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1 Introduction

There has been a growing interest in recent years in fitting models to data collected from longitudinal surveys
that use complex sample designs. This interest reflects expansion in requirements by policy makers and
researchers for in-depth studies of social processes over time. Traditionally, the analyses of complex survey
samples have been carried out using specialized software packages. More recently, a number of statistical
analyses packages, for example SAS and SPSS, have implemented procedures to handle complex survey data
appropriately in the case of regression models with continuous and categorical outcome variables. In this guide
we describe techniques currently implemented in LISREL for analyzing complex surveys data. Research on the
longitudinal analysis of complex survey data with LISREL was supported by SBIR grant R43 AA014999-01 from
NIAAA to Scientific Software International.

A common theme in substance use research is that data are usually obtained from a multi-stage or so-called
complex sampling data. A complex sampling design typically entails stratification, often on the basis of
geography; defining meaningful clusters of population elements (PSUs); and one or more stages of subsampling
within each PSU. While a complex sample has the advantages of being more economical and practical, guarantees
a better representative sample of the population, and does not require a complete sampling frame of the
population elements, it is generally less efficient than simple random sampling.

The statistical theory and methods for fitting Generalized Linear Models (GLIMS) to simple random sample data
are described in a number of textbooks. As pointed out in the Complex Survey Sampling Guide, inappropriate
results are obtained if these methods are applied to complex samples. For quite some time, these methods were
extended to include the use of frequency and probability weights in an effort to deal with complex samples.
Although this approach yields the appropriate estimates for complex samples, the corresponding standard error
estimates are not appropriate. Section 2.3 reviews the options and dialog boxes of the SurveyGLIM menu and
syntax files. Practical applications are provided in Section 2.4. In Section 2.5 the results of the SurveyGLIM
module are assessed by means of a simulation study and numerical comparisons with other software, while the
GLIM statistical theory for analyzing complex survey data is outlined in Section 2.6.

2 Generalized linear models

2.1 Introduction

Many popular statistical methods are based on mathematical models that assume data follow a normal
distribution. Most obvious among these are the analysis of variance for planned experiments and multiple
regression for general analyses of independent and dependent variables. In many situations, the normality
assumption is not plausible. Consequently, use of methods that assume normality may perform unsatisfactorily.
In these cases, other alternatives that do not require data to have a normal distribution are attractive.

The collection of models called Generalized Linear Models (GLIMS) have become important, and practical,
statistical tools. The basic idea of GLIMs is an adaptation of standard regression to quite different kinds of data.
The variables may be dichotomous (agree/disagree), categorical (as with a 5-point Likert scale), counts (number
of arrest records), or nominal (choose among six candidates for mayor). The motivation is to tailor the regression
relationship connecting the outcome to relevant independent variables so that it is appropriate to the properties
of the dependent variable. The payoff is an analysis that often is more justifiable for the particular problem than
a standard regression model would be.



The statistical theory and methods for fitting Generalized Linear Models (GLIMS) to simple random sample data
are described in, amongst others, McCullach & Nelder (1989) and Agresti (2002). However, researchers from
the social and economic sciences are often applying these methods to data from complex survey designs.
Consequently, inappropriate results are obtained if these methods are applied to complex samples. For quite some
time, these methods were extended to include the use of frequency and probability weights in an effort to deal
with complex samples. Although this approach yields the appropriate estimates for complex samples, the
corresponding standard error estimates are not appropriate. Using a result of Fuller (1975), Binder (1983)
proposed methods to obtain the appropriate standard error estimates of the parameters of linear and nonlinear
models as well as those of general estimating functions in the case of complex survey designs. These methods
are implemented in, amongst others, SAS PROC SURVEYLOGISTIC (SAS Institute 2004) and AM (American
Institutes for Research & Cohen 2004).

LISREL for Windows (J6reskog & S6rbom 2004) includes a SurveyGLIM module, which implements the methods
in Agresti (2002) and Binder (1983) to fit GLIMs to complex survey data and simple random sample data. Unlike
other statistical software for generalized linear modeling for complex survey data such as SAS PROC
SURVEYLOGISTIC and AM, LISREL allows for a wide variety of sampling distributions and link functions.

In this guide, we illustrate and outline the statistical theory and methods that are implemented in the GLIM module
of LISREL. Section 2 reviews the options and dialog boxes of the SurveyGLIM menu on the LISREL System File
(LSF) window of LISREL. SurveyGLIM syntax files are reviewed in Section 3. Illustrative examples are provided
in Section 4. In Section 5, the results of the SurveyGLIM module are assessed by means of a small simulation
study and numerical comparisons with SAS PROC SURVEYLOGISTIC and AM. The GLIM statistical theory for
complex survey data is outlined in Section 6.

2.2 Graphical User Interface

2.2.1 The SurveyGLIM menu

The SurveyGLIM menu provides you access to a sequence of four dialog boxes that can be used to create a
SurveyGLIM syntax file interactively. It is located on the LSF (LISREL System File) window of LISREL which is
used to display, manipulate and process raw data. In other words, you must create a LSF and open it in a LSF
window before syntax can be generated interactively. To illustrate this, the LSF window for the file NIH1.Isf with
the SurveyGLIM menu expanded is shown below.

@ LISREL for Windows - NIH1.Isf - -

File Edit Data Transformation Statistics Graphs Multilevel | SurveyGLIM | View Window Help
0= e By 3@ S H 7 Title and Options...
Distributions/Links...
E e Model Specification...
VYEAR AGE |  SEX_ | sureyDesign. ASTVIS
1 3b.0 2.0 oo e 3.0
2 2002.0 21.0 2.0 1.0 1.0 3.0
3 2002 .0 20 2.0 20 10 3.0
| 4 20020 h2 0 1.0 00 10 20
I b 20020 130 20 3.0 10 3.0
4 |11

The typical next step would be to click on the Title and Options option to load the Title and Options dialog box
(See Section 2.2.2). However, you can directly click on the Distributions/Links, Model Specification or Survey
Design option to go to the Distributions and Links (See Section 2.2.3), the Dependent and Independent Variables
(See Section 2.2.4), or the Survey Design dialog box (See Section 2.2.5) respectively.



2.2.2 The Title and Options dialog box

The Title and Options dialog box allows you to specify a title and the options of the GLIM analysis interactively
and is accessed by selecting the Title and Options option on the SurveyGLIM menu. This selection loads the
following Title and Options dialog box.

Note that the Title and Options dialog box corresponds with the Title and GLIMOptions commands as indicated on
the image above.

If desired, you can enter a descriptive title in the Title string field. If the raw data include missing values with a
global missing value other than -999999, you need to enter the global missing value in the Missing Data Value
number field.

Title and Options = &J ; i
Title = <string>;
Title:
Maximum Number of lterations: 100 = GLIMOptions
Convergence Criterion: 0.000 MaxIter = 100
Missing Data Value: -999339

Converge = 0.0001

A Suppress lterative Details |Yariance Adjustment
Resp&@ Variable Ordering \
Q Ascending Qescen}g

Reference Category Code

—MissingCode = -999999

IterDet = No

VarAdjust = No

N

| | i

| Qi -1 Method = Fisher
E Ogtifizafion Method :::::f;j////,-__« Output = Min;

Q) Fisher-Scoring

Additonal Out \
| i i | Data file

[ Next >> J ‘ Cancel ‘ ’ OK I

To build syntax, proceed to the Survey Design screen and click the
I Finish button I

Since the GLIM estimation equations do not have a closed form solution, SurveyGLIM uses an iterative algorithm
to estimate the parameters of the GLIM. In this regard, the Fisher scoring algorithm and the Newton-Raphson
algorithm are available. The default algorithm is Fisher scoring; click the Newton-Raphson radio button to choose
that algorithm instead. You can then enter the maximum number of iterations in the Maximum Number of
Iterations field if the default of 100 is not appropriate. Enter the appropriate convergence criterion in the
Convergence Criterion number field if the default value of 0.0001 is not to be used and check the Suppress
Iterative Details check box if details of the iterative algorithm should be written to the output file.




The Response Variable Ordering may be changed from the default (Ascending) to Descending.

If any predictor that has C distinct categories is selected as a categorical independent variable (see Section 2.2.4),
then C-1 dummy variables are created with a default Reference Category Code equal to O (the default). The user
can change the Reference Category Code to -1.

In practice, it is possible that the estimated asymptotic covariance matrix of the estimators is not positive definite,
in which case the standard error estimates are unreliable. For these situations, Morel (1989) proposed an
adjustment to the estimated asymptotic covariance matrix. To request this option, you need to check the Variance
Adjustment check box.

You can choose to export the exact raw data that SurveyGLIM analyzed to a LISREL System data file (LSF) by
checking the Data file check box. This file will have the same name as the LSF, except that *.Isf is replaced with

_RAW.LSF. Similarly, the residuals can be exported to an LSF file by checking the Residual file check box. This
LSF file will have the same name as the LSF, except that .Isf is replaced with _RES.LSF.

Once you are done with the Title and Options dialog box, click on the Next button to go to the Distributions and
Links dialog box.

2.2.3 The Distributions and Links dialog box

The Distributions and Links dialog box allows you to specify the sampling distribution and the link function of
the GLIM interactively. A summary of the combinations of sampling distributions and link functions that are
available in this module is listed in Table 1.

The Distributions and Links dialog box is, as shown below, usually accessed by clicking on the Next button of
the Title and Options dialog box. It can also be accessed by selecting the Distributions / Links option from the
SurveyGLIM menu.

Table 1: Sampling Distribution and Link Functions

Link
CLL | Identity | Log | Logit | OCLL | OLogit | OProbit | Probit
Distribution
Bernoulli X X X X

Binomial X
Gamma

Inverse Gaussian
Multinomial X
Negative binomial
Normal X
Poisson X

X [ X [X|X
x
x
x
x
x

Note that the Distributions and Links dialog box corresponds with the Distribution, Link, Intercept, Dispersion and
Scale commands as indicated on the image above.



Use the Distribution type and the Link function drop-down list boxes to select the distribution and link function
for your GLIM. If an intercept for the mean model of the GLIM is not required, you should activate the No radio
button.

Distributions and Links : - &J
Distribution type: [Normal —v} Distribution = NOR;
Link function: [Identity v] Link = Iden;

Intercept = Yes;

Dispersion = No;

Fixed value:

Scale = None;

Estimate scale? [Nl:lne

5<Previnus’ [ Next >> l I Cancel ' [ OK J

To build syntax, proceed to the Survey Design screen and click the
Finish button

Some GLIMs include dispersion or scale parameters. These GLIMs are listed in Table 2. If a scale parameter is
desired, you can select the appropriate scale parameter from the Estimate scale? drop-down list box. In the case
of a dispersion parameter, you can fix its value by activating the Fixed value radio button. Otherwise, it is
estimated by means of maximum likelihood estimation.

Once the Distributions and Links dialog box has been completed, the Next button is clicked to go to the Dependent
and Independent Variables dialog box.

Table 2: Scale and Dispersion Parameters

_ ar_ameters Scale | Dispersion I\/_Iaxi_mum Pearson | Deviance

Distributio Likelihood

Binomial X X X
Gamma X X X X X
Inverse Gaussian X X X X X
Negative binomial X X

Normal X X X X X
Poisson X X X




2.2.4 The Dependent and Independent Variables dialog box

The Dependent and Independent Variables dialog box allows you to specify the model for the means of the
outcome variable and, if applicable, a frequency variable.

Dependent and Independent Variables &J

Il Variables in data:
| cntdiag Add >> Dependent variable:
sex ‘
race_d T —— ‘ ‘ DepVar = <label>;
CENREG

FACTYPE Independent variables:
AZTWAD

Continuous >> CoVars <label (s)>;

v_g}ﬁr}gmr;:b'ﬂ >>
| << Remove

Add >>

Erequency variable:

<< Remove

Freqg = <label>;

<< Previous Next >> Cancel O

To build syntax, proceed to the Survey Design screen and click the
Finish button

Access to this dialog box is obtained by clicking on the Next button of the Distributions and Links dialog box or
by selecting the Model Specification option from the SurveyGLIM menu. An example of the Dependent and
Independent Variables dialog box is shown above. Note that the Dependent and Independent Variables dialog
box corresponds with the DEPVAR, COVARS and FREQ commands as shown on the image above.

The model for the means of the outcome variable is a function of a set of covariates. You specify the outcome
variable by first selecting it from the Variables in data list box and then by clicking on the Add button of the
Dependent variable section. The covariates of the model can either be categorical or continuous variables.
Dummy variables are also regarded as continuous variables. Categorical covariates are specified by first selecting
the covariates from the Vvariables in data list box and then by clicking on the Categorical button. In a similar
fashion, the Continuous button is used to specify the continuous covariates and dummy variables of the model.

SurveyGLIM can process raw data and frequency table data. Frequency table data are often used in the case of
categorical variables, in which case the same observation often occurs more than once in the raw data. To process
frequency table data, the data file must include a column that contains the observed frequencies. Specify this
frequency variable by first selecting it from the Vvariables in data list box and then by clicking on the Add button
of the Frequency variable section.

Once the variables have been selected, click the Next button to load the Survey Design dialog box.



2.2.5 The Survey Design dialog box
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You can specify the design of the survey used for data collection and, if applicable, finite population information
interactively by using the Survey Design dialog box. It is accessed by clicking on the Next button of the Dependent
and Independent Variables dialog box or by selecting the Survey Design option on the SurveyGLIM menu. An
example of the Survey Design dialog box follows.

Note that the Survey Design dialog box corresponds with the STRATUM, CLUSTER, WEIGHT, FPC,
SAMPLINGRATES and POPULATIONSIZES commands as shown on the image below.

r N
Survey Design li_kj
Yariables in data:
chtdiag §tratification wvariable: 1/ Stratum = <label>;
sex
race_d << Remowve /(
CENREG
FACTYPE
AZTWAD cl able:
Add >> Cluster variable: Cluster = <label>;
<< Remove |
|
Weight = <label>;
id > Weight variable:
| FPC = No;
| HFfite Population Correction Factor
SamplingRates = <filename>;
/T{uln o rates Population sizes P J ’
PopulationSizes = <filename>;

5<Previnus’ [ Finish 1 ‘ Cancel J

To build syntax, click the Finish button.

Complex survey designs typically stratify the target population into strata (subpopulations). These strata usually
contain the primary sampling units (clusters). The ultimate sampling units are then selected from the selected
clusters and design weights for the ultimate sampling units are constructed. The strata are specified by first
selecting the appropriate variable from the Vvariables in data list box and then by clicking on the Add button of
the Stratification variable section. Similarly, the clusters and the design weights are specified by using the Add
buttons of the Cluster variable and the Weight variable sections respectively.

In the case of finite target populations, Fuller (1975) proposed a correction factor for the standard error estimates
of the parameters. This correction is based on the sampling rates of the strata that can be computed from the
actual sizes of the strata. You can prepare a text file containing either the sampling rates or the strata sizes. This
file is incorporated by using the browse button of the File that contains sampling rates or population sizes section.
If this file should contain population sizes rather than sampling rates, you need to activate the Population sizes
radio button.



The syntax file, which was created interactively by using the four SurveyGLIM dialog boxes, is opened in a text
editor window by clicking on the Finish button.

2.3 Syntax

2.3.1 The structure of the syntax file
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The syntax file, which is generated by the interface of the SurveyGLIM module, can also be prepared by using the
LISREL text editor or any other text editor such as Notepad and WordPad. The structure of the syntax file follows.

GLIMOPTIONS <options>;

SY = <filename>";

DEPVAR = <label>;

COVARS = <label(s)>;
DISTRIBUTION = <name>;

LINK = <function>;

INTERCEPT = <option>;
DISPERSION = <option>;
SCALE = <type>;

FREQ = <label>;

STRATUM = <label>;

CLUSTER = <label>;

WEIGHT = <label>;

FPC = <option>;
SAMPLINGRATES = <filename>;
POPULATIONSIZES = <filename>;
TITLE = <string>;

where <label> denotes a case sensitive variable name used in the raw data file, <filename> denotes a complete
name (including the drive and folder names) of a file, <option> is either Yes or No, <type> is one of None, Pearson,
Deviance or ML (see Section 3.14), <name> is one of BER, BIN, GAM, INVG MUL, NBIN, NOR or POI (see
Section3.6) and <function> is one of CLL, IDEN, LOG, LOGIT, OLOGIT, OCLL, OPROBIT and PROBIT (see Section
3.11). <options> denotes a list of options for the analysis, each of which has the following syntax:

<keyword> = <selection>

where <keyword> is one of CONVERGE, ITERDETAILS, MAXITER, METHOD, MISSINGCODE, OUTPUT or
VARADJUST and <selection> denotes a number, an option or a name (see Section 3.9). In many applications,
optional commands and keywords can be left out if there are program default values available.

The GLIMOPTIONS, SY, DEPVAR and COVARS commands are required commands while the other thirteen
commands are all optional. The GLIMOPTIONS and SY commands should be the first two commands
respectively, but the other commands can be entered in any order. Except for variable labels, the contents of the
syntax file are not case-sensitive. Blank lines can be inserted in any section of the syntax file.

In the following sections, the seventeen SurveyGLIM commands are discussed separately in alphabetical order.



2.3.2 CLUSTER command
The CLUSTER command is used to specify the variable for the primary sampling units of the complex survey. It
is an optional command. For example, in the case of a simple random sample, the CLUSTER command is omitted.

The CLUSTER command corresponds with the Cluster variable section on the Survey Design dialog box (See
Section 2.2.5).

Syntax

CLUSTER = <label>;

where <label> denotes the label of the cluster variable. Keep in mind that variable names are case sensitive.

Example

Suppose that the primary sampling units of the complex survey are types of facility and that the variable FACTYPE
is used to indicate the facility type for each observation. Then, the corresponding CLUSTER command is

CLUSTER = FACTYPE;

2.3.3 COVARS command

The purpose of the COVARS command is to specify the covariates of the model for the means of the outcome
variable and it is a required command. The COVARS command corresponds with the Independent variables
section on the Dependent and Independent Variables dialog box (See Section 2.2.4).

Syntax

COVARS = <label(s)>;

where <label(s)> denotes the case sensitive label(s) of the covariates of the model. In the case of a categorical
variable, the label should be augmented with a $ symbol. Dummy variables are regarded as continuous variables.
Consequently, dummy variable labels are not augmented with a $ symbol.

Example

Suppose that the covariates of the model consist of a dummy variable, sex, a categorical variable, edu, and a
continuous variable, age. For this example, the corresponding COVARS command is given by

COVARS = sex edu$ age;

2.3.4 DEPVAR command

The DEPVAR command is used to specify the outcome variable of the model and it is a required command. It
corresponds with the Dependent variable section on the Dependent and Independent Variables dialog box (See
Section 2.2.4).
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Syntax

DEPVAR = <label> REFCAT=<number>;

where <label> denotes the label of the outcome variable of the model. Note that variable names are case sensitive.

