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1 Introduction 

There has been a growing interest in recent years in fitting models to data collected from longitudinal surveys 

that use complex sample designs. This interest reflects expansion in requirements by policy makers and 

researchers for in-depth studies of social processes over time. Traditionally, the analyses of complex survey 

samples have been carried out using specialized software packages. More recently, a number of statistical 

analyses packages, for example SAS and SPSS, have implemented procedures to handle complex survey data 

appropriately in the case of regression models with continuous and categorical outcome variables. In this guide 

we describe techniques currently implemented in LISREL for analyzing complex surveys data. Research on the 

longitudinal analysis of complex survey data with LISREL was supported by SBIR grant R43 AA014999-01 from 

NIAAA to Scientific Software International. 

 

A common theme in substance use research is that data are usually obtained from a multi-stage or so-called 

complex sampling data. A complex sampling design typically entails stratification, often on the basis of 

geography; defining meaningful clusters of population elements (PSUs); and one or more stages of subsampling 

within each PSU. While a complex sample has the advantages of being more economical and practical, guarantees 

a better representative sample of the population, and does not require a complete sampling frame of the 

population elements, it is generally less efficient than simple random sampling. 

 

The statistical theory and methods for fitting Generalized Linear Models (GLIMs) to simple random sample data 

are described in a number of textbooks. As pointed out in the Complex Survey Sampling Guide, inappropriate 

results are obtained if these methods are applied to complex samples. For quite some time, these methods were 

extended to include the use of frequency and probability weights in an effort to deal with complex samples. 

Although this approach yields the appropriate estimates for complex samples, the corresponding standard error 

estimates are not appropriate. Section 2.3 reviews the options and dialog boxes of the SurveyGLIM menu and 

syntax files. Practical applications are provided in Section 2.4. In Section 2.5 the results of the SurveyGLIM 

module are assessed by means of a simulation study and numerical comparisons with other software, while the 

GLIM statistical theory for analyzing complex survey data is outlined in Section 2.6. 

 

2 Generalized linear models 

2.1 Introduction 

Many popular statistical methods are based on mathematical models that assume data follow a normal 

distribution. Most obvious among these are the analysis of variance for planned experiments and multiple 

regression for general analyses of independent and dependent variables. In many situations, the normality 

assumption is not plausible. Consequently, use of methods that assume normality may perform unsatisfactorily. 

In these cases, other alternatives that do not require data to have a normal distribution are attractive. 

 

The collection of models called Generalized Linear Models (GLIMs) have become important, and practical, 

statistical tools. The basic idea of GLIMs is an adaptation of standard regression to quite different kinds of data. 

The variables may be dichotomous (agree/disagree), categorical (as with a 5-point Likert scale), counts (number 

of arrest records), or nominal (choose among six candidates for mayor). The motivation is to tailor the regression 

relationship connecting the outcome to relevant independent variables so that it is appropriate to the properties 

of the dependent variable. The payoff is an analysis that often is more justifiable for the particular problem than 

a standard regression model would be. 
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The statistical theory and methods for fitting Generalized LInear Models (GLIMs) to simple random sample data 

are described in, amongst others, McCullach & Nelder (1989) and Agresti (2002). However, researchers from 

the social and economic sciences are often applying these methods to data from complex survey designs. 

Consequently, inappropriate results are obtained if these methods are applied to complex samples. For quite some 

time, these methods were extended to include the use of frequency and probability weights in an effort to deal 

with complex samples. Although this approach yields the appropriate estimates for complex samples, the 

corresponding standard error estimates are not appropriate. Using a result of Fuller (1975), Binder (1983) 

proposed methods to obtain the appropriate standard error estimates of the parameters of linear and nonlinear 

models as well as those of general estimating functions in the case of complex survey designs. These methods 

are implemented in, amongst others, SAS PROC SURVEYLOGISTIC (SAS Institute 2004) and AM (American 

Institutes for Research & Cohen 2004). 

 

LISREL for Windows (Jöreskog & Sörbom 2004) includes a SurveyGLIM module, which implements the methods 

in Agresti (2002) and Binder (1983) to fit GLIMs to complex survey data and simple random sample data. Unlike 

other statistical software for generalized linear modeling for complex survey data such as SAS PROC 

SURVEYLOGISTIC and AM, LISREL allows for a wide variety of sampling distributions and link functions.  

