(0.17) (0.29)

1.10 1.65

VAR 5 0.00 0.64 0.59

VAR 6 0.03 0.23 0.94

(0.17) (0.27)

0.15 0.84

Factor Correlations

Factor 1 Factor 2

-------- --------

Factor 1 1.00

Factor 2 0.52 1.00
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Sörbom D. (2001) Karl Jöreskog and LISREL: a personal story. Pp. 3—9 in Cudeck, R., Du
Toit, S., & Sörbom, D. (Eds) (2001) Structural Equation Modeling: Present and Future
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