The REFCAT option (optional) is used to assign a reference category number in the case of a nominal dependent
variable. The default value is the last category. This option has to be entered manually by the user as it is currently
not implemented in the GUI.

Example

Suppose that the variable, depr, is the outcome variable to be used and that the reference category is the first
category of depr. In this case, the corresponding DEPVAR command would be

DEPVAR = depr REFCAT=1;

2.3.5 DISPERSION command
The Negative Binomial sampling distribution, for example, has a dispersion parameter. This parameter is
specified by using the DISPERSION command. Since not all sampling distributions involve a dispersion

parameter, the command is optional with default of no dispersion to be estimated. The DISPERSION command
corresponds with the Estimate dispersion? section on the Distributions and Links dialog box (See Section 2.2.3).

Syntax

DISPERSION = <option>;

where <option> is either Yes or No.
Default

DISPERSION = No;

2.3.6 DISTRIBUTION command
Each GLIM involves the sampling distribution of the outcome variable. The sampling distribution is specified by
means of the DISTRIBUTION command, which is optional. The DISTRIBUTION command corresponds with the

Distribution type drop-down list box on the Distributions and Links dialog box (See Section 2.2.3) as shown
below.

Syntax

DISTRIBUTION = <name>;

where <name> is one of BER (Bernoulli), BIN (Binomial), GAM (Gamma), INVG (Inverse Gaussian), MUL
(Multinomial), NBIN (Negative Binomial), NOR (Normal) or POI (Poisson).

13



Default

DISTRIBUTION = NOR,;
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To build syntax, proceed to the Survey Design screen and click the
Finish buttan

2.3.7 FREQ command

SurveyGLIM can process frequency table data if a variable with the frequency is a column of the data file. This
frequency variable is specified by means of the FREQ command. Since SurveyGLIM can also analyze raw data,

the FREQ command is optional. The FREQ command corresponds with the Frequency variable section on the
Dependent and Independent Variables dialog box (See Section 2.2.4).

Syntax

FREQ = <label>;
where <label> denotes the case sensitive label of the frequency variable.

Example

Suppose that the variable, Count, is the frequency variable. For this example, the FREQ command is given by

FREQ = Count;

14



2.3.8 FPC command

Fuller (1975) proposed a finite population correction factor for the standard error estimates of parameters if the
complex survey was obtained from a finite population. The FPC command is used to request this correction and
it corresponds with the Finite Population Correction Factor check box on the Survey Design dialog box (See
Section 2.2.5).

Syntax

FPC = <option>;
where <option> is either Yes or No.

Default

FPC = No;

2.3.9 GLIMOPTIONS command

The purpose of the GLIMOPTIONS command is to select the iterative algorithm to be used and to specify options
for the selected iterative algorithm. In addition, it is used to specify a global missing data value and the output to
be generated. Finally, it allows you to specify the variance adjustment proposed by Morel (1989) if the estimated
asymptotic covariance matrix of the parameter estimators is not positive definite. The GLIMOPTIONS command
must always be the first command and is a required command. It corresponds with the Title and Options dialog
box (See Section 2.2.2).

Syntax

GLIMOPTIONS <options>;

where <options> is a list of options each of which has the following syntax:
<keyword> = <selection>

where <keyword> is one or more of CONVERGE, ITERDETAILS, MAXITER, METHOD, MISSINGCODE, OUTPUT or
VARADJUST and <selection> refers to a name, a number or an option.

CONVERGE keyword

The tolerance limit of the convergence criterion of the selected iterative algorithm is specified by using the
CONVERGE keyword which is an optional keyword. The CONVERGE keyword corresponds with the
Convergence Criterion section on the Title and Options dialog box (See Section 2.2.2).

Syntax

CONVERGE = <number>;

where <number> denotes a real number greater than zero.
15



Default

CONVERGE = 0.0001;

ITERDETAILS keyword

The purpose of the ITERDETAILS keyword is to suppress or request the printing of the details of the selected
iterative algorithm and it is an optional keyword. The ITERDETAILS keyword corresponds with the Suppress
Iterative Details check box on the Title and Options dialog box (See Section 2.2.2).

Syntax

ITERDETAILS = <option>;

where <option> is either Yes or No.

Default

ITERDETAILS = No;

MAXITER keyword

You can control the maximum number of iterations of the selected iterative algorithm by means of the MAXITER
keyword which is an optional keyword. The MAXITER keyword corresponds with the Maximum Number of
Iterations section on the Title and Options dialog box (See Section 2.2.2).

Syntax

MAXITER = <number>;

where <number> denotes a positive integer.

Default

MAXITER = 100;

METHOD keyword

SurveyGLIM implements the Fisher scoring and Newton-Raphson iterative algorithms to obtain the estimates and
standard error estimates of the GLIM parameters. The METHOD keyword is used to select one of these algorithms
and it is an optional keyword. It corresponds with the Optimization Method section on the Title and Options dialog
box (See Section 2.2.2).

Syntax

METHOD = <method>;

where <method> is either Fisher or Newton.
16



Default

METHOD = Fisher;

MISSINGCODE keyword

Raw data often include missing values. SurveyGLIM uses list-wise deletion for handling data with missing values
if you specify a global missing value by means of the MISSINGCODE option, which is optional. The
MISSINGCODE keyword corresponds with the Missing Data Value section on the Title and Options dialog box
(See Section 2.2.2).

Syntax

MISSINGCODE = <number>;

where <number> denotes a real number.

Default

MISSINGCODE = -999999,;

OUTPUT option

SurveyGLIM can write the raw data or residuals of the GLIM analysis to separate LSF files. The OUTPUT keyword
is used to request neither, one or both of these files and is an optional keyword. The oUTPUT keyword
corresponds with the Additional Output section on the Title and Options dialog box (See Section 2.2.2).

Syntax

OUTPUT = <amount>;

where <amount> is one of Min for the standard GLIM results, Res for adding residuals as an LSF file to the standard
results, RawData for adding the data used by SurveyGLIM as an LSF file to the standard results or All for the
complete SurveyGLIM results. The standard SurveyGLIM results consist of the design, data and model description,
the goodness of fit statistics, the estimated regression weights and standard error estimates and the estimated
asymptotic covariance and correlation matrices of the parameter estimators.

Default

OUTPUT = Min;

REFCATCODE Keyword
The purpose of this keyword is to specify the value for the reference category of a categorical response variable.

Syntax

REFCATCODE = <number>;

17



where <number> denotes either 0 or -1.
Default

REFCATCODE =0

RESPONSE Keyword
The purpose of this keyword is to specify the order of the categories for a categorical response variable.

Syntax

RESPONSE = <option>;
where <option> denotes either Ascending or Descending.

Default

RESPONSE = Ascending

VARADJUST keyword

Morel (1989) proposed an adjustment for the estimated asymptotic covariance matrix of the parameter estimators
if it should not be positive definite. You can request this adjustment by using the VARADJUST keyword, which
is optional. The VARADJUST keyword corresponds with the Variance Adjustment check box on the Title and
Options dialog box (See Section 2.2.2).

Syntax

VARADJUST = <option>;
where <option> is either Yes or No.

Default

VARADJUST = No;

GLIMOPTIONS example

Suppose that the Newton-Raphson algorithm with a maximum of 50 iterations and a convergence criterion
tolerance limit of 0.0001 with printed details is required. Suppose further that the Morel (1989) variance
adjustment and the complete SurveyGLIM output are required and the global missing value for the raw data is -9.
For this example, the GLIMOPTIONS command is given by

GLIMOPTIONS CONVERGE = 0.0001 MAXITER = 50 MISSINGCODE = -9 ITERDETAILS = Yes
VARADJUST = Yes METHOD = Newton OUTPUT = All;

This GLIMOPTIONS command corresponds with the following Title and Options dialog box.

18
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To build syntax, proceed to the Survey Design screen and click the
Finigh buttan

2.3.10 INTERCEPT command
Many GLIMs can either include or exclude an intercept parameter for the model for the means of the outcome
variable. The purpose of the INTERCEPT command is to allow you to either include or exclude an intercept

parameter and it is an optional command. The INTERCEPT command corresponds with the Include intercept?
section on the Distributions/Links dialog box (See Section 2.2.3).

Syntax

INTERCEPT = <option>;
where <option> is either Yes or No.

Default

INTERCEPT = Yes;

2.3.11 LINK command

The link function of a GLIM describes the relationships between the means of the outcome variable and the means
of the corresponding linear model. The LINK command is used to specify the link of the GLIM, and corresponds
with the Link function drop-down list box on the Distributions/Links dialog box as shown below. It is an optional
command.
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Syntax

LINK = <name>;

where <name> is one of CLL (complementary log-log), IDEN (identity), LOG (log), LOGIT (logit), OCLL
(proportional hazards), OLOGIT (cumulative logit), OPROBIT (cumulative probit) and PROBIT (probit).

Default
LINK = Iden;
4 |
| Distribution type: ’Multinomial v]
Link function: [Logit v]
Cormplermentary log-log
I LDE
| Ordinal lagit
Ordinal probit
|| Include intercept?  Ordinal complementary log-log
I . Prokit
@ Yes L] (5]
|| J 4
H
|
| |
. —
| @) ves Fixed value:
Mane -
£< Prewious l l MNext x> ] l Cancel l [ QK
To build syntax, proceed to the Survey Design screen and click the

Finigh button

2.3.12 POPULATIONSIZES command
If the finite population correction for the standard error estimates proposed by Fuller (1975) is required, you must
prepare a text file containing either the sampling rates or strata sizes. The purpose of the POPULATIONSIZES

command is to specify the file that contains the strata sizes. It is an optional command and corresponds with the
Population sizes radio button on the Survey Design dialog box (See Section 2.2.5).

Syntax

POPULATIONSIZES = <filename>;

where <filename> denotes the complete name (including drive and folder names) of the text file containing the
strata sizes. The drive and folder names may be omitted if the text file and the syntax file are in the same folder.
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Example

Suppose that the text file POPULATIONSIZES.TXT contains the strata sizes. In this case, the POPULATIONSIZES
command is given by

POPULATIONSIZES = POPULATIONSIZES.TXT;

2.3.13 REFCATS command

The purpose of this command is to specify the reference categories to be used for the covariates or independent
variables. This command has to be entered manually by the user as it is currently not implemented in the GUI.

Syntax

REFCATS = <list>;
where <list> denotes a list of nonzero positive integers in free format.

Example

REFCATS =153;

2.3.14 SAMPLINGRATES command
If the finite population correction for the standard error estimates proposed by Fuller (1975) is required, you must
prepare a text file containing either the sampling rates or strata sizes. The purpose of the SAMPLINGRATES

command is to specify the file that contains the sampling rates. It is an optional command and corresponds with
the Sampling rates radio button on the Survey Design dialog box (See Section 2.2.5).

Syntax

SAMPLINGRATES = <filename>;

where <filename> denotes the complete name (including drive and folder names) of the text file that contains the
sampling rates. The drive and folder names may be omitted if the text file and the syntax file are in the same
folder.

Example

If the sampling rates are contained in the text file SampRates.txt in the Generalized Linear Model examples folder
of the C drive, the corresponding SAMPLINGRATES command is given by

SAMPLINGRATES = C:\Generalized Linear Model examples\SampRates.txt;
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2.3.15 SCALE command

Some sampling distributions such as the Poisson, Binomial, Gamma, Inverse Gaussian and Normal distributions
have an optional scale parameter. This parameter is specified by using the SCALE command. Since not all
sampling distributions involve a scale parameter, the command is optional. The SCALE command corresponds
with the Estimate scale? drop-down list box on the Distributions and Links dialog box as shown below.

Distributions and Links - M
T I
Distribution type: ’Normal VI
Link function: [Identity VI
Include intercept?
@) Yes @)
| @) ‘Yes Fixed value:
I
I Estimate scale? ‘None VI

Deviance
Fearson
haximum likelihood

£< Previous [ MNext »>> ‘ I Cancel ‘ [ []:4

To build syntax, proceed to the Survey Design screen and click the
Finish button

Syntax

SCALE = <type>;
where <type> is one of None, Pearson, Deviance Or ML.

Default

SCALE = None;

2.3.16 STRATUM command

Complex surveys are typically obtained by stratifying the target population into subpopulations (strata). The
STRATUM command allows you to specify the stratification variable. Since other types of surveys are available,
the STRATUM command is an optional command. The STRATUM command corresponds with the Stratification
variable section on the Survey Design dialog box (see Section 2.2.5).
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Syntax

STRATUM = <label>;
where <label> denotes the case sensitive label of the stratification variable.

Example

Suppose that the target population was stratified into census regions and that the variable CENREG is the variable
used to indicate the census region for each observation. In this case, the STRATUM command is given by

STRATUM = CENREG,;

2.3.17 SY command

SurveyGLIM can process raw data or frequency data that are available in the form of a LSF. The LSF to be processed
is specified by means of the SY command. The Sy command is a required command and must be the second
command listed in the syntax file. The SY command corresponds with the LSF window.

Syntax

SY = <filename>";

where <filename> denotes the complete name (including drive and folder names) of the LSF. The drive and folder
names may be omitted if the LSF and syntax file are in the same folder. Note the use of single quotes in this
command.

Example

Suppose that the data to be processed are listed in the file NIH1.Isf which is located in the Generalized Linear
Model examples folder on the C drive. In this case, the SY command is given by

SY ="'C:\ Generalized Linear Model examples \NIHL1.|sf";

2.3.18 TITLE command

It is often convenient to label a specific analysis to distinguish it from other analyses. This can be accomplished
by using the TITLE command which is an optional command. The TITLE command corresponds with the Title
string field on the Title and Options dialog box (See Section 2.2.2).

Syntax

TITLE = <string> ;

where <string> denotes a descriptive title for the analysis.
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Example

Consider an analysis in which a Bernoulli-Probit model was fitted to substance abuse data. In this case, one
possible TITLE command is given by

TITLE = Bernoulli Probit Model for Substance Abuse Data;

2.3.19 WEIGHT command

Design weights are constructed for the ultimate sampling units of complex surveys. The purpose of the WEIGHT
command is to allow you to specify the design weight variable. Since surveys without design weights are
permitted, the WEIGHT command is an optional command. The WEIGHT command corresponds with the Weight
variable section on the Survey Design dialog box (See Section 2.2.5).

Syntax

WEIGHT = <label>;

where <label> denotes the case sensitive label of the design weight variable.

Example

Suppose that the variable A2TWAO is used to capture the design weight for each observation. For this example,
the WEIGHT command is given by

WEIGHT = A2TWAQ;

2.4 Examples

24.1 GLIMs for count data using substance abuse data
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2.4.1.1 Introduction

Variables measured in scientific studies come in a wide assortment. When statisticians refer to a "count" variable,
they mean a variable that is ordinal, typically scored 0, 1, 2, ..., without fractional values such as 2.4 or 6.75.
They also mean that the variable is a tally that records how often some behavior occurred, or of how many
incidents of a particular kind were observed in each subject of a study.

In many situations, count variables are skewed. The percentage of subjects with a score of zero or 1 is very large,
those with a score of 4 or 5 or 6 considerably less common, and those with a score of 11 or 12 rare. For example,
the number of delinquent acts committed by a teenager is a count variable. It is zero for the great majority. A
young person who commits 1 or 2 or 3 delinquent acts is relatively rare compared to those who have no offenses.
The frequencies of 1 or 2 or 3 decrease rapidly compared to those with no offenses. Juveniles who commit as
many as 9 or 10 delinquent acts are very rare. As another example, the number of visits that a person makes to
his or her primary care physician in a year is a count. The great majority visit the doctor not at all or once or
twice in a year. Some may seek help 5, 6, or 7 times. A very few chronically ill may visit on as many as 15
occasions.
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Count variables are often analyzed in exactly the same way that a continuous variable is handled, most often
with a method that incorrectly assumes the count is a bell-shaped normal distribution. But counts are ordinal
variables, usually skewed with a small range. They have none of the characteristics of a continuous variable.
While in many instances there are few practical problems treating them as if they were continuous variables, it
is easy to find examples where an inappropriate analysis of a count variable loses important information that a
better approach would convey. GLIMs for counts are a special kind of model that is designed to represent the
unique features of count variables in a statistically optimal way.

GLIMs for counts usually assume a Poisson distribution for the response variable. In this section, we illustrate the
use of the SurveyGLIM module of LISREL by using some practical examples based on health-related count data.
More specifically, a Poisson-log and a Negative Binomial-log model are fitted to substance abuse data. A description
of the data follows.

2.4.1.2 The data

The data set forms part of the data library of the Alcohol and Drug Services Study (ADSS). The ADSS is a national
study of substance abuse treatment facilities and clients. Background data and data on the substance abuse of a
sample of 1752 clients were obtained. The sample was stratified by census region and within each stratum a
sample was obtained for each of three facility treatment types within each of the four census regions. The specific
data set is provided as the LSF cntdiag.Isf. The first portion of this file is shown in the following LSF window.

[+ cntdiag st =N B
cntdiag sex | race.d | CENREG | FACTYPE | A2twao | |
1 00 00 40 40 1907 =
2 0.0 00 00 40 4.0 443 [E
3 0.0 00 00 40 40 443
4 0.0 1.0 0.0 40 4.0 443
5 00 00 00 40 40 443
6 0.0 00 00 40 40 443
7 0.0 0.0 0.0 40 4.0 443
8 00 00 00 40 40 443
9 0.0 00 00 40 40 443
10 0.0 0.0 1.0 40 2.0 sTe .

A brief description of the variables to be used in the subsequent GLIM analyses follows.

CENREG is the census region of the client (1 for Northeast, 2 for Midwest, 3 for South and 4 for West).

FACTYPE is the facility treatment type of the client (1 for residential treatment, 2 for outpatient methadone
treatment, 3 for outpatient non-methadone treatment and 4 for more than one type of treatment).