  

In this guide, we illustrate and outline the statistical theory and methods that are implemented in the GLIM module 

of LISREL. Section 2 reviews the options and dialog boxes of the SurveyGLIM menu on the LISREL System File 

(LSF) window of LISREL. SurveyGLIM syntax files are reviewed in Section 3. Illustrative examples are provided 

in Section 4. In Section 5, the results of the SurveyGLIM module are assessed by means of a small simulation 

study and numerical comparisons with SAS PROC SURVEYLOGISTIC and AM. The GLIM statistical theory for 

complex survey data is outlined in Section 6. 

 

2.2 Graphical User Interface 

2.2.1 The SurveyGLIM menu 

The SurveyGLIM menu provides you access to a sequence of four dialog boxes that can be used to create a 

SurveyGLIM syntax file interactively. It is located on the LSF (LISREL System File) window of LISREL which is 

used to display, manipulate and process raw data. In other words, you must create a LSF and open it in a LSF 

window before syntax can be generated interactively. To illustrate this, the LSF window for the file NIH1.lsf with 

the SurveyGLIM menu expanded is shown below. 

 

 
 

The typical next step would be to click on the Title and Options option to load the Title and Options dialog box 

(See Section 2.2.2). However, you can directly click on the Distributions/Links, Model Specification or Survey 

Design option to go to the Distributions and Links (See Section 2.2.3), the Dependent and Independent Variables 

(See Section 2.2.4), or the Survey Design dialog box (See Section 2.2.5) respectively. 
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2.2.2 The Title and Options dialog box 

The Title and Options dialog box allows you to specify a title and the options of the GLIM analysis interactively 

and is accessed by selecting the Title and Options option on the SurveyGLIM menu. This selection loads the 

following Title and Options dialog box. 

 

Note that the Title and Options dialog box corresponds with the Title and GLIMOptions commands as indicated on 

the image above.  

 

If desired, you can enter a descriptive title in the Title string field. If the raw data include missing values with a 

global missing value other than -999999, you need to enter the global missing value in the Missing Data Value 

number field.  

 

  

 

 

Since the GLIM estimation equations do not have a closed form solution, SurveyGLIM uses an iterative algorithm 

to estimate the parameters of the GLIM. In this regard, the Fisher scoring algorithm and the Newton-Raphson 

algorithm are available. The default algorithm is Fisher scoring; click the Newton-Raphson radio button to choose 

that algorithm instead. You can then enter the maximum number of iterations in the Maximum Number of 

Iterations field if the default of 100 is not appropriate. Enter the appropriate convergence criterion in the 

Convergence Criterion number field if the default value of 0.0001 is not to be used and check the Suppress 

Iterative Details check box if details of the iterative algorithm should be written to the output file. 

 

 

Title = <string>; 

 

GLIMOptions  

MaxIter = 100  

Converge = 0.0001 

MissingCode = -999999 

IterDet = No  

VarAdjust = No 

Method = Fisher  

Output = Min; 
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The Response Variable Ordering may be changed from the default (Ascending) to Descending. 

 

If any predictor that has C distinct categories is selected as a categorical independent variable (see Section 2.2.4), 

then C-1 dummy variables are created with a default Reference Category Code equal to 0 (the default). The user 

can change the Reference Category Code to -1.   

 

In practice, it is possible that the estimated asymptotic covariance matrix of the estimators is not positive definite, 

in which case the standard error estimates are unreliable. For these situations, Morel (1989) proposed an 

adjustment to the estimated asymptotic covariance matrix. To request this option, you need to check the Variance 

Adjustment check box.  

 

You can choose to export the exact raw data that SurveyGLIM analyzed to a LISREL System data file (LSF) by 

checking the Data file check box. This file will have the same name as the LSF, except that *.lsf is replaced with 

_RAW.LSF. Similarly, the residuals can be exported to an LSF file by checking the Residual file check box. This 

LSF file will have the same name as the LSF, except that .lsf is replaced with _RES.LSF.  

 

Once you are done with the Title and Options dialog box, click on the Next button to go to the Distributions and 

Links dialog box.  

 

2.2.3 The Distributions and Links dialog box 

The Distributions and Links dialog box allows you to specify the sampling distribution and the link function of 

the GLIM interactively. A summary of the combinations of sampling distributions and link functions that are 

available in this module is listed in Table 1. 

 

The Distributions and Links dialog box is, as shown below, usually accessed by clicking on the Next button of 

the Title and Options dialog box. It can also be accessed by selecting the Distributions / Links option from the 

SurveyGLIM menu. 

 

Table 1: Sampling Distribution and Link Functions 

 

                     Link 

 

Distribution 

CLL Identity Log Logit OCLL OLogit OProbit Probit 

Bernoulli x  x x    x 

Binomial      x         

Gamma     x           

Inverse Gaussian     x           

Multinomial x  x x x  x  x   x 

Negative binomial     x           

Normal    x             

Poisson     x           

 
Note that the Distributions and Links dialog box corresponds with the Distribution, Link, Intercept, Dispersion and 

Scale commands as indicated on the image above. 
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Use the Distribution type and the Link function drop-down list boxes to select the distribution and link function 

for your GLIM. If an intercept for the mean model of the GLIM is not required, you should activate the No radio 

button. 

 

 

 

Some GLIMs include dispersion or scale parameters. These GLIMs are listed in Table 2. If a scale parameter is 

desired, you can select the appropriate scale parameter from the Estimate scale? drop-down list box. In the case 

of a dispersion parameter, you can fix its value by activating the Fixed value radio button. Otherwise, it is 

estimated by means of maximum likelihood estimation. 

 

Once the Distributions and Links dialog box has been completed, the Next button is clicked to go to the Dependent 

and Independent Variables dialog box.  

 

Table 2: Scale and Dispersion Parameters 

 

Parameters             

Distribution 
Scale Dispersion 

Maximum  

Likelihood 
Pearson Deviance 

Binomial x     x x 

Gamma x x x x x 

Inverse Gaussian x x x x x 

Negative binomial   x x   

Normal x x x x x 

Poisson x     x x 

      

  

Distribution = NOR; 

Intercept = Yes; 

Link = Iden; 

Scale = None; 

Dispersion = No; 



 9                      

2.2.4 The Dependent and Independent Variables dialog box 

The Dependent and Independent Variables dialog box allows you to specify the model for the means of the 

outcome variable and, if applicable, a frequency variable.  

 

 
 

Access to this dialog box is obtained by clicking on the Next button of the Distributions and Links dialog box or 

by selecting the Model Specification option from the SurveyGLIM menu. An example of the Dependent and 

Independent Variables dialog box is shown above. Note that the Dependent and Independent Variables dialog 

box corresponds with the DEPVAR, COVARS and FREQ commands as shown on the image above. 

 

The model for the means of the outcome variable is a function of a set of covariates. You specify the outcome 

variable by first selecting it from the Variables in data list box and then by clicking on the Add button of the 

Dependent variable section. The covariates of the model can either be categorical or continuous variables. 

Dummy variables are also regarded as continuous variables. Categorical covariates are specified by first selecting 

the covariates from the Variables in data list box and then by clicking on the Categorical button. In a similar 

fashion, the Continuous button is used to specify the continuous covariates and dummy variables of the model. 

 

SurveyGLIM can process raw data and frequency table data. Frequency table data are often used in the case of 

categorical variables, in which case the same observation often occurs more than once in the raw data. To process 

frequency table data, the data file must include a column that contains the observed frequencies. Specify this 

frequency variable by first selecting it from the Variables in data list box and then by clicking on the Add button 

of the Frequency variable section. 

 

Once the variables have been selected, click the Next button to load the Survey Design dialog box. 

 

DepVar = <label>; 

 

CoVars = <label(s)>; 

 

Freq = <label>; 
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2.2.5       The Survey Design dialog box 

You can specify the design of the survey used for data collection and, if applicable, finite population information 

interactively by using the Survey Design dialog box. It is accessed by clicking on the Next button of the Dependent 

and Independent Variables dialog box or by selecting the Survey Design option on the SurveyGLIM menu. An 

example of the Survey Design dialog box follows. 

 

Note that the Survey Design dialog box corresponds with the STRATUM, CLUSTER, WEIGHT, FPC, 

SAMPLINGRATES and POPULATIONSIZES commands as shown on the image below. 