A2TWAO is the design weight of the client.

cntdiag is the number of abuse diagnoses of the client (0, 1, 2 or 3).

sex IS the value of a dummy variable for the gender (0 for male and 1 for female) of the client.
race_d is the value of a dummy variable for the race (0 for nonwhite and 1 for white) of the client.

o O O O

More information on the ADSS and the data are available at http://www.icpsr.umich.edu.



http://www.icpsr.umich.edu/cgi/archive.prl?study=3088&path=SAMHDA&regex=&dslist=&email=&agree=yes&I+Agree=I+Agree

2.4.1.3 The models

The sampling distributions

The sampling distribution of the Poisson-log GLIM is the Poisson distribution whose probability density function
IS given by

e—#k ylilk

Yy !

f(quUk):

where y, denotes the response variable y for respondent k and g, denotes the mean of y,. The Poisson

sampling distribution has the unique feature that its variance is equal to its mean. A common empirical finding
in fitting a Poisson variable is that the actual variance is somewhat larger or smaller than the mean value. The
data are said to have over-dispersion or under-dispersion compared to the original model. When this occurs, the
variance can be freed up so that it is not exactly equal to the mean. This is handled by adding a scale parameter
for the variance. When this change is implemented, the model is no longer a Poisson process. But one still can
use the algorithm for generalized linear models and obtain good parameter estimates with the modified approach.
Another approach for dealing with the over-dispersion problem would be to consider a more appropriate
sampling distribution for the data. In this regard, the Negative Binomial distribution can be very useful. The
probability density function of the Negative Binomial distribution is given by

F[yk*;) (v14,)"

1
r'(y, +1)F(;j Ly )" v

f(quUk"/’):

where  denotes the dispersion parameter. The variance of the Negative Binomial distribution is given by

O-z(yk)::uk_'_l//:ukz'

The mean model
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The mean model for the Poisson-log and Negative Binomial-log GLIMs is given by

Hy = exp(a"'ﬂlxlk + o Xy +"‘+/Brxrk)

where g, denotes the mean value of the response variable for client k, x; denotes the value of the j-th

predictor (j=1,2,...,r) for client k ,and «, ., ... 5., and B. denote unknown parameters. In practice, it can

occur that the coefficient of some covariate is assumed to be unity. This covariate is commonly known as an
offset variable. Offsets are typically used when the response variable is a rate rather than a number or count. For
this specific example, the mean model may be expressed as

E[cntdiag, | =exp(a + B, *sex, + B,*race_d, )

where E[cntdiag, | denotes the mean number of diagnoses for client k , sex, and race_d, denotes the values
of the variables sex and race_d respectively and «, S, and S, denote unknown parameters. From this model, it



follows that the ratio of the mean numbers of diagnoses for female (sex, =1) and male (sex, =0) clients may
be expressed as

exp(a+f, + By *race_d) _ exp(5.)
exp(a + fB,*race_d) '

Similarly, it follows that exp(f3,) is the ratio of the mean numbers of diagnoses for white and nonwhite clients.
The model fitted value is a mean number of diagnoses for client k and is given by

E[cntdiag, | = exp(o? + B, *sex, + ﬁz*race_dk)

where &, A, and f3, denote the maximum likelihood estimates of «, 8, and f3, respectively.

2.4.1.4 Analyzing counts from a complex sampling design

A question that a researcher may want to address is whether ethnicity and gender effects are associated with the
number of substance abuse diagnoses. An appropriate statistical model for this type of count variable is a GLIM
with a Poisson distribution and a log link function.

24.1.4.1 Setting up the analysis
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The first step is to open the LSF shown above in the LISREL LSF window. This is accomplished as follows.

Use the Open option on the File menu of the root window of LISREL to load the Open dialog box. Select the
Lisrel Data (*.Isf) option from the Files of type drop-down list box. Browse for and open the file cntdiag.!sf.

|: cntdiag.Isf EI@
cntdiag sex | race.d | CENREG | FACTYPE | A2TwaA0 | |
1 0.0 0.0 40 4.0 1907
2 0.0 0.0 0.0 40 4.0 443 [E
3 0.0 0.0 0.0 4.0 4.0 44.3
4 0.0 1.0 0.0 40 4.0 443
5 0.0 0.0 0.0 40 4.0 443
6 0.0 0.0 0.0 4.0 4.0 44.3
7 0.0 0.0 0.0 40 4.0 443
8 0.0 0.0 0.0 40 4.0 443
9 0.0 0.0 0.0 4.0 4.0 44.3
10 0.0 0.0 1.0 40 2.0 5719 .

next step is complete the sequence of four dialog boxes of the SurveyGLIM GUI described in Section 3.2. The Title
and Options dialog box is the first dialog box and is accessed by selecting the Title and Options option on the
SurveyGLIM menu above. In order to identify the analysis, enter the string Poisson-Log Model for ADSS Data into
the Title string field to produce the following Title and Options dialog box.
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Title and Options ‘ ‘ M
.

Title: Foisson-Log Model for ADSE Data

taximum Number of lterations: 100 =

Convergence Criterion: 0.0001

tissing Data Value: -395933

§uppress lterative Details Dyariance Adjustment

Fesponse Wariable Ordering
@) Ascending (") Descending
Feference Category Code

(@] -.é.l—

Optimization Method
6' FisherScoring _' Mewton-Faphsan

Additonal Output
[ Residualfile [ Data file

| Net»> | | Caneel | [ oK

To build syntax, proceed to the Survey Design screen and click the
I Finish button

Since the default options will be used for this example, no changes are necessary. Click the Next button to access
the Distributions and Links dialog box. Since we intend to fit a Poisson-log model, select the Poisson option from
the Distribution type drop-down list box. For this example, we will estimate the scale parameter of the model by

using the Pearson y” estimate (see Section 6.11). Select the Pearson option from the Estimate scale? drop-down
list box to produce the following Distributions and Links dialog box.

r |

Distribution type: ’Puisson

Link function: ’Log

Include intercept?

@) Yes

Fixed walue:

Estimate scale? ’Pearson

§<Previous] l Mext >> ] l Cancel ] [ (04

To build syntax, proceed to the Survey Design screen and click the
Finish buttan
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Move on to the Dependent and Independent Variables dialog box by clicking on the Next button. Specify the
response variable cntdiag by selecting it from the Variables in data list box and clicking on the Add button of the
Dependent variable section. In a similar fashion, add the covariates sex and race_d to the Independent variables
list box to produce the following Dependent and Independent Variables dialog box.

Dependent and Independent Variables ‘ ﬂ

|| Wariables in data:

crtdia Add 33 Dependent variahle:
- v—
CEMREG

FACTYPE Independent variablas:
AZTWhA

SEX

) race_d
Continuous >» -

Categorical »»

<< Remove

Add »> Frequency variable:

<< Remove

Add 3> OffsetVariahle:

<< Remowve I:l

Since the data are not frequency table data and no offset variable is used for this example, go to the Survey Design
dialog box by clicking on the Next button. The strata are the census regions (CENREG) and are specified by
selecting the variable CENREG from the Variables in data list box and clicking on the Add button of the
Stratification variable section. Similarly, add the PSU variable FACTYPE and the design weight variable A2TWAO
to the Cluster variable and Weight variable boxes respectively to produce the following Survey Design dialog
box.



|
-

Yariables in data:

chtdiag Add »» Stratification variahle:

sex CENREG

CENREG
FACTYPE
AZTWAD

Add >> Clusterwariahle:

FACTYPE

Add >> Weightwariable:

AZTWWAND

[] Einite Population Carrection Factor

(@) Sampling rates Population sizes

File that contains sampling rates or population sizes:

i(F’revious] l Finish l l Cancel

To build syntax, click the Finish buttan.

Since no finite population information is available, we are done. The next step is to click on the Finish button to
open the following text editor window for cntdiag.prl.

cntdiag.PRL EI@

GlimOptions Converge=0.0001 MaxIter=100 MissingCode=—9%99%9%9 ~
Response=Ascending RefCatCode=-1 IterDetails=No
Method=Fisher;

Title=Poisson-Log Model for ADSS Data;

s¥='gntdiag.lsf';

Distribution=PO0I;

Link=LOG;

Intercept=Yes;

Scale=Pearson;

DepVar=cntdiag;

CoVars=sex race_d;

Stratum=CENREG;

Cluster=FACTYPE;

Welight=A2TWAOD;

We are now ready to submit our GLIM analysis. This is achieved by clicking on the Run Prelis toolbar icon to
produce the text editor window for cntdiag.out.

2.4.1.4.2 Discussion of results — Poisson-log model

A portion of the results of the Poisson-log GLIM analysis is shown in the following text editor window.
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[Tl cntdiagOUT =

Goodness of Fit Statistics

Statistic Value DF Ratio
Likelihood Ratio Chi-square 576472 .7392 813366 0.7087
Pearson Chi-square 455002 .1049 813366 0.5594
-2 Log Likelihood Function 26357323369

Akaike Information Criterion 26357383369

Schwarz Criterion 2635756 .7324

Statistic Value Den. DF Num. DF P Value
Adjusted Wald F 2.8314 2 T 0.125598

Wald Chi-square 6.4718 2 0.125598

Note: The Wald F Test and Chi-square Statistics are statistics to test the
null hypothesis that all the regression weights are equal to zero.

Estimated Regression Weights

m

Standard
Parameter Estimate Error z Value P Value
intcept 0.3302 0.0557 5.9248 0.0000
sex 0.0619 0.0709 0.8726 0.3829
race_d 0.1167 0.0620 1.8818 0.0599

SCALE 0.7479

Note: The scale parameter estimate is based on the Pearson Chi-square value
phi = Square Root of (The Pearson Chi-square value/degrees of freedom)

SurveyGLIM reports the Adjusted Wald F and y* test statistic values for testing the null hypothesis that all the

regression weights are equal to zero which may be expressed as (cf. American Institutes for Research & Cohen,
2003)

H
[Znh ~H —r+1j
h=1

N
Fo=""7% Y P
(Z n, —H J*r
h=1
And X2=pY'p

H
respectively where H denotes the number of strata, Znh denotes the number of PSUs, r denotes the number
h=1

of covariates of the model, ﬁ denotes the estimate of the parameter vector, p, of regression weights and Y
denotes the estimated asymptotic covariance matrix of the estimators of the elements of f . If the null hypothesis

H
is correct, F, and va approximately follow an F distribution with r and Znh —H —r+1 degrees of freedom
h=1

and a y” distribution with r degrees of freedom respectively.

Both the values of the Wald F and y° test statistics are not statistically significant if a significance level of 5%
is used. Hence, there is insufficient evidence to conclude that both gender and race influence the number of



diagnoses of a client. This finding is supported by the non-significant z test statistic values for the significance
of the individual parameters.

The scale parameter estimate is less than unity which indicates under-dispersion for the response variable. In
other words, the sample variance of the variable cntdiag is less than its mean.

Estimated outcomes for different groups

The fitted model follows from the output file above as
E[cntdiag, | =exp(0.33+0.06*sex, +0.12*race_d, )

Although gender and race did not significantly affect the number of diagnoses, the following examples illustrate
how the fitted model can be used to calculate the mean of number of diagnoses for various subgroups when there
are statistically significant differences among them. This fitted model implies that the mean number of diagnoses
for a white female client (sex, =1 and race, =1) is given by

exp(0.33+0.06+0.12) =exp(0.51) =1.67

Similarly, the mean number of diagnoses for a nonwhite female client (sex, =1 and race, =0) is 1.48. It also
follows from the output above that exp(,@’l) = exp(0.06) =1.06 is the multiplicative effect of gender on the fitted

number of diagnoses for a client. This implies that, on the average, female clients have a 6% higher estimated
mean number of diagnoses than male clients. Similarly, it follows that exp(ﬁ2)=exp(0.12):1.13 which

implies that, on the average, the fitted number of diagnoses is 13% higher for white clients than for nonwhite
clients.

2.4.1.5 Ignoring stratification and clustering in the sample

24.15.1 Setting up the analysis
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The stratification and clustering can be ignored by not specifying the stratification and cluster variables on the
Survey Design dialog box. However, it is recommended to change the title of the analysis to distinguish it from
the previous analysis. This is done by selecting the Title and Options option on the SurveyGLIM menu to go to
the Title and Options dialog box and then by entering the string Fitting a Poisson-Log model with design weights
only in the Title string field. Since our model remains the same, click on the Next buttons of the Title and Options,
the Distributions/Links and the Dependent and Independent Variables dialog boxes respectively to go to the
Survey Design dialog box. Remove the stratification and cluster variables by clicking on the Remove buttons of
the Stratification variable and Cluster variable sections to produce the following Survey Design dialog box.



i

Survey Design

Yariables in data:
chtdiag Add »» Stratification variahle:

5%
race_d << Bemowve

CEMREG
FACTYFE
AZTWAD

Add >> Clusterwariahle:

<< Remowve |:|

Add >> Weightwariable:

AZTWWAND

[] Einite Population Carrection Factor

(@) Sampling rates Population sizes

File that contains sampling rates or population sizes:

i(F’revious] l Finish l l Cancel

To build syntax, click the Finish buttan.

As this completes our modifications, click on the Finish button to open the following text editor window for
cntdiag.prl.

cntdiag.PRL EI@

zlimOptions Converge=0.0001 MaxIter=100 MissingCode=—9%999%
Response=Ascending RefCatCode=—1 IterDetails=No
Method=Fisher;

Title=Poisson-Log Model for ADSS Data;

SY='cntdiag.lsf';

Distribution=P0OI;

Link=LOG;

Intercept=Yes;

Scale=Pearson;

DepVar=cntdiag;

CoVars=sex race_d;

Weight=R2TWAOD;

As before, submit the analysis by clicking on the Run Prelis toolbar icon to produce the text editor window for
cntdiag.out.

2.4.15.2 Discussion of results

A portion of the text editor window for cntdiag.out is shown below.
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[ cntdiag.OUT =R

Estimated Regression Weights

Standard
Parameter Estimate Error z Value P Value
intcept 0.3302 0.0139 23 .7376 0.0000
sex 0.0619 0.0243 2.5422 0.0110
race_d 0.1167 0.0239 4 8769 0.0000

m

SCALE 0.7483

Note: The scale parameter estimate 1s based on the Pearson Chi-square value
phi = Square Root of (The Pearson Chi-square value/degrees of freedom)

4 T 3

The results above indicate that although the parameter estimates are identical to those obtained when the design
of the complex survey was taken into account, the standard error estimates are significantly smaller (cf. Brogan,
1998). As a consequence, both gender and race appear to have a statistically significant effect on the number of
substance abuse diagnoses at a p < 0.00001 level of confidence. This is a reversal of the results obtained when
the complex sampling design was taken into account. As this example indicates, inferences based on an analysis
that does not correct for the reduced precision of a complex sampling design can be very misleading.

2.4.1.6 Correcting for over-dispersion in an analysis of counts

The results for the Poisson-log model indicated the presence of under-dispersion. Although the negative Binomial
distribution is intended for dealing with over-dispersion, we will use it here for illustrative purposes.

24.16.1 Setting up the analysis
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In order to fit the Negative Binomial-log model interactively to the data in cntdiag.Isf, we only need to re-specify
the sampling distribution. As in the previous analysis, start by modifying the title to Fitting a Negative Binomial-
Log model by accessing the Title and Options dialog box and clicking the Next button to go to the Distributions
and Links dialog box. Select the Negative Binomial option from the Distribution drop-down list box to produce
the following Distributions and Links dialog box.
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Distributions and Links - ‘ A e

Distribution type: ’Negative Binormial VI

Link function: [Log v]

Include intercept?

@) Yes @)

Estimate dispersion?

@) Yes () Eixed walue:
Estimate scale? Fearson -
<< Previous l l Mext »> l l Cancel l [ QK.

To build syntax, proceed to the Survey Design screen and click the
Finish button

Since the rest of the model remains the same, click on the Next buttons of the Distributions and Links and the
Dependent and Independent Variables dialog boxes respectively to go to the Survey Design dialog box. Specify
the complex survey design again by selecting the variables CENREG and FACTYPE from the Variables in data list
box and clicking on the Add buttons of the Stratification variable and Cluster variable sections respectively to
produce the following Survey Design dialog box.

Yariahles in data;

ctdiag Add »> Stratification variahle:
sex CENREG
CEMNREG

Add >> Clusterwvariable: l

FACTYPE

<< Remowve

Addl >> Weightwariakle:

AZTWAD

<< Remowve

["] Einite Population Correction Factor
(@) Sampgling rates Population sizes

File that contains sampling rates or population sizes:

§<Previous] l Finish ] l Cancel [n];8

Tobuild syntax, click the Finish buttan.




Click on the Finish button to open the following text editor window for cntdiag.prl.

cntdiag.PRL =N EcE

GlimOptions Converge=0.0001 MaxIter=100 MissingCode=-959%559
Response=Ascending RefCatCode=—1 IterDetails=No
Method=Fisher;

Title=Negative Binomial Model for ADSS Data;

Sy="cntdiag.lsf';

Distributicon=NBIN;

Link=LOG;

Intercept=Yes;

bepVar=cntdiag:

CoVars=sex race d;

Stratum=CENREG;

Cluster=FACTYPE;

Welght=A2TWAD;

Submit the analysis by clicking on the Run Prelis toolbar icon to open the text editor window for the
corresponding output file cntdiag.out.

2.4.1.6.2 Discussion of results — negative Binomial model
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A portion of the text editor window for cntdiag.out is shown below.

[ entdiag.oUT E=B (ol ™"
Estimated Regression Weights
Standard
Parameter Estimate Error z Value P Value
intcept 0.3302 0.0372 8 _8655 0.0000 =
sex 0.0619 0.0489 1.2653 0.2058
race_d 0.1167 0.0655 1.7822 0.0747
DISPERSN 0.0000 0.0330 0.0001 1.0000

A comparison of these results with those obtained for the Poisson-log model shows that the estimates are the
same, but that the standard error estimates are different. However, the conclusions are the same as those made
based on the results for the Poisson-log model.

The zero estimate of the dispersion parameter of the Negative Binomial distribution indicates that over-dispersion
seen with the Poisson distribution does not apply to this particular analysis. This finding is in agreement with the
Poisson scale estimate less than unity, which indicated the presence of under-dispersion rather than over-
dispersion.



2.4.2 GLIMs for continuous responses
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2.4.2.1 Introduction

In many research studies, the response variable of interest is a continuous variable. Examples of continuous
response variables are inpatient expenditure of medical interns, earnings of software engineers, insurance claim
costs, failure times of machine parts, total cholesterol scores of heart patients, aggregate loss dollars for life
insurance policies, etc. SurveyGLIM can also fit models with continuous response variables to complex survey or
simple random sample data. This feature is illustrated in this section by fitting a Normal-identity, 8 Gamma-log and
an Inverse Gaussian-log model to health data. A description of the specific data set follows.

2.4.2.2 The data

The data set forms part of the data library of the Medical Expenditure Panel Survey (MEPS). The MEPS is a
longitudinal national survey that is used to yield national estimates of health care expenses. During 1999,
background data and data on the health expenditures of a sample of 23,565 participants were obtained. The 1999
sample was stratified into 143 strata (VARSTR99) and into 460 PSUs (VARPSU99). The first portion of the data
set to be used (meps.Isf) is shown in the following LSF window.