 

 
 

Complex survey designs typically stratify the target population into strata (subpopulations). These strata usually 

contain the primary sampling units (clusters). The ultimate sampling units are then selected from the selected 

clusters and design weights for the ultimate sampling units are constructed. The strata are specified by first 

selecting the appropriate variable from the Variables in data list box and then by clicking on the Add button of 

the Stratification variable section. Similarly, the clusters and the design weights are specified by using the Add 

buttons of the Cluster variable and the Weight variable sections respectively. 

 

In the case of finite target populations, Fuller (1975) proposed a correction factor for the standard error estimates 

of the parameters. This correction is based on the sampling rates of the strata that can be computed from the 

actual sizes of the strata. You can prepare a text file containing either the sampling rates or the strata sizes. This 

file is incorporated by using the browse button of the File that contains sampling rates or population sizes section. 

If this file should contain population sizes rather than sampling rates, you need to activate the Population sizes 

radio button. 

 

Stratum = <label>; 

 

Cluster = <label>; 

 

Weight = <label>; 

FPC = No; 

PopulationSizes = <filename>; 

SamplingRates = <filename>; 
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The syntax file, which was created interactively by using the four SurveyGLIM dialog boxes, is opened in a text 

editor window by clicking on the Finish button.  

 

2.3 Syntax 

2.3.1       The structure of the syntax file 

The syntax file, which is generated by the interface of the SurveyGLIM module, can also be prepared by using the 

LISREL text editor or any other text editor such as Notepad and WordPad. The structure of the syntax file follows. 

 

GLIMOPTIONS <options>; 

SY = '<filename>'; 

DEPVAR = <label>; 

COVARS = <label(s)>; 

DISTRIBUTION = <name>; 

LINK = <function>; 

INTERCEPT = <option>; 

DISPERSION = <option>; 

SCALE = <type>; 

FREQ = <label>; 

STRATUM = <label>; 

CLUSTER = <label>; 

WEIGHT = <label>; 

FPC = <option>; 

SAMPLINGRATES = <filename>; 

POPULATIONSIZES = <filename>; 

TITLE = <string>; 

 

where <label> denotes a case sensitive variable name used in the raw data file, <filename> denotes a complete 

name (including the drive and folder names) of a file, <option> is either Yes or No, <type> is one of None, Pearson, 

Deviance or ML (see Section 3.14), <name> is one of BER, BIN, GAM, INVG MUL, NBIN, NOR or POI (see 

Section3.6) and <function> is one of CLL, IDEN, LOG, LOGIT, OLOGIT, OCLL, OPROBIT and PROBIT (see Section 

3.11). <options> denotes a list of options for the analysis, each of which has the following syntax: 

 

<keyword> = <selection> 

 

where <keyword> is one of CONVERGE, ITERDETAILS, MAXITER, METHOD, MISSINGCODE, OUTPUT or 

VARADJUST and <selection> denotes a number, an option or a name (see Section 3.9). In many applications, 

optional commands and keywords can be left out if there are program default values available. 

 

The GLIMOPTIONS, SY, DEPVAR and COVARS commands are required commands while the other thirteen 

commands are all optional. The GLIMOPTIONS and SY commands should be the first two commands 

respectively, but the other commands can be entered in any order. Except for variable labels, the contents of the 

syntax file are not case-sensitive. Blank lines can be inserted in any section of the syntax file. 

 

In the following sections, the seventeen SurveyGLIM commands are discussed separately in alphabetical order. 
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2.3.2       CLUSTER command 

The CLUSTER command is used to specify the variable for the primary sampling units of the complex survey. It 

is an optional command. For example, in the case of a simple random sample, the CLUSTER command is omitted. 

The CLUSTER command corresponds with the Cluster variable section on the Survey Design dialog box (See 

Section 2.2.5). 

 

Syntax 
 

CLUSTER = <label>; 

 

where <label> denotes the label of the cluster variable. Keep in mind that variable names are case sensitive. 