[+ mepsist E=REC XY
TOTEXP99 | PERWT99F | VARSTR99 | VARPSU99 racex Rsex | Rpoyc99 |
1 78 141379 131.0 2.0 5.0 -1.0 30 -
2 88 17051.0 131.0 2.0 5.0 1.0 3.0 [
3 4.1 35737k 131.0 2.0 5.0 -1.0 3.0
4 4.1 358627 131.0 2.0 5.0 -1.0 3.0
b 6.7 194071 131.0 2.0 5.0 1.0 3.0
6 58 18499.8 131.0 2.0 5.0 -1.0 30
7 65 18499.8 131.0 2.0 5.0 -1.0 3.0
8 8.1 22394 b 136.0 1.0 5.0 -1.0 3.0
9 8.0 27009.0 136.0 1.0 5.0 1.0 3.0
10 4.7 251087 136.0 1.0 5.0 -1.0 3.0
11 8.1 17569.8 136.0 1.0 5.0 -1.0 3.0
12 5.1 214781 136.0 1.0 5.0 -1.0 3.0
13 70 2167 136.0 1.0 5.0 1.0 3.0
14 0.0 122547 1250 1.0 5.0 -1.0 5.0
15 0.0 17699.8 1250 1.0 5.0 -1.0 50 +
4 T 2

The following variables are used in the subsequent analyses.

VARSTR99 is the variance estimation stratum of the respondent.

FACTYPE is the variance estimation PSU of the respondent.

PERWTO9F is the final design weight of the respondent.

TOTEXP99 is the natural logarithm of the total health care expenditure of the respondent during 1999.

racex IS the value of a nominal variable for the race (1 for American Indian, 2 for Aleut or Eskimo, 3 for
Asian or Pacific Islander, 4 for black and 5 for white) of the respondent.

o inscov9 is the value of a nominal variable for the type of insurance coverage (1 for private, 2 for public
and 3 for uninsured) of the respondent during 1999.

o O O O O

More information on the MEPS and the data are available at
http://www.meps.ahrg.qov/Puf/PufDetail.asp?1D=93.



http://www.meps.ahrq.gov/Puf/PufDetail.asp?ID=93

2.4.2.3 The models

The sampling distributions

The probability density function of the Normal sampling distribution is given by

f (yk’/v‘kv'//):%exp(_zi(yk _ﬂk)zj
Yy 4

where y, denotes the response variable y for respondent k, x, denotes the mean of y, and y denotes the

dispersion parameter. The Normal distribution is symmetric about its mean. Two examples of non-symmetric
distributions are the Gamma and the Inverse Gaussian distributions. These distributions are used as statistical
models for continuous variables that only take positive values. In contrast to the normal distribution, which has
the same basic shape irrespective of the mean and variance, the Gamma and Inverse Gaussian can take many
different shapes depending on the mean and scale parameters. Both distributions are used in situations where the
variable being studied is roughly continuous but may be strongly skewed. The corresponding probability density
functions are given by

and

respectively.

The mean models
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The mean model for the Normal-identity GLIM is given by

e =+ BiXy + BoXo +oo ot B Xy

while the mean model for the Gamma-log and Inverse Gaussian-log GLIMs is given by
M= exp(a"'ﬂlxlk + Bo X +"'+ﬁrxrk)

where g, denotes the mean value of the response variable for respondent k , X, denotes the value of the j -th

predictor ( j=1,2,...,r) for respondent k, and «, £,, ..., B,, and S. denote unknown parameters. The two
specific mean models are given by

E[TOTEXPk] =a+ BiXy + ByXoy + BiXa + BaXay + BsXsi + BsXex
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and

E[TOTEXPk] = eXp(a + BXy + BoXo + BeXgy + BiXar + BoXor +136X6k)

where E[TOTEXP, | denotes the mean of the natural logarithm of the total medical expenditures during 1999
recorded for respondent k ; where x,, (1 for Aleut or Eskimo and 0 otherwise), x,, (1 for American Indian and
0 otherwise), X, (1 for Asian or Pacific Islander and O otherwise), x,, (1 for Black and 0 otherwise) denote
dummy variables for the race of respondent k . Note that x,, = X,, = X, = X,, =—1 for White respondents, who
serve as the reference category. Also, X;, (1 for any private insurance and 0 otherwise), and X, (1 for any public

insurance only and O otherwise) denote dummy variables for the insurance coverage category of respondent k .
Here x,, =X, =—1 represent respondents with no insurance coverage. Finally «, 5,, 5,, Bs, B., b5, and S

denote unknown parameters. In the case of the Gamma-log and Inverse Gaussian-log GLIMs, the ratio of means of
the natural logarithm of the total medical expenditures of Aleut or Eskimos may be expressed as

eXp(Of + B+ BsXs +136X6) _
eXp(a + % + ﬂsxe) B exp(ﬂl) .

Similarly, exp(5,), exp(5;), exp(B,) and exp(-p,— B, — B, —f,) denote the ratios of the means natural

logarithm of the total medical expenditures of American Indians, Asians or Pacific Islanders, Blacks and Whites
and other races respectively. In addition, exp(f,), exp(f,) and exp(—p; — ;) are ratios of the means natural

logarithm of the total medical expenditures of respondents with any private insurance, public insurance only and
no insurance respectively.

The estimated mean logarithmic total medical expenditures for respondent k follows as

E[TOTEXPK] = d+ﬁlxlk +ﬁzxzk +B3X3k +1é4x4k +:B5X5k +ﬁ6x‘6k

for the Normal-identity GLIM and as

Ié[TO-I-EXPk] = exp(o? + /5’1X1k + Bzxzk +ﬁ3X3k +/§4X4k +ﬁ5x5k +ﬁ6X6k)

for the Gamma-log and Inverse Gaussian-log GLIMs respectively where &, f,, /. ..., 5, denote the maximum
likelihood estimates of «, S, f,, ..., B respectively.

2.4.2.4 Analyzing normally distributed outcomes from complex survey designs

In this example, we are interested in exploring the linear relationship between a respondent's total health related
expenditure and his/her ethnicity and gender. To make the assumption of normality more plausible, we use the
natural logarithm of the total health care expenditure of the respondent during 1999 (TOTEXP99) as outcome. A
normal distribution with identity link function defines the GLIM model used in this case.



24241 Setting up the analysis

As in Section 3.4.1, the first step is to open the file meps.Isf in a LSF window. This is done as follows.

Use the Open option on the File menu of the root window of LISREL to load the Open dialog box. Select the Lisrel
Data (*.Isf) option from the Files of type drop-down list box. Browse for and open the file meps.Isf.

I3 —

@ LISREL for Windows - meps.|sf

File Edit Data Transformation Statistics Graphs Multilevel View Window
= = By & S A 7 Title and Options...
Distributions/Links...
B i Model Specification...
TOTEXP99 | PERWTY9F | VARSTRIS |V syrvey Design..
1 74 141379 1310 Y el
2 88 17061 .0 1310 20 50
3 41 357376 1310 20 50

We are now ready to use the SurveyGLIM menu to fit the Normal-identity GLIM to the data in meps.Isf. Select the
Title and Options option on the SurveyGLIM menu. Enter the descriptive title A Normal-ldentity Model for MEPS
Data into the Title string field to produce the following Title and Options dialog box.

tissing Data Value:

§uppress lterative Details

Fesponse Wariable Ordering

@) Ascending

Feference Category Code
:::g

Optimization Method
| (@) Fisher-Scoring

Additonal Output
[ Besidualfile

Title and Options ﬁ
I Title: Mormal_ldentity Madel for MEPS data
taximum Number of lterations: 100 =
Convergence Criterion: 0.0001
-399999

D Wariance Adjustment

(") Descending

() Newton-Raphsaon

[ Data file

| Net»> | | Coneel | |

ok |

Finigh buttan

To build syntax, proceed to the Survey Design screen and click the

Q

Since the default options will be used for this illustration, click on the Next button to go to the Distributions and

Links dialog box.

40
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r |
Distributions and Links ﬂ

Distribution type: [Normal VI

| Link function: [Identity VI

‘ Include intercept?

@) Yes ()Mo

| @ ves Fixed value;

| Estimate scale? ’None VI
I << Previous ] I MNext »» ] I Cancel ] [ (0] l
Tobuild syntax, proceed to the Survey Design screen and click the H
Finish button

The default values are correct, so click on the Next button to go to the Dependent and Independent Variables
dialog box. Specify the response variable, TOTEXP99, by selecting it from the Variables in data list box and then
by clicking on the Add button of the Dependent variable section. Specify the two categorical covariates, racex
and inscov9, by selecting them from the Variables in data list box and then by clicking on the Categorical button
of the Independent variables section to produce the following Dependent and Independent Variables dialog box.

r |
Dependent and Independent Variables il ﬁ
I YWariahles in data;
SEW Add 3> Dependentwvariakle:
FACEX —
TOTEXF99
| Botres
IMSCOEY —
TOTEXP33 Independentvariables:
FERWTI9F
VARSTREY [racex]
WARFSLISE Continuous »> [inscowvd]
Categorical >>
<< Remove
| Fre iahle:
I Add >> Erequency wanahble:

gPreviDus] I MNext x> ] I Cancel ] I 0K ]

|
<« Remove I:l ||
1
||
1
1
1
1
I
1
|

Tobuild syntax, proceed ta the Survey Design screen and click the
Finish buttan




Click on the Next button to load the Survey Design dialog box. Specify the stratum variable, VARSTR99, by
selecting it from the Vvariables in data list box and then by clicking on the Add button of the Stratification variable
section. Similarly, use the Add buttons of the Cluster variable and the Weight variable sections to specify the
cluster variable, VARPSU99, and the weight variable, PERWT99F, respectively to produce the following Survey

Design dialog box.
( Survey Design ﬁ

I Yariakles in data;

SE= Add > Stratification wariakle:
RACEX =
WARSTRIY
POVCATIS
INSCONWIY
TOTEXFI9
oo Add 3> Cluster variable:
WARPSLI9 WARFSLIGY
Raex
I Fpowcdd
inscond
I Add >> Weight variahle: I

PERWTI9F

|:|Einite Population Carrection Factor

Sampling rates Population sizes

gPreviDusl l Einish l l Cancel QK

Tobuild syntax, click the Finish buttan.

Since this completes the specification of our intended GLIM analysis, click on the Finish button to open the
following text editor window for meps.prl.

meps_16.pr =]l =]

GlimOptions Converge=0.0001 MaxIter=100 MissingCode=—9%93%9%9%3% ~
Response=Ascending RefCatCode=-1 IterDetails=No Method=Fisher;
Title=Normal Identity Model for MEPS data;

SY=meps.lsf;

Distribution=NOR;

Link=IDEN;

Intercept=Yes;

Scale=None;

DepVar=TOTEXPS99;

CoVars= race$ inscov95;

Stratum=VARSTRSS9;

CLUSTER=VARPSUSS;

Weight=PERWTSSF;

Click on the Run Prelis toolbar icon to submit the syntax file above and to obtain the output file meps.out.

24242 Discussion of results — Normal-identity model
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A portion of the output file meps.out is shown in the following text editor window.



[ mepsouT =N EoR >

Statistic Value Den. DF Num. DF P Value -
Adjusted Wald F 217 .5296 6 312 0.000000
Wald Chi-square 1326 .0937 6 0.000000

Note: The Wald F Test and Chi-square Statistics are statistics to test the
null hypothesis that all the regression weights are equal to zero.

Estimated Regression Weights

Standard
Parameter Estimate Error z Value P Value =
intcept 4 5940 0.0746 61.5852 0.0000
racex’ 0.0197 0.2135 0.0925 0.9263
racexz 0.1857 0.1972 0.9419 0.3462
racex3 -0.2684 0.1289 -2.0824 0.0373
racex4 -0.5333 0.0961 -5.5513 0.0000
inscov9l 0.7308 0.0380 19.2073 0.0000
inscov92 0.9958 0.0481 20.7010 0.0000
4 1l [S

The results above indicate that both the race and the insurance coverage category of a respondent exert a
statistically significant influence on the respondent’s total medical expenditures if a significance level of 5% is
used. In particular these results suggest that respondents with more comprehensive medical insurance coverage
(inscov9l = 1 or inscov92 = 1) spend, on the average, more on medical expenses than those who have less
comprehensive insurance coverage (inscov91 = inscov92 = -1). In addition, there is sufficient evidence that Whites
(racex1 to racex4 = -1) spend, on the average, more on medical expenses than American Indians, Eskimos, Asians
and Blacks.

Estimated outcomes for different groups
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By using the results above, the estimated model may be expressed as

E[TOTEXP, ] =4.59+0.02x, +0.19X,, —0.27x;, —0.53x,, +0.73, +1.00x,,

The estimated model above implies that the estimated mean health care expenditure for an Asian respondent with
no insurance (X, =1, X, =—1, X, =-1 and x, =X, =X, =0) is given by

exp(4.59-0.27—-0.73-1.00) = exp(2.59) = $13.33

Similarly, the estimated mean health care expenditures for an Asian respondent with any private insurance and
public insurance only follow as $156.39 and $204.69 respectively. For a White respondent with any private

insurance coverage (X, = X, = X5, = X, —1, X5, =1, and x,, = 0) the mean health care expenditures is estimated
as

exp(4.59—0.02-0.19+0.27 + 0.53+0.73) = exp(5.91) = $368.70.



Likewise, for a White respondent with public insurance the corresponding estimate is $482.99. This estimate of
average health care expenditures will only be accurate if the outcome variable has a normal distribution. An
analysis that takes the strongly skewed distribution of health care expenditures into account may produce quite
different estimates, as will be seen in the next example.

2.4.2.5 Analyzing skewed outcome variables from complex survey designs
(method 1)

The Normal-Identity GLIM assumes that the distribution of the response variable is symmetric about its mean. In
the case of skewed response variables, which only assume values greater than zero, the Gamma and Inverse
Gaussian sampling distributions will be more appropriate than the Normal distribution.

24.25.1 Setting up the analysis
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The Gamma-log model can be fitted interactively to the data in meps.Isf by replacing the Normal sampling
distribution with the Gamma sampling distribution. Before doing so, specify a different title by selecting the Title
and Options option on the SurveyGLIM menu to access the Title and Options dialog box and then entering the title
A Gamma-Log model for MEPS Data in the Title string field. Click on the Next button to go to the Distributions
and Links dialog box and select the Gamma option from the Distribution type drop-down list box to produce the
following Distributions and Links dialog box.

Distributions and Links ‘ ﬁ
Distribution type: |Gamma - |
Link function: |Log - |

Include intercept?

Q@ Yes Mo :
1
1
|
Yes Fixed walue: I
Estimate scale? |N0ne - | |
|
<< Previous | | Mext > | | Cancel | [ (0] 8

To build syntax, proceed to the Survey Design screen and click the
Finish button

Since this is all we need to modify, click on the Next buttons of the Distributions and Links and the Dependent
and Independent Variables dialog boxes and the Finish button of the Survey Design dialog box to open the
following text editor window for meps.prl.



meps_16.prl [= ][ E sl

GlimOptions Converge=0.0001 MaxIter=100 MissingCode=-59999% o)
REesponse=Ascending RefCatCode=-1 IterDetails=No Method=Fisher;
Title=Gamma Model for MEPS data;

SY¥=meps.lsf;

Distribution=cAM;

Link=LOG;

Intercept=Yes;

Scale=None;

DepVar=TOTEXPS%9;

CoVars= racex$ inscov$;

Stratum=VARSTR%%;

CLUSTER=VARPSUS9;

Weight=PERWT9%F;

Submit the syntax file above by clicking on the Run Prelis toolbar icon to generate the corresponding output file
meps.out.

2.4.25.2 Discussion of results — Gamma-log model
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A portion of the resulting output file is shown in the text editor window below.

[ meps.0UT =N Bon %
Statistic Value Den. DF Num. DF P Value -
Adjusted Wald F 129 _7844 4] 312 0.000000
Wald Chi-square 791.1854 4] 0.000000

Note: The Wald F Test and Chi-square Statistics are statistics to test the
null hypothesis that all the regression weights are equal to zero.

Estimated Regression Weights

Standard =
Parameter Estimate Error z Value P Value 1
intcept 1.4928 0.0169 88.3629 0.0000
racex’ 0.0098 0.0393 0.2498 0.8028
racex?2 0.0508 0.0465 1.0912 0.2752
racex3 -0.0554 0.0286 -1.9398 0.0524
racex4d -0.1194 0.0216 -5.5225 0.0000
inscov9l 0.1742 0.0091 19.0741 0.0000
inscov9?2 0.2235 0.0106 21.1522 0.0000

At first glance, comparing the parameter estimates produced by the Normal-identity model (which assumes a
normal distribution) and the Gamma-log model (which takes skewness in the outcome variable into account), it
seems as if the race-related effects are radically different between the two. If, however, we order the values of
the racex coefficients according to size, it turns out that for both the Normal-identity model and Gamma-log models
the ordering is the same. This result is not unexpected since there exists a monotone relationship between any set
of real numbers so that r, >r, — exp(r,) > exp(r,). Recall that for the identity link function

E[TOTEXPK] =a +ﬁ1X1k +ﬁ2X2k +ﬁ3X3k +ﬁ4x4k +ﬁ5X5k +ﬁ6x6k



whereas for the log-link function
E [TOTEXPk ] =exp (0? + leik + ﬁzxzk + Bsxsk + ﬁ4x4k + ﬂAsxsk + Bexek )

Substitution of the predictor values, using the appropriate parameter estimates, in any of the equations above,
shows that the expected total expenditure values do not differ substantially.

Estimated outcomes for different groups

The fitted model is given by
E[TOTEXP, | =exp(1.49+0.01x, +0.05x,, —0.06X,, —0.12X,, +0.17x,, +0.22x, ).

The estimated model above implies that the estimated mean health care expenditure for a White respondent with
No insurance (X, = X, = X5 = Xy = X5, = X, =—1) IS given by

exp(exp(1.49+-0.01-0.05+0.06+0.12—0.17-0.22)) = exp(1.22) = $29.58.

Similarly, the estimated mean health care expenditures for a White respondent with any private insurance and
public insurance only follow as $376.10 and $509.73 respectively. The results above also indicate that

exp(ﬁ;) :exp(—0.12) =0.88 which implies that, on the average, Black respondents spent 12% less on health
care in 1999 than other respondents. Similarly, it follows that exp(—,@5 —,@6) = exp(—0.39) =0.68 which implies

that, on the average, respondents with no insurance spent 32% less than other respondents on health care in 1999.

2.4.2.6 Analyzing skewed outcome variables from complex survey designs
(method 2)

To explore the relationship between a respondent's total health related expenditure and his/her ethnicity and level
of insurance coverage, we fit a GLIM model with inverse Gaussian distribution and log link function. Note that
the mean model of the Inverse Gaussian-log GLIM is identical to that of the Gamma-log GLIM.

2.4.2.6.1 Setting up the analysis
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Again, first modify the title by selecting the Title and Options option on the SurveyGLIM menu and entering the
title An Inverse Gaussian-Log Model for MEPS Data in the Title string field. Go to the Distributions and Links
dialog box by clicking on the Next button and select the Inverse Gaussian option from the Distribution type list
box to produce the following Distributions and Links dialog box.



Distribution type: ’Inverse Gaussian VI
Link function: [Log VI
Include intercept?
@) Yes @)
(@) ves Fixed value:
. b
Estimate scale? ’None V]
<< Previous l l Mext »> l l Cancel l [ QK. ]

To build syntax, proceed to the Survey Design screen and click the
Finish button

This completes our modifications. Click on the Next buttons of the Distributions and Links and the Dependent
and Independent Variables dialog boxes and the Finish button of the Survey Design dialog box to open the
following text editor window for meps.prl.

[ meps 6.1 e
GlimOptions Converge=0.0001 MaxIter=100 MissingCode=—-99999% ~
Response=Ascending RefCatCode=-1 IterDetails=No Method=Fisher;
Title=Inverse Gauss Hodel for MEPS data;

SY=meps.lsf;
Distribution=INVG;
Link=LOG;
Intercept=Yes;
Scale=None;
DepVar=TOTEXP%5;
CoVars= racex$ inscovs;
Stratum=VARSTRSS;
CLUSTER=VARPSUSS;
Weight=PERWTSSF;

The corresponding output file meps.out is obtained by clicking on the Run Prelis toolbar icon.

2.4.2.6.2 Discussion of results — Inverse Gamma-log model

Some selected results of the output file meps.out are shown in the following text editor window.
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[ mepsout E=REOR >

-~

Statistic Value Den. DF Num . DF P Value
Adjusted Wald F 95.9255 6 312 0.000000
Wald Chi-square 584 7765 6 0.000000

Note: The Wald F Test and Chi-square Statistics are statistics to test the
null hypothesis that all the regression weights are equal to zero.

Estimated Regression Weights

Standard L
Parameter Estimate Error z Value P Value 1
intcept 1.4956 0.0206 T2.6701 0.0000
racex’ 0.0090 0.0401 0.2250 0.8220
racexz2 0.0615 0.0620 0.9924 0.3210
racex3 -0.0577 0.0351 -1.6468 0.0996
racex4 -0.1271 0.0263 -4.8320 0.0000
inscov9 0.1729 0.0100 17.2380 0.0000
inscov9z2 0.2238 0.0117 19.0716 0.0000

Like the Gamma-log model, the Inverse Gaussian-log model produced results that were very different from the
Normal-identity model. Since the Gamma-log model and Inverse Gaussian-log model both take the skewed
distribution of the outcome variable into account, it is not surprising that they produced similar parameter
estimates, standard error estimates, and estimates of statistical significance in this example.

Estimated outcomes for different groups
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The estimated model follows from the results above as
E[TOTEXP, ] =exp(1.50+0.01x, +0.06x%,, —0.06X,, —0.13x,, +0.17x,, +0.22X,, )

The fitted model above implies that the estimated mean health care expenditure for a Black respondent with no
insurance (X, =1, X5 =X, =—1,and X, =X,, =X, =0) is given by

exp(exp(1.50-0.13-0.17-0.22)) =exp(2.69) = $14.74

Similarly, the estimated mean health care expenditures for a Black respondent with any private insurance and
public insurance only follow as $106.12 and $134.79 respectively. The results above also indicate that

exp([?z) = exp(0.06) =1.06 which implies that, on the average, American Indian respondents spent 6% more on

health care in 1999 than other respondents. Similarly, it follows that exp(/?s) = exp(0.17) =1.19 which implies

that, on the average, respondents with any private insurance spent 19% more than other respondents on health
care in 1999.



2.4.3 GLIMs for binary responses
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Binary response variables are often the focus of empirical studies. Examples of binary response variables are
diagnosis of breast cancer (absent or present), heart disease (yes or no), damage to solid rocket booster joints
(damage or no damage), and depression in substance abuse clients (yes or no), credit risk (good or bad), etc. The
analysis of GLIMs with binary response variables with SurveyGLIM is illustrated in this section. More specifically,
Bernoulli-logit and Binomial-logit models are fitted to substance abuse data.

SurveyGLIM can also fit models with binary response variables to either simple random sample or complex sample
data. This feature is illustrated in this section by fitting Bernoulli-logit and Binomial-logit models the substance abuse
data. In the special case of one trial for each observation, the Binomial distribution simplifies to the Bernoulli
distribution, and either distribution can be used. However, if a number of trials variable is available, the Binomial
distribution would be the appropriate choice.

2.4.3.1 The data

The data set forms part of the data library of the Alcohol and Drug Services Study and is described in section
3.4.1. The data set to be analyzed consists of the complete cases for a selection of variables and is provided as
the LSF abusel.Isf. The first portion of this data set is shown in the following LSF window.

[+ AbuseL.Isf =N <
depr sex race.d | CENREG | FACTYPE | A2twao | |

1 0.000 0.000 4.000 4.000 190700 =
2 0.000 0.000 0.000 4.000 2.000 371900 =
3 1.000 0.000 1.000 4.000 2.000 371.900
4 0.000 0.000 1.000 4,000 2.000 371.900
5 0.000 0.000 0.000 4.000 4.000 47.000
6 0.000 1.000 0.000 4.000 4.000 470000 -

The variables to be used in the subsequent GLIM analyses are

CENREG is the census region of the client (1 for Northeast, 2 for Midwest, 3 for South and 4 for West).

FACTYPE is the facility treatment type of the client (1 for residential treatment, 2 for outpatient methadone
treatment, 3 for outpatient non-methadone treatment and 4 for more than one type of treatment).

A2TWAO is the design weight of the client.

depr is the value of a dummy variable for the depression status (0 for no depression history and 1 for a
history of depression) of the client.

sex Is the value of a dummy variable for the gender (0 for male and 1 for female) of the client.
race_d is the value of a dummy variable for the race (0 for nonwhite and 1 for white) of the client.



2.4.3.2 The models

The sampling distributions

The sampling distribution of the Bernoulli-logit GLIM is the Bernoulli distribution whose probability density
function is given by

f (Vo) =md (1-7, )1_yk

where y, denotes the binary response variable y for respondent k and 7z, denotes the probability that y,

assumes a unit value. Another sampling distribution for binary response variables is the Binomial distribution,
which is the sampling distribution of the Binomial-logit GLIM and has the following probability density function

F(Yom)=(ny, ) 7" (-7, e

where n, denotes the number of trials. In the special case of one trial for each observation, the Binomial

distribution simplifies to the Bernoulli distribution. The number of trials for each observation is usually provided
as a variable of the data to which the Binomial-logit GLIMs are to be fitted. Similar to the Poisson sampling
distributions, a scale parameter can be used for the Binomial distribution to address under-dispersion or over-
dispersion (see Section 6.11).

The probability models

50

The general probability model for the Bernoulli-logit and Binomial-logit GLIMS may be expressed as

_ exp(a+,6’1x1k +...+,b’rxrk)
L+exp(a+ BXy +...+ BiXy)

k

where 7, denotes the probability that subject k has a unit value for the response variable, X, denotes the value

of the j-th predictor (j=1,2,...,r) forrespondent k ,and «, A, ..., 8., and g, denote unknown parameters.
The probability model for the specific Bernoulli-logit and Binomial-logit GLIMS is given by

P (depr, 1) = exp(a + f*sex, + B,*race_d, )
Phe =2 =14 exp(a + f*sex, + f,*race_d, )

where P(depr, =1) denotes the probability that client k has a history of depression and «, S, and f, denote

unknown parameters. The ratio of the probabilities that a female client (sex, =1) and a male client (sex, =0)
has a history of depression respectively follows as

exp(a+ f, + By *race_d) _ exp(5.)
1+exp(a + B,*race_d) '




In a similar fashion, it follows that exp(3,) is the ratio of the probabilities that a white client and a nonwhite
client have a history of depression respectively. The corresponding estimated model follows as

exp(o} + fB*sex, + p,*race_d, )

P(depr, =1) = _ _
(depr, =1) 1+exp(o}+ﬁl*sexk+,Bz*race_dk)

where If’(deprk :1) denotes the estimated probability that client k has a history of depression and « ﬁl and
3, denote the maximum likelihood estimates of «, 3, and 3, respectively.

2.4.3.3 Analyzing binary outcomes from complex survey designs (method 1)

To explore a potential link between depression and a respondent’s gender and ethnicity, a GLIM with Bernoulli
distribution and logit link function is fitted to the data described above. The Bernoulli distribution is used since
the outcome variable, depr, is dichotomous (0 for no depression history and 1 for a history of depression).

24.33.1 Setting up the analysis

We first open the file abusel.Isf in a LSF window using the the Open option on the File menu of the root window
of LISREL to load the Open dialog box and selecting the Lisrel Data (*.Isf) option from the Files of type drop-down
list box.

I LISREL for Windows - Abusel.Isf *.mmm.@-ﬁ
S —— r— r—

File Edit Data Transformation Statistics Graphs Multilevel View Window Help
O = e By 3 =31 Title and Options...
Distributions/Links...
DAbusel.lsf Model Specification... E@ ||
depr sex | race_d | Survey Design.. A2 TWAD
1 0.000 0.000 R vy ERvivly 190 700 -
2 0.000 0.000 0.000 4,000 2.000 371.800 3 I
3 1.000 0.000 1.000 4000 2000 371.900
4 0000 0.000 1.000 4000 2.000 371,900
b 0.000 0.000 0.000 4000 4.000 47 000
6 0.000 1.000 0.000 4,000 4.000 47.000 - I

We can now use the SurveyGLIM menu to fit the Bernoulli-logit GLIM to the data in abusel.lsf. First, select the Title
and Options option on the SurveyGLIM menu to go to the Title and Options dialog box. Enter the title A Bernoulli-
Logit Model for ADSS Data into the Title string field to produce the following Title and Options dialog box.
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i |
Title and Options ‘ u

Title: A Bemoulli-Logit Model based on the ADSE data

-

baximum Number of terations: 100

-

Convergence Criterion: 0.0001
tissing Data Value: -395933
[V Suppress lterative Details ["|variance Adjustment

Fesponse Wariable Ordering

@) Ascending (") Descending
Feference Category Code
@il @-1

Optimization Method
(@) Fisher-Scoring () Newton-Raphson

Additonal Output
[ Residualfile [ Data file

| Net»> | | Caneel | [ oK

To build syntax, proceed to the Survey Design screen and click the
Finish button

Click on the Next button to access the Distributions and Links dialog box and select the Bernoulli option from the
Distribution type drop-down list box to produce the following Distributions and Links dialog box.

Distributions and M -S|

Distribution type: [Elernoulli v]

Link function: [Logit VI

Include intercept?

@ ¥es Mo

Estirmate dispersion?

(@) Yes Fixed walue:
Estitmate scale? Mane -
<< Previous l l et >3 ] l Cancel l [ QK

To build syntax, proceed to the Survey Design screen and click the
Finish buttan

Click on the Next button to go to the Dependent and Independent Variables dialog box.
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Specify the response variable depr by selecting it from the Vvariables in data list box first and then clicking on the
Add button of the Dependent variable section. Specify the covariates, sex and race_d, by selecting them from the
Variables in data list box and clicking on the Continuous button of the Independent variables section to produce
the following Dependent and Independent Variables dialog box.

r ——
Dependent and Independent Variables M

Yariakles in data;

depr Add »> Dependent variahle:
CEMREG
FACTYPE Independentvariables:
AZTWWA
SEX
Continuous >> race_d
Categorical »»
<< Remove |
Add >» Erequency wariable:
1
gPreviDusl l MNext x> ] l Cancel l l QK

To build syntax, proceed to the Survey Design screen and click the
Finigh buttan

Click on the Next button to access the Survey Design dialog box. Specify the stratification variable, CENREG, by
selecting it from the variables in data list box first and then clicking on the Add button of the Stratification variable
section. Similarly, specify the cluster variable, FACTYPE, and the weight variable, A2TWAO0, by using the Add
buttons of the Cluster variable and the Weight variable section to produce the following Survey Design dialog
box.



i |

Yariables in data:
depr Add »» Stratification variahle:

sex CENPEG
race_d << Bemowve

CENREG
FACTYPE
AZTWAD

Add >> Clusterwariahle:

FACTYFE
<< Remowve

Add >> Weightwariable:

AZTWAD
<< Remowve

[] Einite Population Carrection Factor

(@) Sampling rates Population sizes

File that contains sampling rates or population sizes:

i(F’revious] l Finish l l Cancel

To build syntax, click the Finish buttan.

As this concludes our specifications, click on the Finish button to open the following text editor window for
abusel.prl.

AbuselPRL o[- )

GT1imOptions Converge=0_0001 MaxIter=100 MissingCode=-999999 -
Respanse=Ascending RefCatCode=-1 IterDetai]s=N0|Hethoszisher; N
Title=A Bernoulli-Logit Model based on the ADSS data;
SY="C:\LISRELY9 Examples\SGLIMEX\Abusel 1sfT';
Distribution=BER;

Link=LOGIT;

Intercept=Yes;

DepVar=depr;

CoVars=sex race_d;

Stratum=CENREG;

Cluster=FACTYPE; =
We1ght=A2TWAD ; -

i

Submit the syntax file above by clicking on the Run Prelis toolbar icon to obtain the output file abusel.out.

2.4.3.3.2 Discussion of results — Bernoulli-logit model

A portion of the output file abusel.out is shown in the following text editor window.
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[ Abuse1.0UT o B ]

e

Statistic Value Den. DF Num. DF P Value
Adjusted Wald F 20.4938 2 7 0.001185
Wald Chi-square 46 .8429 2 0.001185

Note: The Wald F Test and Chi-square Statistics are statistics to test the
null hypothesis that all the regression weights are equal to zero.

Estimated Regression Weights

Standard =
Parameter Estimate Error z Value P Value
intcept -0.1433 0.2337 -0.6133 0.5397
sex 0.6949 0.1332 5.2166 0.0000
race_d -0.5683 0.1735 -3.2758 0.0011
4 1 [ 3

The results above indicate that both the gender and the race of clients have a statistically significant influence on
their depression status if a significance level if 5% is used. There is sufficient evidence to conclude that female
clients (sex = 1) are more likely than male clients to have a depression history and that white clients (race_d = 1)
are less likely than nonwhite clients to have a history of depression.

Estimated outcomes for different groups
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The estimated model is obtained from the results above as

_ exp(-0.14+0.70*sex, —0.57*race_d, )
~ 1+exp(-0.14+0.70*sex, —0.57*race_d, )

P (depr, =1)

The estimated probability that a nonwhite female client (sex, =1 and race_d, =0) has a history of depression
follows from this fitted model as

exp(-0.14+0.70)  exp(0.56)

= =0.64
1+exp(-0.14+0.70) 1+exp(0.56)

Similarly, the estimated probability that a nonwhite male client has a history of depression follows as 0.47. From
the results above, it follows that exp(,@l) = exp(0.70) = 2.01 which implies that female clients are twice as likely

as male clients to have a history of depression. Similarly, exp(,@l) = exp(—0.57) =0.57 implies that whites are

43% less likely than nonwhites to have a history of depression.

2434 Analyzing binary outcomes from complex survey designs (method 2)

In this example, we illustrate that a GLIM with a Binomial distribution is identical to a GLIM with a Bernoulli
distribution when the number of trials is one for each observation. If the NTrials command is omitted from the
syntax file, the number of trials will automatically be set to unity.



24341

We fit the Binomial-logit GLIM to the data in abusel.Isf by specifying the Binomial sampling distribution instead
of the Bernoulli sampling distribution. First, however, select the Title and Options option on the SurveyGLIM
menu to go to the Title and Options dialog box and enter the title A Binomial-Logit Model for ADSS Data into the
Title string field. Click the Next button and select the Binomial option from the Distribution type drop-down list

Setting up the analysis

box to produce the following Distributions and Links dialog box.

Distributions and Links ﬁ
Distribution type: [Elinomial v]
Link function: [Logit VI

Include intercept?

Q@ Yes (D)Mo
Yes Fixed walue:
Estimate scale? [None V]
<< Previous l l et >3 ] l Cancel l [ QK

Tobuild syntax, proceed to the Survey Design screen and click the
Finish buttan

Click on the Next button and add the variable intcept as the NTRIALS variable.
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i |
Dependent and Independent Variables ﬁ

Yariables in data:

i depr Add »> Dependentvariable: i
gax —
depr
oo
CEMREG
FACTYPE Independent variahlas:
SEX
Continuous > race_d
Categorical >»
N
<« Remowve
||
I N
| .
Add >> Frequency variahle: I
| < Bemowve
Add 3> MNTrials Variahle:
|
[5( Presious l l Mext »» l l Cancel l l oK l

To build syntax, proceed to the Survey Design screen and click the
Finish button

Since these are the only changes we needed to specify, click on the Next button of the Dependent and Independent
Variables dialog box and the Finish button of the Survey Design dialog box to open the following text editor
window for abusel.prl.

[+ Abusel.PRL = Eol <"

GlimOptions Converge=0.0001 MaxIter=100 MissingCode=-999999 -
Response=Ascending RefCatCode=-1 IterDetails=No Method=Fisher; I
Title=A Binomial-Logit Model based on the ADSS data;
SY="C:\LISREL9 Examples\SGLIMEX\Abusel 1sf';
Distribution=BIN;

Link=LOGIT;

Intercept=Yes;

Scale=None;

DepVar=depr

CoVars=sex race_d;

NTrials=Intcept;

Stratum=CENREG;

Cluster=FACTYPE;

Weight=A2TWAO ; b
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Submit abusel.prl by clicking on the Run Prelis toolbar icon to generate the corresponding output file abusel.out.



2.4.3.4.2 Discussion of results — Binomial-logit model

A selection of the results in the output file abusel.out is shown in the following text editor window.

[ Abuse1.0UT =8 Eol ™
Statistic Value Den. DF Num . DF P Value -
Adjusted Wald F 20.4937 2 7 0.001185
Wald Chi-square 468428 2 0.001185

Note: The Wald F Test and Chi-square Statistics are statistics to test the
null hypothesis that all the regression weights are equal to zero.

Estimated Regression Weights

Standard =
Parameter Estimate Error z Value P Value
intcept -0.1433 0.2337 -0.6133 0.5397
sex 0.6949 0.1332 5.2166 0.0000
race_d -0.5683 0.1735 -3.2758 0.0011
4 1l 3

We note that the results above are identical to those obtained for the Bernoulli-logit GLIM. Hence, the conclusions
based on the results above are identical to those reported for the Bernoulli-logit GLIM results. The reason for the
identical results is that the number of trials was set to unity for each observation, in which case the Binomial
sampling distribution simplifies to the Bernoulli sampling distribution.

2.4.4 GLIMs for ordinal responses using substance abuse data
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Researchers are often involved in studying ordinal response variables such as mental impairment (well, mild
symptom formation, moderate symptom formation or impaired), patient satisfaction measured on a 5-point Likert
scale, severity of lower back pain (none, mild, moderate or severe), arthritis improvement (none, some or
marked), etc. In this section, we illustrate generalized linear modeling for ordinal response variables with
SurveyGLIM. Cumulative logit and cumulative probit models are fitted to substance abuse data. Both logit and probit
models usually lead to the same conclusion for the same data. Guidelines on when either of these models would
be the more appropriate choice for given data are still being debated.