 

Example 
 

Suppose that the primary sampling units of the complex survey are types of facility and that the variable FACTYPE 

is used to indicate the facility type for each observation. Then, the corresponding CLUSTER command is 

 

CLUSTER = FACTYPE; 

 

2.3.3       COVARS command 

The purpose of the COVARS command is to specify the covariates of the model for the means of the outcome 

variable and it is a required command. The COVARS command corresponds with the Independent variables 

section on the Dependent and Independent Variables dialog box (See Section 2.2.4). 

 

Syntax 
 

COVARS = <label(s)>; 

 

where <label(s)> denotes the case sensitive label(s) of the covariates of the model. In the case of a categorical 

variable, the label should be augmented with a $ symbol. Dummy variables are regarded as continuous variables. 

Consequently, dummy variable labels are not augmented with a $ symbol. 

 

Example 

 

Suppose that the covariates of the model consist of a dummy variable, sex, a categorical variable, edu, and a 

continuous variable, age. For this example, the corresponding COVARS command is given by  

 

COVARS = sex edu$ age; 

 

2.3.4       DEPVAR command 

The DEPVAR command is used to specify the outcome variable of the model and it is a required command. It 

corresponds with the Dependent variable section on the Dependent and Independent Variables dialog box (See 

Section 2.2.4). 
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Syntax 
 

DEPVAR = <label> REFCAT=<number>; 

 

where <label> denotes the label of the outcome variable of the model. Note that variable names are case sensitive. 

The REFCAT option (optional) is used to assign a reference category number in the case of a nominal dependent 

variable. The default value is the last category. This option has to be entered manually by the user as it is currently 

not implemented in the GUI. 

 

Example 

 

Suppose that the variable, depr, is the outcome variable to be used and that the reference category is the first 

category of depr. In this case, the corresponding DEPVAR command would be 

 

DEPVAR = depr REFCAT=1; 

 

2.3.5       DISPERSION command 

The Negative Binomial sampling distribution, for example, has a dispersion parameter. This parameter is 

specified by using the DISPERSION command. Since not all sampling distributions involve a dispersion 

parameter, the command is optional with default of no dispersion to be estimated. The DISPERSION command 

corresponds with the Estimate dispersion? section on the Distributions and Links dialog box (See Section 2.2.3). 

 

Syntax 
 

DISPERSION = <option>; 

 

where <option> is either Yes or No.  

 
Default 

 

DISPERSION = No; 

 

2.3.6       DISTRIBUTION command 

Each GLIM involves the sampling distribution of the outcome variable. The sampling distribution is specified by 

means of the DISTRIBUTION command, which is optional. The DISTRIBUTION command corresponds with the 

Distribution type drop-down list box on the Distributions and Links dialog box (See Section 2.2.3) as shown 

below. 

 

Syntax 
 

DISTRIBUTION = <name>; 

 

where <name> is one of BER (Bernoulli), BIN (Binomial), GAM (Gamma), INVG (Inverse Gaussian), MUL 

(Multinomial), NBIN (Negative Binomial), NOR (Normal) or POI (Poisson). 
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Default 
 

DISTRIBUTION = NOR; 

 

 
 

2.3.7       FREQ command 

SurveyGLIM can process frequency table data if a variable with the frequency is a column of the data file. This 

frequency variable is specified by means of the FREQ command. Since SurveyGLIM can also analyze raw data, 

the FREQ command is optional. The FREQ command corresponds with the Frequency variable section on the 

Dependent and Independent Variables dialog box (See Section 2.2.4). 

 

Syntax 
 

FREQ = <label>; 

 

where <label> denotes the case sensitive label of the frequency variable. 

 
 
Example 

 

Suppose that the variable, Count, is the frequency variable. For this example, the FREQ command is given by 

 

FREQ = Count; 
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2.3.8       FPC command 

Fuller (1975) proposed a finite population correction factor for the standard error estimates of parameters if the 

complex survey was obtained from a finite population. The FPC command is used to request this correction and 

it corresponds with the Finite Population Correction Factor check box on the Survey Design dialog box (See 

Section 2.2.5). 

 

Syntax 
 

FPC = <option>; 

 

where <option> is either Yes or No. 

 
Default 

 

FPC = No; 

 

2.3.9 GLIMOPTIONS command 

The purpose of the GLIMOPTIONS command is to select the iterative algorithm to be used and to specify options 

for the selected iterative algorithm. In addition, it is used to specify a global missing data value and the output to 

be generated. Finally, it allows you to specify the variance adjustment proposed by Morel (1989) if the estimated 

asymptotic covariance matrix of the parameter estimators is not positive definite. The GLIMOPTIONS command 

must always be the first command and is a required command. It corresponds with the Title and Options dialog 

box (See Section 2.2.2). 

 

Syntax 
 

GLIMOPTIONS <options>; 

 

where <options> is a list of options each of which has the following syntax: 

 

<keyword> = <selection> 

 

where <keyword> is one or more of CONVERGE, ITERDETAILS, MAXITER, METHOD, MISSINGCODE, OUTPUT or 

VARADJUST and <selection> refers to a name, a number or an option. 

 

CONVERGE keyword 

The tolerance limit of the convergence criterion of the selected iterative algorithm is specified by using the 

CONVERGE keyword which is an optional keyword. The CONVERGE keyword corresponds with the 

Convergence Criterion section on the Title and Options dialog box (See Section 2.2.2). 

 

Syntax 
 

CONVERGE = <number>; 

 

where <number> denotes a real number greater than zero. 
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Default 

 

CONVERGE = 0.0001;  

 

ITERDETAILS keyword 

The purpose of the ITERDETAILS keyword is to suppress or request the printing of the details of the selected 

iterative algorithm and it is an optional keyword. The ITERDETAILS keyword corresponds with the Suppress 

Iterative Details check box on the Title and Options dialog box (See Section 2.2.2). 

 

Syntax 
 

ITERDETAILS  = <option>; 

 

where <option> is either Yes or No. 

 
Default 

 

ITERDETAILS = No; 

 

MAXITER keyword 

You can control the maximum number of iterations of the selected iterative algorithm by means of the MAXITER 

keyword which is an optional keyword. The MAXITER keyword corresponds with the Maximum Number of 

Iterations section on the Title and Options dialog box (See Section 2.2.2). 

 
Syntax 

 

MAXITER = <number>; 

 

where <number> denotes a positive integer. 

 
Default 

 

MAXITER = 100; 

 

METHOD keyword 

SurveyGLIM implements the Fisher scoring and Newton-Raphson iterative algorithms to obtain the estimates and 

standard error estimates of the GLIM parameters. The METHOD keyword is used to select one of these algorithms 

and it is an optional keyword. It corresponds with the Optimization Method section on the Title and Options dialog 

box (See Section 2.2.2). 

 

Syntax 
 

METHOD = <method>; 

 

where <method> is either Fisher or Newton. 
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Default 

 

METHOD = Fisher; 

 

MISSINGCODE keyword 

Raw data often include missing values. SurveyGLIM uses list-wise deletion for handling data with missing values 

if you specify a global missing value by means of the MISSINGCODE option, which is optional. The 

MISSINGCODE keyword corresponds with the Missing Data Value section on the Title and Options dialog box 

(See Section 2.2.2). 

 

Syntax 
 

MISSINGCODE = <number>; 

 

where <number> denotes a real number. 

 
Default 

 

MISSINGCODE = -999999; 

 

OUTPUT option 

SurveyGLIM can write the raw data or residuals of the GLIM analysis to separate LSF files. The OUTPUT keyword 

is used to request neither, one or both of these files and is an optional keyword. The OUTPUT keyword 

corresponds with the Additional Output section on the Title and Options dialog box (See Section 2.2.2). 

 
Syntax 

 

OUTPUT = <amount>; 

 

where <amount> is one of Min for the standard GLIM results, Res for adding residuals as an LSF file to the standard 

results, RawData for adding the data used by SurveyGLIM as an LSF file to the standard results or All for the 

complete SurveyGLIM results. The standard SurveyGLIM results consist of the design, data and model description, 

the goodness of fit statistics, the estimated regression weights and standard error estimates and the estimated 

asymptotic covariance and correlation matrices of the parameter estimators. 

 

Default 
 

OUTPUT = Min; 

 

REFCATCODE Keyword 

The purpose of this keyword is to specify the value for the reference category of a categorical response variable. 

 
Syntax 

 

REFCATCODE = <number>; 
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where <number> denotes either 0 or -1.  