2.4.4.1 The data

The data set comes from part of the data library of the Alcohol and Drug Services Study (ADSS) and is described
in section 2.4.1.2. The data set to be analyzed consists of the complete cases for a selection of variables and is
provided as the LSF cntdiag.Isf. The first portion of this data set is shown in the following LSF window.



l; cntdiag.lsf EI@

cntdiag sex race_d | CENREG | FACTYPE | A2TwA0 ||
1 0.000 0.000 4.000 4.000 190.700
2 0.000 0.000 0.000 4.000 4.000 44.300 [=
3 0.000 0.000 0.000 4.000 4.000 44.300
4 0.000 1.000 0.000 4.000 4.000 44.300
5 0.000 0.000 0.000 4.000 4.000 44.300
6 0.000 0.000 0.000 4.000 4.000 44.300
7 0.000 0.000 0.000 4.000 4.000 44,300
8 0.000 0.000 0.000 4.000 4.000 44.300
9 0.000 0.000 0.000 4.000 4.000 44.300
10 0.000 0.000 1.000 4.000 2.000 371.900 -

A brief description of the variables to be used in the subsequent GLIM analyses follows.

CENREG is the census region of the client (1 for Northeast, 2 for Midwest, 3 for South and 4 for West).

FACTYPE is the facility treatment type of the client (1 for residential treatment, 2 for outpatient methadone
treatment, 3 for outpatient non-methadone treatment and 4 for more than one type of treatment).

A2TWAO is the design weight of the client.

cntdiag is the number of abuse diagnoses of the client (0, 1, 2 or 3).

sex is the value of a dummy variable for the gender (0 for male and 1 for female) of the client.
race_d is the value of a dummy variable for the race (0 for nonwhite and 1 for white) of the client.

© O O O

2.4.4.2 The models

The sampling distribution

The sampling distribution of the cumulative logit and cumulative probit models is the Multinomial distribution whose
probability density function is given by

p-1

oo g )

where y, denotes the vector of dummy variables for the p categories of the categorical response variable y for
respondent k, 7, denotes the probability that category | is recorded for client k and =, =[7,, 7, --- 7, |

The probability models

The general probability models for the cumulative logit and cumulative probit models are given by
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P exp(e, + Xy +---+ B.X,
”klzzﬁkm_ ( I 1 X k)

= 1=12,...,p-1
m=1 1+eXp(05| + B Xy +~--+ﬂrxrk)

and

|
Mg =D T =Dy + BXy +. 4 BXy ) 1=12,..,p-1
m=1

respectively where 7, denotes the probability that category m is recorded for subject k , x;, denotes the value
of the j-th predictor (j=12,...,r) for subject k, &, @, ..., a,,, B, ..., By, and B, denote unknown
parameters and ®(-) denotes the cumulative distribution function of the standard Normal distribution. For

illustrative purposes, the response variable cntdiag is treated here as ordinal rather than a count variable. The
probability models for the specific cumulative logit and cumulative probit models are given by

exp (e, + B,*sex, + f,*race_d, )
1+exp(a, + f,*sex, + B,*race_d, )

P(cntdiag, <I)= =123

and
P(cntdiag, <I)=® (¢, + B,*sex, + B,*race_d,) 1=1,2,3

respectively where P(cntdiag, <I) denotes the cumulative probability that category | was recorded for client

k and ¢, a,, a;, p, and S, denote unknown parameters. The specific probabilities for each response category
for client k for both these models may be obtained from the following expressions.

P(cntdiag, =1) = P(cntdiag, <1)
P(cntdiag, = 2) = P(cntdiag, <2)-P(cntdiag, <1)
P(cntdiag, =3) =P (cntdiag, <3)-P(cntdiag, <2).

In the case of the cumulative logit model, the ratio of the odds in the first | categories for a female client (sex, =1
) and a male client (sex, =0) respectively follows as

exp (e + B, + B, *race_d) _ exp(4,)
exp(e, + B,*race_d) '

Similarly, it follows that exp(/3,) is the ratio of the odds for a white client and a nonwhite client respectively.
The corresponding estimated probability models are given by

exp(d, + S, *sex, + p,*race_d, )

P(cntdiag, <I)= 1=1,2,3

1+ exp(o}I + B *sex, + f3,*race_d, )
and

P(cntdiag, <I1)= CD(o}l + f3*sex, +,32*race_dk) 1=1,2,3



respectively where I5(cntdiagk < I) denotes the estimated cumulative probability that at most the number of

diagnoses listed in the first | categories are recorded for client k and @&, &,, 4,, 4, and f3, denote the
maximum likelihood estimates of «,, «,, a,, £, and S, respectively.

2.4.4.3 Analyzing ordinal outcomes from complex survey designs (method 1)
In a previous example, a GLIM with a Poisson distribution and a log link function was used to examine the possible
association between ethnicity and gender effects and the number of substance abuse diagnoses (cntdiag). Since
this variable assumes values between 0 and 3 in the sample data, an alternative approach is to examine the

strength of the relationship between the predictors and the cumulative number of diagnoses. A GLIM with a
multinomial distribution and a cumulative logit link function may be used for this purpose.

24.43.1 Setting up the analysis
We start by opening the data file to be processed, cntdiag.Isf, in a LSF window.

File Edit Data Transformation Statistics Graphs Multilevel | SurveyGLIM | View Window Help

O = e By S A ? Title and Options...
0 T | & Distributions/Links...
Model Specification... - "
|: cnidiagsf Survey DF;sign... E@
cntdiag Sex | race_d | CENREG | FACTYFE ] A2TWAD
1 0000 0000 4000 4000 190700 -
2 0.000 0.000 0.000 4.000 4.000 44 300 |=
3 0.000 0000 0000 4000 4000 44 300

Next, we specify the analysis as follows. Select the Title and Options option on the SurveyGLIM menu to go to
the Title and Options dialog box. Then enter the title A cumulative logit model into the Title string field to produce
the following Title and Options dialog box.
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-

Title and Options

Title:  Cumulative logit model fitted 10| ADSS data

taximum Number of lterations: 100 =
Convergence Criterion: 0.0001
-399999

tissing Data Value:

§uppress lterative Details Dyariance Adjustment

Fesponse VWariable Ordering
| @) Ascending (") Descending
I
| Feference Category Code
| o @1
|
| Optimization Method
|| (@) Fisher-Scoring () Newton-Raphson
|

Additonal Output

[ Residualfile [ Data file
l Mext »> l l Cancel l [ Ok

To build syntax, proceed to the Survey Design screen and click the
Finish button

Click on the Next button to access the Distributions and Links dialog box and select the Multinomial option from
the Distribution type drop-down list box and the Ordinal logit option from the Link function drop-down list box
to produce the following Distributions and Links dialog box.

Distributions and Linw @
Distribution type: ’Multinomial VI
Link function: ’Ordinallugit VI
Yes Mo
Yes Fixed walue:

Click on the Next button to go to the Dependent and Independent Variables dialog box. Specify the response
variable cntdiag by selecting it from the Variables in data list box first and then clicking on the Add button of the
Dependent variable section. Specify the covariates, sex and race_d, by selecting them from the variables in data
list box and clicking on the Continuous button of the Independent variables section to produce the following
Dependent and Independent Variables dialog box.
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i - |
Dependent and Independent Variabl_es‘ M

“ariables in data:

chtdial Add »> Dependentwariakble:
= b
| E—

CENREG
FACTYPE Independent ariables:
AZTWAT

sEx

race_d

Continuous »»

Cateqorical >>

<< Remove

Add »> Frequency varishle:

<< RBemove I:l

g(PreviDus] l MNext »» ] [ Cancel ] l (0]

To build syntax, proceed to the Survey Design screen and click the
Finish buttan

Click on the Next button to access the Survey Design dialog box. Specify the stratification variable, CENREG, by
selecting it from the variables in data list box first and then clicking on the Add button of the Stratification variable
section. Similarly, specify the cluster variable, FACTYPE, and the weight variable, A2TWAO0, by using the Add
buttons of the Cluster variable and the Weight variable sections respectively to produce the following Survey
Design dialog box.

Survey DesigrlA u

Yariakles in data;
chidiag Add >> Stratification variahle:
sEx CEMNREG
| CEMREG

Add >> Cluster wvariable:

FACTYPE

Add >3 Weight wariable:

AZTWAND

|:|Einite Population Carrection Factor

(@) Samgling rates Population sizes

File that contains sampling rates ar population sizes:

gPreviDusl ’ FEinish l ’ Cancel QK

To build syntax, click the Finish buttan.




Since our desired analysis is now specified, click on the Finish button to open the following text editor window
for cntdiag.prl.

GlimOptions Converge=0.0001 MaxIter=100 MissingCode=—9%%%5%
Response=Ascending RefCatCode=-1 IterDetails=No Method=Fisher;
Title=Cumulative logit fitted to ADSS data;

Sy=xntdiag.lsf;

Distribution=MUL;

Link=0LOGIT;

DepVar=cntdiag;

CoVars= sex race_d;

Stratum=CENREG;

CLUSTER=FACTYPE;

Weilght=RZ2TWAO;

Click on the Run Prelis toolbar icon to submit the syntax file above to obtain the output file cntdiag.out.

2.4.4.3.2 Discussion of results — Cumulative-logit model
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A portion of the output file cntdiag.out is shown in the following text editor window.

[+ entdiag.oUT E=RECN %"
Statistic Value Den. DF Num . DF P Value -
Adjusted Wald F 1.7497 2 7 0.241973
Wald Chi-square 3.9993 2 0.241973

Note: The Wald F Test and Chi-square Statistics are statistics to test the
null hypothesis that all the regression weights are equal to zero.

Estimated Regression Weights

Standard
Parameter Estimate Error z Value P Value =
Alpha1 1.6891 0.3154 -5.3554 0.0000
Alphaz 0.3493 0.1650 2.1172 0.0342
Alpha3 1.9046 0.1348 14 1297 0.0000
sex -0.2012 0.2157 -0.9330 0.3508
race_d -0.3943 0.2020 -1.9518 0.0510

At a 5% level of significance the results above indicate that there is insufficient evidence that gender and race
affect the cumulative probabilities of the number of diagnoses of clients. Although the results for race_d border
on statistical significance, interpreting the test of the parameter estimate precisely is consistent with the non-

significance of the omnibus test of the model (see the Wald F-test and Wald y° -statistic).



Estimated outcomes for different groups

Since ¢, =—1.69, the estimated probability that a white female client (race, =1 and sex, =1) has no diagnoses
follows from the results above as

A . ~ . exp(-1.69-0.20-0.39
P(cntdiag, =1)=P(cntdiag, <1)= 1+eF>)<f:)(—1 59-020-0 323) =0.09

Similarly, the estimated probabilities that a white female client has at most 1 diagnosis and 2 diagnoses follow
as 0.44 and 0.79 respectively. These estimated cumulative probabilities imply that the estimated probabilities
that a white female client has 1 diagnosis, 2 diagnoses and 3 diagnoses are 0.44 - 0.09 = 0.35, 0.79 - 0.44 =0.35
and 1 - 0.09 - 0.35 - 0.35 = 0.21 respectively. The effect estimates, 3, =—0.20 and £, =—0.39, suggest that the
cumulative probability starting at the no diagnoses end of the scale decreases for both females and whites. Given
the race of a client, the estimated probability of a number of diagnoses below any level for a female client is
exp(—0.20) = 0.82 times the estimated probability for a male client. Similarly, given the gender of a client, the

estimated probability of a number of diagnoses below any level for a white client is exp(—0.39) = 0.68 times the
estimated probability for a nonwhite client.

2.4.4.4 Analyzing ordinal outcomes from complex survey designs (method 2)

In the previous example we examined the strength of the relationship between ethnicity, gender, and the
cumulative number of substance abuse diagnoses. A GLIM with a multinomial distribution and a cumulative logit
link function was used to do so. To study the effect of using a different type of link function, a probit link function
is used here.

24.4.4.1 Setting up the analysis
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We fit the cumulative probit model to the data in cntdiag.Isf by specifying the cumulative probit link function instead
of the cumulative logit link function. This is accomplished as follows. First modify the title by selecting the Title
and Options option on the SurveyGLIM menu to go to the Title and Options dialog box and enter the title A
cumulative probit model into the Title string field. Then click on the Next button to access the Distributions and
Links dialog box and select the Ordinal probit option from the Link function drop-down list box to produce the
following Distributions and Links dialog box.



r - —
Distributions and Links ﬁ
— -
Distribution type: ’Multinomial VI
Link function: [Ordinal probit VI
| |
es Mo
i
|| @) ves Fixed value:
N
-
<< Previous l l Mext »> l l Cancel l [ QK.

To build syntax, proceed to the Survey Design screen and click the
Finish button

Since this concludes the modifications, click on the Next buttons of the Distributions and Links and the Dependent
and Independent Variables dialog boxes and the Finish button of the Survey Design dialog box to open the
following text editor window for cntdiag.prl.

GlimOptions Converge=0.0001 MaxTter=100 MissingCode=-95%5%9%9%
REesponse=Ascending RefCatCode=-1 IterDetails=No Method=Fisher;
Title=Cumulative probit fitted to ADSS data;
S¥=cntdiag.lsf;

Distribution=MUL;

Link=0PROBIT;

DepVar=cntdiag;

CoVars= sex race d;

Stratum=CENREG;

CLUSTER=FACTYPE;

Weight=R2TWAD;

Click on the Run Prelis toolbar icon to submit cntdiag.prl to generate the corresponding output file cntdiag.out.

2.4.44.2 Discussion of results — Cumulative-probit model

A portion of the output file cntdiag.out is shown in the following text editor window.
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| [ entdiag.OUT = EEE =™

Statistic Value Den. DF Num. DF P Value -
Adjusted Wald F 1.1546 2 T 0.368684
Wald Chi-square 2.6391 2 0.368684

Note: The Wald F Test and Chi-square Statistics are statistics to test the
null hypothesis that all the regression weights are equal to zero.

Estimated Regression Weights

Standard A
Parameter Estimate Error z Value P Value I
Alpha 1.0128 0.1708 5.9290 0.0000
Alpha2 0.2017 0.1017 1.9841 0.0472
Alpha3 1.1214 0.0766 146398 0.0000
sex -0.1036 0.1255 -0.8250 0.4094
race_d -0.1884 0.1171 -1.6082 0.1078
4 i1l »

A comparison of the results above with those obtained for the cumulative logit model indicates that although they
differ, the same conclusions about the effect of gender and race on the cumulative probabilities of the number of
diagnoses apply.

Since ¢, =-1.01, the estimated probability that a nonwhite male client (race_d = 0, sex = 0) has no diagnoses
follows from the results above as

P(cntdiag, =1) =P (cntdiag, <1)=®(-1.01)=0.16

Similarly, the estimated probabilities that a nonwhite male client has at most 1 diagnosis and 2 diagnoses follow
as 0.58 and 0.87 respectively. These estimated cumulative probabilities imply that the estimated probabilities
that a white female client (race_d = 1, sex = 1) has 1 diagnosis, 2 diagnoses and 3 diagnoses are 0.58 - 0.16 =

0.42, 0.87 - 0.58 = 0.29 and 1 - 0.16 - 0.42 - 0.29 = 0.13 respectively. The effect estimates, 4, =-0.10 and

A

S, =—0.19, suggest that the cumulative probability starting at the no diagnoses end of the scale decreases for
both females and whites.

2.4.5 GLIMs for nominal responses using NHIS data
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SurveyGLIM can also be used to fit models to nominal response variables. The primary food choice of alligators
(fish, invertebrate, reptile, bird or other), smoking status (never smoked, former smoker or current smoker),
preference for U.S. President (Democrat, Republican or Independent), cancer type of female cancer patients
(breast, lung, brain, leukemia, liver, colon or other), etc. are examples of nominal response variables. In this
section, we illustrate this feature by fitting a generalized logistic model to health-related data. A description of the
data follows.



2.45.1 The data

The data set comes from the data library of the National Health Interview Survey (NHIS). The NHIS is a national
longitudinal health survey. During 2002, background data and data on the health conditions of a sample of 28,737
participants were obtained. The 2002 sample was stratified into 64 strata and into 601 PSuUs. The first portion of
the data set to be used is shown in the following LSF window.

More information on the NHIS and the data are available at
http://www.cdc.gov/nchs/about/major/nhis/quest data related 1997 forward.htm

[ NIHLIst E=NEOR >N
VYEAR AGE SEX USETOBAC | PRIMCARE | PASTVIS | INJURY |
1 360 20 0.0 1.0 3.0 00 -
2 2002.0 210 20 1.0 1.0 3.0 0.0 5
3 2002.0 20 20 20 1.0 3.0 0.0
4 2002.0 b20 1.0 0.0 1.0 2.0 0.0
b 2002.0 13.0 20 3.0 1.0 3.0 1.0
6 2002.0 350 20 3.0 1.0 3.0 0.0
7 2002.0 820 1.0 20 1.0 0.0 0.0
8 2002.0 300 1.0 0.0 1.0 20 0.0
9 2002.0 730 20 2.0 1.0 3.0 0.0
10 2002.0 380 20 0.0 1.0 20 00 -
4 (1 2

The variables to be utilized in the subsequent analyses are

CSTRATM is the stratum of the participant.
CPSUM is the PSU of the participant.
PATWT is the design weight of the participant.

PASTVIS is the value of a nominal variable for the number of visits to a medical doctor during the past 12
months (1 for blank, 2 for none, 3 for 1-2 visits, 4 for 3-5 visits, 5 for 6 or more visits, 6 for unknown
and 7 for not ascertained) of the participant.

AGE is the age of the participant.

EXERCISE is the value of a dummy variable for the exercise status (0 for do exercise and 1 for do not
exercise) of the participant.

o O O O

O

2.45.2 The models

The sampling distribution

68

The sampling distribution of the generalized logistic model is the Multinomial distribution whose probability
density function is given by

p-1

n! p-1 Yidi

f(y)(nyjizyj(njﬂlzJ



http://www.cdc.gov/nchs/about/major/nhis/quest_data_related_1997_forward.htm

where y, denotes the vector of dummy variables for the p categories of the categorical response variable y for
respondent k , 7, denotes the probability that client k responded with category | and =, =[7,, 7, --- 7, |

The probability model
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The general probability model for the generalized logistic model is given by

eXp(oﬁ + By Xy +“‘+ﬂrlxrk)
p-1
1+ exp(oy + ByXy +---+ ByiXy)

1=1

1=12,...,p-1

kI —

where 7, represents the probability that client k responded with category I, x; denotes the value of the j -th
predictor (j=1,2,...,r) for subject k and &, a,, ..., @, 4, By, Bas - Bipar s By Bray o and B
denote unknown parameters.