 

Default 
 

REFCATCODE = 0 

 

RESPONSE Keyword 

The purpose of this keyword is to specify the order of the categories for a categorical response variable. 

 
Syntax 

 

RESPONSE = <option>; 

 

where <option> denotes either Ascending or Descending.  

 

Default 
 

RESPONSE = Ascending 

 

VARADJUST keyword 

Morel (1989) proposed an adjustment for the estimated asymptotic covariance matrix of the parameter estimators 

if it should not be positive definite. You can request this adjustment by using the VARADJUST keyword, which 

is optional. The VARADJUST keyword corresponds with the Variance Adjustment check box on the Title and 

Options dialog box (See Section 2.2.2). 

 

Syntax 
 

VARADJUST = <option>; 

 

where <option> is either Yes or No. 

 

Default 
 

VARADJUST = No; 

 
GLIMOPTIONS example 

 

Suppose that the Newton-Raphson algorithm with a maximum of 50 iterations and a convergence criterion 

tolerance limit of 0.0001 with printed details is required. Suppose further that the Morel (1989) variance 

adjustment and the complete SurveyGLIM output are required and the global missing value for the raw data is -9. 

For this example, the GLIMOPTIONS command is given by 

 

GLIMOPTIONS CONVERGE = 0.0001 MAXITER = 50 MISSINGCODE = -9 ITERDETAILS = Yes 
VARADJUST = Yes METHOD = Newton OUTPUT = All; 

 

This GLIMOPTIONS command corresponds with the following Title and Options dialog box. 
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2.3.10 INTERCEPT command 

Many GLIMs can either include or exclude an intercept parameter for the model for the means of the outcome 

variable. The purpose of the INTERCEPT command is to allow you to either include or exclude an intercept 

parameter and it is an optional command. The INTERCEPT command corresponds with the Include intercept? 
section on the Distributions/Links dialog box (See Section 2.2.3). 

 

Syntax 
 

INTERCEPT = <option>; 

 

where <option> is either Yes or No. 

 

Default 
 

INTERCEPT = Yes; 

 

2.3.11 LINK command 

The link function of a GLIM describes the relationships between the means of the outcome variable and the means 

of the corresponding linear model. The LINK command is used to specify the link of the GLIM, and corresponds 

with the Link function drop-down list box on the Distributions/Links dialog box as shown below. It is an optional 

command. 
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Syntax 
 

LINK = <name>; 

 

where <name> is one of CLL (complementary log-log), IDEN (identity), LOG (log), LOGIT (logit), OCLL 

(proportional hazards), OLOGIT (cumulative logit), OPROBIT (cumulative probit) and PROBIT (probit). 

 

Default 
 

LINK = Iden; 

 

 
 

2.3.12 POPULATIONSIZES command 

If the finite population correction for the standard error estimates proposed by Fuller (1975) is required, you must 

prepare a text file containing either the sampling rates or strata sizes. The purpose of the POPULATIONSIZES 

command is to specify the file that contains the strata sizes. It is an optional command and corresponds with the 

Population sizes radio button on the Survey Design dialog box (See Section 2.2.5). 

 

Syntax 
 

POPULATIONSIZES = <filename>; 

 

where <filename> denotes the complete name (including drive and folder names) of the text file containing the 

strata sizes. The drive and folder names may be omitted if the text file and the syntax file are in the same folder. 
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Example 

 

Suppose that the text file POPULATIONSIZES.TXT contains the strata sizes. In this case, the POPULATIONSIZES 

command is given by 

 

POPULATIONSIZES = POPULATIONSIZES.TXT; 

 

2.3.13 REFCATS command 

The purpose of this command is to specify the reference categories to be used for the covariates or independent 

variables. This command has to be entered manually by the user as it is currently not implemented in the GUI. 

 

Syntax 
 

REFCATS = <list>; 

 

where <list> denotes a list of nonzero positive integers in free format.  

 
Example 

 

REFCATS = 1 5 3; 

 

2.3.14 SAMPLINGRATES command 

If the finite population correction for the standard error estimates proposed by Fuller (1975) is required, you must 

prepare a text file containing either the sampling rates or strata sizes. The purpose of the SAMPLINGRATES 

command is to specify the file that contains the sampling rates. It is an optional command and corresponds with 

the Sampling rates radio button on the Survey Design dialog box (See Section 2.2.5). 