The probability model for the specific generalized logistic model is given by

exp(a, + B, AGE, + 3, EXERCISE, )
6

P(PASTVIS, =1)= 1=12,...,6

1+ exp(a, + B, AGE, + 5, EXERCISE, )
1=1

where P(PASTVIS, =1) denotes the probability that client k responded with category I, and a,, ,, a;, a,,
as, A, Py By By By Bisy Bisr Pus Py Baay By Bos a0d By denote unknown parameters.

The corresponding estimated probability model is given by

exp(d, + B, AGE, + /3, EXERCISE, )

P(PASTVIS, =1)= 1=12,...,6

6 A ~
1+ exp(é + B, AGE, + /3, EXERCISE, |

1=1

where |3>(PASTVISk =1) is the estimated probability that client k responded with category I, and &, , &,, d;,

Gy, s, Gy Bis B Bss Bus Buss B Bous B Brss Bosr Bos @nd B, denote the maximum likelihood
estimates of a,, a,, a3, @y, &, &, Pus By Bias Pus Piss Bisr Pous Baos Pass Prs Bos and Sy respectively.

2.4.5.3 Analyzing nominal outcomes from complex survey designs

In this example, we wish to examine the effect of exercise and age on the number of visits (PASTVIS) to a medical
doctor during the past 12 months. Since the last two categories of the outcome variable are defined as "unknown"
and "not ascertained”, PASTVIS is a nominal variable. A suitable GLIM model is obtained by specifying a
multinomial distribution with logit link function.



2453.1 Setting up the analysis

Before the specific analysis can be specified, we need to open the file nih1.Isf in a LSF window. Continue by
selecting the Title and Options option on the SurveyGLIM menu to access the Title and Options dialog box and
entering the title A Multinomial-Logit Model into the Title string field to produce the following Title and Options

dialog box.

|

|

Title:

Maximum Number of terations:
Cormvergence Criterion:

Missing Data Value:

§uppress lterative Details

Response Variable Ordering
@) Ascending

Feference Category Code

Optimization Method
(@) Fisher-Scoring

Additonal Output
[ Residualfile

Multinomial-logit model fited to NHIS data.

100 =

0.0001

-993939

|:| Wariance Adjustment

_ Descending

() Newtan-Raphsan

[ Data file

l et >3 l l Cancel l [ (0]%

Finish button

Go ahead and click on the Next button to access the Distributions and Links dialog box and select the Multinomial
option from the Distribution type drop-down list box to produce the following Distributions and Links dialog box.

Tobuild syntax, proceed to the Survey Design screen and click the

Distributions and Links— ﬂ

7]

7]

Click on the Next button above to go to the Dependent and Independent Variables dialog box. Specify the
response variable, PASTVIS, by selecting it from the Variables in data list box first and then clicking on the Add
button of the Dependent variable section. Specify the covariates, AGE and EXERCISE, by selecting them from the

70

Distribution type: [Multinomial
Link function: [Lugit
Include intercept?

@Yes (Mo
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Variables in data list box and clicking on the Continuous button of the independent variables section to produce
the following Dependent and Independent Variables dialog box.

i |
Dependent and Independent Variables‘ ﬂ

Yariables in data;

VYEAR - Add >> Dependent variahle:
AGE N =
PASTWIS
o=
USETOBAC
PRIMCARE Independentvariables:
PASTWIS
[ [INJURy AGE
| BLODPRES Continuous >> EXERCISE
|| URINE
CHOLEST L Categorical »»
|l =
<< Remove
Add »> Erequency wariable:
RETYFOFF —
RACER
AGER L
CETERATH
E<S Previuusl l MNext >» ] l Cancel l l QK

To build syntax, proceed to the Survey Design screen and click the
Finigh buttan

Click on the Next button to go to the Survey Design dialog box. Specify the stratification variable, CSTRATM, by
selecting it from the variables in data list box first and then clicking on the Add button of the Stratification variable
section. Specify the cluster variable, CPSUM, and the weight variable, PATWT, by using the Add buttons of the
Cluster variable and the Weight variable sections respectively to produce the following Survey Design dialog box.



Yariables in data:
BLODFRES Add >> Stratification wariable:

URINE
CSTRATH
crolesT

EKG
*RAY
EXERCIZE
TOBACCO Add »>

Clusterwvariahle:

WTREDUC CRSUNM

Add »> Weightwariable:

[] Einite Population Carrection Factor

(@) Sampling rates Population sizes

File that contains sampling rates or population sizes:

i(F’revious] l Finish l l Cancel

To build syntax, click the Finish buttan.

This concludes the specifications, so click on the Finish button to open the following text editor window.

GlimOptions Converge=0.0001 MaxIter=100 MissingCode=—5%%%5%595
REesponse=Ascending RefCatCode=—1 IterDetails=No Method=Fisher;
Title=Multinomial logit model fitted to NHIS data;
SY=NIHl.1lsf;

Distribution=MUL;

Link=LOGIT;

Intercept=Yes;

DepVar=PASTVIS;

CoVars=AGE EXERCISE;

Stratum=CSTRATM; 3
Cluster=CPSUM;
Weight=PATWT;

Submit the syntax file above by clicking on the Run Prelis toolbar icon to obtain the corresponding output file
nihl.out.



2453.2

Discussion of results — generalized logistic model

A portion of the results in nih1.out is shown in the following text editor window.

Recall that AGE 1 represents the lowest category of the outcome variable, while AGE 6 represents the highest. At
a 5% level of significance, the results above suggest that there is sufficient evidence that the age of a respondent
exerts a positive influence on the probability of the number of visits to a doctor in the past 12 months by the
respondent. In particular, it seems that older respondents are more likely than younger respondents to have visited
a doctor more regularly in the past 12 months. The estimated coefficients for the EXERCISE variables are mostly
positive, and a value of 1 on any of these indicates a patient that does not exercise. The results thus indicate that
exercising exerts a significant influence on the probabilities of 1-2 and 3-5 annual visits to a doctor in the past
12 months. It appears that respondents who do not exercise are more likely than those who do exercise to have

[ NiHLOUT E=mEen
Statistic Value Den. DF Num. DF P Value
Adjusted Wald F 39.1948 12 526 0.000000
Wald Chi-square 480.1732 12 0.000000

Note: The Wald F Test and Chi-square Statistics are statistics to test the
null hypothesis that all the regression weights are equal to zero.

Estimated Regression Weights

Standard
Parameter Estimate Error z Value P Value
intcept 1 -1.1428 0.2505 -4 5626 0.0000
intcept 2 -0.9696 0.1016 -9.5426 0.0000
intcept 3 0.5666 0.0814 6.9599 0.0000 =
intcept 4 0.3208 0.0907 3.5363 0.0004
intcept 5 0.2328 0.1047 2.2246 0.0261
intcept 6 -1.9704 0.3248 -6.0663 0.0000
AGE 1 -0.0003 0.0048 -0.0652 0.9480
AGE 2 0.0066 0.0018 3.6631 0.0002
AGE 3 0.0055 0.0014 3.9140 0.0001
AGE 4 0.0091 0.0015 5.9432 0.0000
AGE 5 0.0091 0.0020 4 5676 0.0000
AGE 6 0.0071 0.0056 1.2761 0.2019
EXERCISE 1 -0.2636 0.2538 -1.0389 0.2989
EXERCISE 2 0.3496 0.1846 1.8941 0.0582
EXERCISE 3 0.2460 0.1217 2.0215 0.0432
EXERCISE 4 0.2815 0.1170 2.4063 0.0161
EXERCISE 5 0.0658 0.1658 0.3967 0.6916
EXERCISE 6 -0.5404 0.3877 -1.3937 0 1634| -

visited a doctor regularly in the past 12 months.

The estimated probability that a 60-year old respondent who does not exercise regularly does not visit the doctor

(category 2) is obtained from the results above as
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exp(0.97 +0.007*60)

6

1+ IZﬂ:exp (o?, + 4, *60)

=0.32

P(PASTVIS, =2)=



The corresponding probability that a 60-year old respondent who does exercise regularly does not visit the doctor
(category 2) follows as

exp(0.97 +0.007*60+0.35)

6

P(PASTVIS, =2)=
1+ exp(@ + 5, %60+ 3, )
1=1

=0.35

The effect estimate for no visit to the doctor, f3,, =0.35, suggests that the probability of no visit to the doctor
increases for respondents who exercise regularly.

2.5 Evaluation studies

25.1 A Monte Carlo study
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The accuracy of the results of the SurveyGLIM module of LISREL was assessed by using a small Monte Carlo
study and numerical comparisons with SAS PROC SURVEYLOGISTIC and AM. The Monte Carlo study is presented
in this section.

The Monte Carlo results can be compared to the example in Section 3.4.1 (GLIMs for count responses, Poisson-
log model).

2.5.1.1 The finite population

The finite population data form part of the data library of the Alcohol and Drug Services Study described in
Section 2.4.1.2. The background data and data on the substance abuse of 3799 clients formed one of the finite
population data sets of the Monte Carlo study. The population consists of four census regions and each census
region contains three facility treatment types.

2.5.1.2 The simulated response variable

SAS PROC GENMOD (SAS Institute 2004) was used to fit a Poisson-log GLIM to the finite population data. The
resulting mean model for the specific Poisson-log GLIM may be expressed as

44, = exp(0.6762—0.0823, x,, —0.0743x,, )

where x, denotes the mean number of diagnoses recorded for client k, x,, denotes a dummy variable for the
gender of client k and x,, denotes a dummy variable for the race of client k . The value of the simulated response
variable for client k , y, , was obtained as a random value of a Poisson (g, ) distribution.

2.5.1.3 Thereplicates

SAS PROC SURVEYSELECT (SAS Institute 2004) was used to select 1000 complex samples with replacement of
sizes 500 and 1000 from the finite population. The population was stratified by census region, and a systematic
sample was selected for each facility type within each census region.
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2.5.1.4 The Poisson-log GLIM

The mean model for the Poisson-log GLIM is given by
Hy = exp(a + Bxy + IBZXZk)

where x, denotes the mean simulated number of diagnoses recorded for client k , x,, denotes a dummy variable

for the gender of client k, x,, denotes a dummy variable for the race of client k and «, £, and g, denote
unknown parameters.

2.5.1.5 Monte Carlo results

The SurveyGLIM module of LISREL was used to fit the Poisson-log GLIM above to each complex sample (replicate).
The estimation results were processed to assess the performance of the maximum likelihood method for complex
samples from finite populations in terms of bias and standard error estimation. The following statistics were
computed for each sequence of 1000 parameter estimates and corresponding standard error estimates:

Mean estimate

Estimated bias

Percentage bias

95% confidence interval for bias
Standard deviation of parameter estimates
Estimated root mean squared error

Mean standard error estimate

Overall coverage percentage

O O O O O O O O

The overall coverage percentages were computed for the standard error estimates, based on Binder (1983), as
well as for the traditional standard error estimates obtained from the information matrix.

2.5.1.6 Bias
The Maximum Likelihood (ML) bias results for 1000 random samples of sizes n=500 and n=1000 are

summarized in Tables 3 and 4 respectively. The bias confidence intervals in Tables 3 and 4 reveal that the ML
estimates are not significantly biased for the parameters of the Poisson-log model.

Table 3: Bias results for n =500

Point Lower Upper

Parameter Population | Mean Estimate Percentage | 95% CI 95% ClI
Value Estimate . Bias Limit for | Limit for

of Bias . .
Bias Bias

o 0.6762 0.6733 0.0029 0.004327 -0.0094 | 0.00359
B -0.0823 -0.0811 | -0.0012 | 0.015164 -0.0041 | 0.00663
P, -0.0743 -0.0757 0.0014 0.018802 -0.0072 | 0.00439
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Table 4: Bias results for n = 1000

Point Lower Upper

Parameter Population | Mean Estimate Percentage | 95% CI 95% CI
Value Estimate - Bias Limit for Limit for

of Bias . .
Bias Bias

o 0.6762 0.6776 -0.0014 0.002081 -0.0039 | 0.00668
b -0.0823 -0.0833 0.0010 0.011604 -0.0057 | 0.00382
b, -0.0743 -0.0754 0.0012 0.015451 -0.0046 | 0.00226

2.5.1.7 Standard error estimation

Tables 5 and 6 show the standard error estimation results for 1000 random samples of sizes n=500 and
n=1000 respectively.

Table 5: Standard error results for n =500

Overall
Root Mean Standard Mean Overall Coverage
Parameter Squared Deviation of | Standard Coverage Percentage
E?ror Parameter Error Percentage for
Estimates Estimate for Binder Information
Matrix
o 0.105194 0.105153 0.132099 95.30% 83.00%
B 0.086859 0.086850 0.118180 98.60% 82.20%
B, 0.093449 0.093439 0.112153 96.20% 94.70%

The overall coverage percentages indicate that the Binder standard error estimates are not significantly biased
for the standard errors of the estimators of the parameters of the Poisson-log model. The only exception is the

estimate of the standard error of the estimator of £, for the samples of size n =1000 . However, the corresponding

bias is negligible. It is also evident that the standard error estimates, based on the information matrix, are
significantly biased.



Table 6: Standard error results for n = 1000

Overall
Standard Mean Overall Coverage
Parameter goggrecll\/lean Deviation of | Standard Coverage Percentage
E?ror Parameter Error Percentage | for
Estimates Estimate for Binder Information
Matrix
a 0.085082 0.085070 0.089482 95.10% 89.50%
B 0.076991 0.076985 0.076371 93.70% 91.80%
P, 0.054992 0.054980 0.091016 99.60% 89.40%

2.5.2 Numerical comparisons

2.5.2.1 GLIMs for the Bernoulli sampling distribution

The SurveyGLIM module of LISREL, SAS PROC SURVEYLOGISTIC and AM can fit Bernoulli-logit and Bernoulli-probit
models to complex survey data. In this section, the parameter estimates and standard error estimates produced
by SurveyGLIM, SAS PROC SURVEYLOGISTIC and AM for these two GLIMs are compared.

The numerical results reported here can be compared to the example in Section 4.3 (GLIMs for binary responses,
Bernoulli-logit model).

25.21.1 The data

The data set forms part of the data library of the Alcohol and Drug Services Study described in section 2.4.1.2.
The data set to be analyzed consists of the complete cases for a selection of variables and is provided as the LSF
abusel.Isf. The first portion of this data set is shown in the following LSF window.

[+ Abusellst = o
depr sex race_d | CENREG | FACTYPE | A2Twa0 |
1 0.0 0.0 40 40 190.7 =
2 0.0 0.0 0.0 40 20 3719 [
3 1.0 0.0 1.0 4.0 2.0 371.9
4 0.0 0.0 1.0 40 2.0 3719
5 0.0 0.0 0.0 40 40 470
6 0.0 1.0 0.0 4.0 40 470
7 1.0 0.0 0.0 40 40 470
8 0.0 1.0 1.0 40 40 470
9 0.0 0.0 0.0 40 40 47.0
10 1.0 1.0 0.0 40 40 470, _
10 ANl [aa] AN AN AT ™
4 | 2
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The mean models

The mean models for the Bernoulli-logit and the Bernoulli-probit GLIMS are given by

and

respectively where g, denotes the probability that client k suffers from depression, x, denotes a dummy
variable for the gender of client k , x,, denotes adummy variable for the race of client k, «, f, and S, denote
unknown parameters and @(-) denotes the cumulative distribution function of the standard Normal distribution.

25213

The SurveyGLIM, AM and SAS PROC SURVEYLOGISTIC estimates and standard error estimates for the two GLIMs
are shown in Tables 7 and 8 respectively. These results show that the SurveyGLIM, AM and SAS PROC
SURVEYLOGISTIC estimates and standard error estimates for the two GLIMs agree at least to 3 decimal places.

EXp(a + BXy + ﬂZXZK)

/’l =
1+exp(a+ BXy + BoXoy )

Hy = q)(a + BXy +ﬂ2X2k)

Estimates and standard error estimates

Table 7: Estimates and standard error estimates for a Bernoulli-logit GLIM

Program SAS PROC
SurveyGLIM AM SURVEYLOGISTIC
Parameter Estimate Etandard Estimate Standard Estimate Standard
rror Error Error
Intcept -0.1433 0.2337 -0.1433 0.2337 -0.1433 0.2337
Sex 0.6949 0.1332 0.6949 0.1332 0.6949 0.1332
race d -0.5683 0.1735 -0.5683 0.1735 -0.5682 0.1735
Table 8: Estimates and standard error estimates for a Bernoulli-probit GLIM
Program | SurveyGLIM AM SURVEYLOGISTIC
Parameter Estimate Etandard Estimate Standard Estimate Standard
rror Error Error
Intcept -0.0897 0.1461 -0.0897 0.1461 -0.0897 0.1461
Sex 0.4330 0.0831 0.4330 0.0831 0.4330 0.0831
race d -0.3530 0.1079 -0.3531 0.1079 -0.3530 0.1079
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2.5.2.2 GLIMs for the Multinomial sampling distribution

The SurveyGLIM module of LISREL and SAS PROC SURVEYLOGISTIC can fit generalized logistic (logit), cumulative
logit and cumulative probit models for the Multinomial sampling distribution to complex survey data. The
parameter estimates and standard error estimates produced by SurveyGLIM and SAS PROC SURVEYLOGISTIC are
compared for these GLIMS in this section.

25.2.2.1 The data

The data set forms part of the data library of the Alcohol and Drug Services Study and is described in section
4.1. The data set to be analyzed consists of the complete cases for a selection of variables and is provided as the
LSF cntdiag.Isf. The first portion of this data set is shown in the LSF window in section 4.3.

2.5.2.2.2 The mean models

The mean model for the generalized logistic, the cumulative logit and cumulative probit models are given by
eXp(Oﬁ + Bk + Par X )

2
l+ZeXp(al +ﬂllxlk +IBZIX2k)

kI —

Z eXp o+ Py + Py Zk)
km

m—1 - 1+6Xp(a| + Xy + 5, 2k)
and

Zﬂkm 0‘| + BXy + B 2k)

respectively where ,, denotes the probability that client k had the number of diagnoses in category | (1 =1,2,3
), X, denotes a dummy variable for the gender of client k, x,, denotesa dummy variable for the race of client
kK, o, @y, a3, By, Piir Piar Boor P » Prry B and B, denote unknown parameters and @(-) denotes the
cumulative distribution function of the standard Normal distribution.

2.5.2.2.3 Estimates and standard error estimates

79

The estimates and standard error estimates yielded by SurveyGLIM and SAS PROC SURVEYLOGISTIC for the three
GLIMs are shown in Tables 9, 10 and 11 respectively. The results in Tables 9, 10 and 11 reveal that SurveyGLIM
and SAS PROC SURVEYLOGISTIC produce estimates and standard error estimates for the GLIMs that agree at least
to 3 decimal places.
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Table 9: Estimates and standard error estimates for a generalized logistic model

Program | SurveyGLIM 26?2\75\2.%@|ST|C
Parameter Estimate Etandard Estimate Standard

rror Error
intcept 1 0.0412 0.3931 0.0411 0.3931
intcept 2 1.3456 0.1553 1.3456 0.1553
intcept 3 0.7894 0.0907 0.7894 0.0907
sex 1 -0.1749 0.3930 -0.1749 0.3930
sex 2 -0.3256 0.3053 -0.3255 0.3053
sex 3 -0.0282 0.1827 -0.0282 0.1827
Race d 1 -0.1691 0.3385 -0.1691 0.3385
Race d 2 -0.9932 0.2777 -0.9927 0.2777
Race d 3 -0.2540 0.2254 -0.2537 0.2254

Table 10: Estimates and standard error estimates for a cumulative logit model

SAS PROC

Program | SurveyGLIM SURVEYLOGISTIC
. Standard . Standard

Parameter Estimate Error Estimate Error
Alphal -1.6891 0.3154 -1.6891 0.3154
Alpha2 0.3493 0.1650 0.3493 0.1650
Alpha3 1.9046 0.1348 1.9046 0.1348
sex -0.2012 0.2157 -0.2012 0.2157
race_d -0.3943 0.2020 -0.3942 0.2020

Table 11: Estimates and standard error estimates for a cumulative probit model

SAS PROC

Program | SurveyGLIM SURVEYLOGISTIC
. Standard . Standard

Parameter Estimate Error S G Error
Alphal -1.0128 0.1708 -1.0128 0.1708
Alpha2 0.2017 0.1017 0.2017 0.1017
Alpha3 1.1214 0.0766 1.1214 0.0766
sex -0.1036 0.1255 -0.1036 0.1255
race d -0.1884 0.1171 -0.1884 0.1171




2.6 Statistical theory

2.6.1 Introduction

The statistical theory for fitting generalized linear models (GLIMS) to complex survey data is essentially an
extension of the corresponding theory for simple random sample data (see McCullach & Nelder (1989) and
Agresti (2002)). In this section we summarize the general GLIM theory.

We assume that the target population can be stratified into H strata. Within each stratum h, n, clusters or
primary sampling units (PSUs) are drawn and within the h" stratum and i" cluster, n, ultimate sampling units
(Usus) are drawn with design weights w, , where j denotes the j™ usu within the i" cluster, which in turn is
H n
nested within stratum h. Furthermore, we assume that the rows of the matrix Y = [y, ] represent n= ZZnhi
h=1 i=1
observations of the p outcome variables y with probability density function f(-) and that the rows of the matrix
X=[x,]aren observations of the r covariates X. We postulate a model for the mean vector ny, = Elyy

which can be expressed as
Wy, = m(Xhij ,0) (2.1)

where m(-) denotes a vector-valued function of X, and the gx1 vector © of unknown parameters.

The model in (2.1) is transformed to a linear model by using a link function which defines the relationship
between the elements of the dependent variable vector, M, » of the linear model and the elements of the mean

vector p,, . More specifically, the linear model of the GLIM is given by
n, =A,0 (2.2)

where A, denotes a known pxq design matrix and

T, 2 _g(ﬂhij 1) ]
7. 9(s, )

n == =) (2.3)
| Ty o | _g(/“lhij,p)_

where g(-): R — R denotes the link function.

The log likelihood function for the maximum likelihood estimation of the elements of @ is given by

M My

InL®|Y)= izzwhu f, Inf(y,,:0) (2.4)

h=1 i=1 j=1
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where fy, denotes the frequency for observation b, . From (2.4), the maximum likelihood equations follows as

2222w £, B L2 )F Dy, — i 1=0 (2.5)

h=1 i=l j
opy,
D, ={—~{A, (2.6)
ij &]hij ij

and Z(yh”) denotes the covariance matrix of Vi, - In general, the equations in (2.5) do not have a closed form

—

where

solution. Consequently, an iterative algorithm is required to obtain maximum likelihood estimates of the elements
of @ . The Fisher scoring algorithm may be described as follows. If @© denotes the t" successive approximation
to @, then the (t+1)% approximation is obtained from

6+ =00 1+ (1,89} g(6©) 2.7)

where the gradient vector g(-) is given by

90)=3 Y g, 0 @9)
where
g, ®) =w, T, D, {Z(,)} [y, ~y ] (2.9)

and the Fisher information matrix is given by

-1
w, T, D} {Z(v,)} D, (2.10)

]

I,(0)=

H n My
h=

1=l j=1

By using a similar derivation to that in the Complex Survey Sampling Guide, the approximate asymptotic
covariance matrix of the parameter estimators may be expressed as

Y={1,(0)} ' T{1,(0)}" (2.11)

where I' denotes the covariance matrix of a scalar multiple of the estimated gradient vector.

The application of this general theory to the Poisson-Log model is demonstrated extensively in section 6.2. Since
this demonstration extends readily to the other specific GLIMs, only the necessary expressions for these GLIMS
are provided in the subsequent sections.



2.6.2 The Poisson-log model
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H n
Suppose that the elements of the vector y = [yh”_] represent n= ZZnhi observations of the outcome variable
h=1 i=1

y and that Y, follows a Poisson distribution with mean Hy - 1N other words, the probability density function of
Y, is given by

7’uhij yhij
hy

=Inf (Yhij » My, ) = Y, In {/Uhij } ~Hy, — In {Yhij !} (2.12)

and the variance of Y, is given by

o’ (yhij ) =ty (2.13)

Suppose further that the following exponential model is imposed on the means of y
, =exp X, B (2.14)

where x, denotes observation h; of the r covariates X and the elements of B=[8 B, ... B,] denote

unknown parameters. The model in (2.14) is transformed to a linear model by using the log link function. In
other words

Ty = In {’uhu' } - X;‘iiB - Ahije (2.15)

where A, = x;]”_ and 0 =p. By using (2.12), (2.14) and (2.15), the log likelihood function for the parameters of
the Poisson-log model follows from (2.4) as

H ny My

LI =2 > > w, T, (v, x,B-exp{x,B}-In{y, ). (216)

h=1i=1 j=1

From (2.16), the gradient vector for the parameters of the Poisson-log model follows as



olnL H o0, My op'x ij | o(p'x |
ag(p) = W - hZ:;‘ 2.2, W, fhij Yh, aﬂh _eXp{XhijB} ( aﬁh )
) hi: 1 ,1 W [y“u -ep|X, B}} Xp, (2.17)
- glnzhl :]1 Wi, Th, ;1“ {0'2 (yhij )}1 [Yh,, ~ Hn, J

where D, =, X, . The Fisher information matrix for the parameters of the Poisson-log model follows as

= {%} =F _hi' inhl ?hil W, T X, exp{x;]ijp} a(;(l:j,ﬁ)

2 W, fr, exp{x;]”_[i} X;, Xp, (2.18)

It is evident that expressions (2.17) and (2.18) are equivalent to the general expressions (2.8) and (2.10)
respectively. Since these derivations are similar for the other GLIMs, we provide the specific expressions for each
individual GLIM without derivation.

2.6.3 GLIMs for the Bernoulli sampling distribution

Sampling distribution

F(yy )=t @)™ (2.19)
Variance
o (Y, ) =ty (1= 4,) (2.20)
2.6.3.1 Thelogit model
Model for means
~ exp{x'hij[}}

Hya = W (2.21)
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where the elements of B=[g, S, ... B.] denote unknown parameters.

Link function

. Hiy o
M, = Ioglt(/‘hﬂ J=Ine—=
Hi, 2

Linear model

where A, =x; and 6=.

The D matrix for observation hij

Dhu' :’uhij'l(l_’uhijvl)xi‘ij

2.6.3.2 The complementary log-log model

Model for means

My, =1—exp {—exp {x;ij [3}}

where the elements of B=[4, S, ... B.] denote unknown parameters.

Link function

T, = In(—In(1- My, )

Linear model

where A, =X, and 0=§.

The D matrix for observation hij

Dhij -(1- Hy, )In(1— My, )X;]ij
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(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)



2.6.3.3 The probit model

Model for means

My, = DX, B) (2.29)

where the elements of B=[5, B, ... B.] denote unknown parameters and ®(-) denotes the cumulative
distribution function of the standard Normal distribution.

Link function

T, = (D_l(ﬂhij) (2.30)
Linear model
n, =A,0 (2.31)
where A, =x; and 6=.
The D matrix for observation hij
1A
=——¢? ¢ 2.32
T (2.32)
2.6.3.4 Thelog model
Model for means
th, =exp{x; B} (2:33)
where the elements of B=[f, S, ... B.] denote unknown parameters.
Link function
M, =In (22, ) (2.34)
Linear model
n, =A,0 (2.35)

where A, =X, and 0=§.
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The D matrix for observation hij

Dy, = X, (2.36)
2.6.4 The Binomial-logit model
Sampling distribution
nh.J N Vir: My | 1Yy
f(yhij){ Juh;"y“’ (1—ﬂhi,-) o (2.37)
nhij hy
Variance
Hy, l_ﬂhij
az(yhij)=¥ (2.38)
h,

ij

The model for means, the link function, the linear model and the D matrix of the Binomial-logit model are identical
to those of the Bernoulli-logit model (cf. (2.21), (2.22), (2.23) and (2.24)).

2.6.5 The Negative Binomial-log model

Sampling distribution

F(yhij +1j Wb
F(y, )= v) o) 1 (2.39)

Variance
o (yhij ) = Hy, T Wﬂéj (2.40)

The model for means, the link function, the linear model and the D matrix of the Negative Binomial-log model are
identical to those of the Bernoulli-log model (cf.(2.33), (2.34), (2.35) and (2.36)).
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2.6.6 The Gamma-log model

Sampling distribution

(y, ) = —r M| exp| - I (2.41)
! 1 )74 My W
I — yhij ij ij

Variance
o (W, )= v, (2.42)

The model for means, the link function, the linear model and the D matrix of the Gamma-log model are identical
to those of the Bernoulli-log model (cf. (2.33), (2.34), (2.35) and (2.36)).

2.6.7 The Inverse Gaussian-log model

Sampling distribution

2
1 1 yh.. - ,Uh..
f(y, ) =———exp| - |y (2.43)
h" 27z.y3hIJ W 2 yhu Iuhij

Variance
o? vy ) =y’ (2.44)

hj

The model for means, the link function, the linear model and the D matrix of the Inverse Gaussian-log model are
identical to those of the Bernoulli-log model (cf. (2.33), (2.34), (2.35) and (2.36)).

2.6.8 The Normal-identity model

Sampling distribution

f (yhu ) :%we)(p(_i(yhn ity )Zj (2.45)

Variance

o*(yy, )=w (2.46)
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Model for means

My =X, B (2.47)
where the elements of B=[g, S, ... B,] denote unknown parameters.
Link function
M, = M, (2.48)
Linear model
n, =A,0 (2.49)
where A, =x; and 6=.
The D matrix for observation h;
D, =X (2.50)

2.6.9 GLIMs for the Multinomial sampling distribution

Sampling distribution

ij.p

”—f Yhij 3
jyh (2.51)

| p-1
f (yhij ) _ - nt — {H /«lhy”hl’Jkk
(H Y, k !](n_z yhij,kj! “
k=1

k=1
Covariance matrix

Z(yy,) =D, — My, (2.52)

where yh :[yhij’l Yoy2o yh”_’p_l] and D, denotes a (p—1)x(p—1) diagonal matrix with the elements of

1 :[ﬂhi,-,l JINPRS ﬂhij,p—l} on the diagonal.
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2.6.9.1 The generalized logistic Model

Model for means

xp B,
Fa k=57 vV k=12,...,p-1 (2.53)
1+ Zexp{x;ijﬁk}
k=1
where the elements of B, =[5, L., --- B.] V k=12,..., p—1 denote unknown parameters.
Link function
. Hi k
My x = Ioglt(/uhij,k) =In{—— (2.54)
:uhij,p
Linear model
n, =A,0 (2.55)

!

where n, :|:77hij,1 Ty 2+ nhij,p—1:| A, =1,,®x;, and 8=[a’ B']

The D matrix for observation hij

D, =|D,, ~mym;, |®x, (256)

ij

where D, denotesa (p—1)x(p-1) diagonal matrix with the elements of Ry, :|:/uh”,1 JTAPRE /,zhij'p_l} on the

diagonal.

2.6.9.2 The cumulative logit model

Model for means

. k expia, +X B

mo =M= { S k} vV k=12..,p-1 (2.57)
AT 1+exp{ak+x’hﬁ[&k}

where the elements of a=[ce;, «, ... ap_l]' and B=[p, B, ... B.] denote unknown parameters.
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Link function

\ 7
M, « = clogit(z ) =In 1—} (2.58)

Linear model

where m, =7 0 Moo T |0 Ay = 1o L,2®x, | and 0=[a’ BT

1j

The D matrix for observation hij

D, = {UD’: ud” ®x;il} (2.60)

Hi Hri

where U denotesa (p—1)x(p—21) matrix given by

1 0 0 . 0 O
-1 1 0 . 0 O
0 -11 .. 0O
U= (2.61)
0 0 0 1 0
0 0 0 .. -11
d** =|:/u:ij,1(l—/l:”,1) :u:j,z(l—/u:ij,z)-.. /u:ij,pl(l—/u:”,pl)} (262)

Hp

2.6.9.3 The proportional hazards model

Model for means

k
W= :1—exp(—exp{ak +x'hijpk}) v k=12...,p-1 (2.63)

1=1

where the elements of a=[oy, @, ... «,,] and B=[B, B, ... B.] denote unknown parameters.
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Link function

Iy = cloglog(x ) =In (—In (1— i )) (2.64)

Linear model

ﬂhij = Ah..e (265)
where m, =7 0 oo M| Ay =[ 1o 1,.©%, | and 0=[a’ BT
The D matrix for observation hij

D, = {UD’: ud” ®x;il} (2.66)

where U is as defined in (2.61) and

0 - —(1—u; ,z)ln(l—ﬂ;,z) (2.67)

Hn

2.6.9.4 The cumulative probit model

Model for means

K
*

wo=u = @(ak+x'hijp) vV k=12,... p-1 (2.68)

1=1

where the elements of a=[e, @, ... «,,] and =[5, B, ... B.] denote unknown parameters and ()
denotes the cumulative distribution function of the standard normal distribution.

Link function

s =074, (269)
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Linear model
(2.70)

!

where n,, :[Uhiji M2 nhij,p—1:| A =[Ip_l 1p_1®x'hJ and 0=[a’ PB']

The D matrix for observation hij

D, :{UD** ud”, ®x;,u} (2.71)

i
"hj "hij

where D~ denotes a (p-1)x(p-1) diagonal matrix with diagonal elements given by

Vhij

)
[ ;h” l« :%e 2™ k=12,...,p-1, U isas defined in (2.61) and
1
N2
\ 1 e_%"s""z
d. =| J2r (2.72)
1 eiénﬁijﬁ’l
N2z ]
2.6.9.5 Thelog model
Model for means
I :exp(ak +X'hi,.|3) vV k=12,...,p-1 (2.73)
where the elements of a=[oy, @, ... «,,] and B=[B, B, ... B.] denote unknown parameters.
Link function
My =Nt ) (2.74)
Linear model
n, =A,0 (2.75)
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where m, =7 0 o T | Ay = 1o L,2®, | and 0=[a’ BT

1j

The D matrix for observation hij

(2.76)

where Dﬂhij denotesa (p—1)x(p—1) diagonal matrix with the elements of dyhu =[,uh” 1 Mo ,uh",p_lJ on the

diagonal.

2.6.9.6 The probit model
Model for means

P k:cp(ak+x'h”ﬁ) vV k=12,..,.p-1 (2.77)

hij |

where the elements of a=[, @, ... «,,] and =[5, B, ... B.] denote unknown parameters and ()
denotes the cumulative distribution function of the standard normal distribution.

Link function

=07 () 278)
Linear model

N, =A,0 (2.79)

!

where p, :[uh”_’l JTRPS yh”_’pfl] A, =[Ip_1 1p_l®x'hij} and 0=[a’ P']

The D matrix for observation hij

D, =|D,, d, ®x, ]| (2.80)
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where

dﬂhij = 272' (2 81)

2.6.9.7 The complementary log-log model

Model for means

o, =1—exp{—exp{ak +x;1ij’k|3}} vV k=12,...,p-1 (2.82)
where the elements of a=[oy, @, ... «,,] and B=[B, B, ... B.] denote unknown parameters.
Link function
Mos = In(—ln(l— “, )) (2.83)
Linear model
n, =A,0 (2.84)

where p, =[ﬂhij,1 IZNPRE ,uhij,p_l] A =[Ip_1 1p_1®x'hij] and 0 =[a’ B']'.

1j

The D matrix for observation hij

Dhu - |:D:”hij dﬂhij ® X;‘lij :| (285)

where
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and D, denotesa (p—1)x(p—1) diagonal matrix with the elements of d ,

2.6.10

ﬂhij

(1=, s )I0(1= 11, )

j

The estimation of scale and dispersion parameters

(2.86)

on the diagonal.

A number of sampling distributions discussed in the previous sections have a dispersion parameter and/or a scale
parameter. A summary of these distributions with respect to dispersion and scale parameters and their estimates

is shown in Table 12.

Table 12: Scale and dispersion parameters

Maximum

Distribution Deviance |Dispersion Likelihood Pearson Scale
Binomial X X X
Gamma X X X X X
Inverse Gaussian X X X X X
Negative binomial X X X X
Normal X X X X X
Poisson X X X

2.6.10.1 The deviance * estimate
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2.6.10.2 The Pearson X" estimate

¢ = (2.90)

(2.91)

2.6.10.3 The maximum likelihood estimate

The Maximum Likelihood estimate, v, , of ¥ is obtained by using a three-stage estimation procedure. In stage
one, the Fisher Scoring algorithm is used to obtain Maximum Likelihood estimates of the elements of @ . These
estimates are then used as fixed values for the elements of @ in a Newton-Raphson algorithm to obtain an
estimate, y,, , of the dispersion parameter y . In this algorithm, the method of moments estimate of y is used
as the starting values for 7, . In stage three of the procedure, the Fisher Scoring algorithm is extended to include

the dispersion parameter to yield Maximum Likelihood estimates of the dispersion parameter and the elements
of 0. This three-stage procedure is used in the case of the Negative Binomial, Inverse Gaussian and Gamma
sampling distributions. In the case of the Gamma and Inverse Gaussian sampling distributions, the Maximum
Likelihood estimate of the scale parameter, ¢, , is computed from 7, and the Delta method (Bishop, Feinberg
& Holland 1988) is used to compute the corresponding standard error estimate. In the case of the Normal
sampling distribution, y,, is computed as

(2.92)

2.6.10.4 Corrections to standard error estimates

The standard error estimates are multiplied with the scale parameter estimate to correct them with respect to
scale.
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