 

Syntax 
 

SAMPLINGRATES = <filename>; 

 

where <filename> denotes the complete name (including drive and folder names) of the text file that contains the 

sampling rates. The drive and folder names may be omitted if the text file and the syntax file are in the same 

folder. 

 
Example 

 

If the sampling rates are contained in the text file SampRates.txt in the Generalized Linear Model examples folder 

of the C drive, the corresponding SAMPLINGRATES command is given by 

 

SAMPLINGRATES = C:\Generalized Linear Model examples\SampRates.txt; 
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2.3.15 SCALE command 

Some sampling distributions such as the Poisson, Binomial, Gamma, Inverse Gaussian and Normal distributions 

have an optional scale parameter. This parameter is specified by using the SCALE command. Since not all 

sampling distributions involve a scale parameter, the command is optional. The SCALE command corresponds 

with the Estimate scale? drop-down list box on the Distributions and Links dialog box as shown below. 

 
 

 
 

 

Syntax 
 

SCALE = <type>; 

 

where <type> is one of None, Pearson, Deviance or ML. 

 

Default 
 

SCALE = None; 

 

2.3.16 STRATUM command 

Complex surveys are typically obtained by stratifying the target population into subpopulations (strata). The 

STRATUM command allows you to specify the stratification variable. Since other types of surveys are available, 

the STRATUM command is an optional command. The STRATUM command corresponds with the Stratification 

variable section on the Survey Design dialog box (see Section 2.2.5). 
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Syntax 
 

STRATUM = <label>; 

 

where <label> denotes the case sensitive label of the stratification variable. 

 

Example 

 

Suppose that the target population was stratified into census regions and that the variable CENREG is the variable 

used to indicate the census region for each observation. In this case, the STRATUM command is given by 

 

STRATUM = CENREG; 

 

2.3.17 SY command 

SurveyGLIM can process raw data or frequency data that are available in the form of a LSF. The LSF to be processed 

is specified by means of the SY command. The SY command is a required command and must be the second 

command listed in the syntax file. The SY command corresponds with the LSF window. 

 

Syntax 
 

SY = '<filename>'; 

 

where <filename> denotes the complete name (including drive and folder names) of the LSF. The drive and folder 

names may be omitted if the LSF and syntax file are in the same folder. Note the use of single quotes in this 

command. 

 

Example 

 

Suppose that the data to be processed are listed in the file NIH1.lsf which is located in the Generalized Linear 

Model examples folder on the C drive. In this case, the SY command is given by 

 

SY = 'C:\ Generalized Linear Model examples \NIH1.lsf'; 

 

2.3.18 TITLE command 

It is often convenient to label a specific analysis to distinguish it from other analyses. This can be accomplished 

by using the TITLE command which is an optional command. The TITLE command corresponds with the Title 

string field on the Title and Options dialog box (See Section 2.2.2). 

 

Syntax 
 

TITLE = <string> ; 

 

where <string> denotes a descriptive title for the analysis. 
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Example 

 

Consider an analysis in which a Bernoulli-Probit model was fitted to substance abuse data. In this case, one 

possible TITLE command is given by 

 

TITLE = Bernoulli Probit Model for Substance Abuse Data; 

 

2.3.19 WEIGHT command 

Design weights are constructed for the ultimate sampling units of complex surveys. The purpose of the WEIGHT 

command is to allow you to specify the design weight variable. Since surveys without design weights are 

permitted, the WEIGHT command is an optional command. The WEIGHT command corresponds with the Weight 

variable section on the Survey Design dialog box (See Section 2.2.5).  

 

Syntax 
 

WEIGHT = <label>; 

 

where <label> denotes the case sensitive label of the design weight variable. 

 

Example 

 

Suppose that the variable A2TWA0 is used to capture the design weight for each observation. For this example, 

the WEIGHT command is given by 

 

WEIGHT = A2TWA0; 

 

2.4 Examples 

2.4.1       GLIMs for count data using substance abuse data 

2.4.1.1 Introduction 

Variables measured in scientific studies come in a wide assortment. When statisticians refer to a "count" variable, 

they mean a variable that is ordinal, typically scored 0, 1, 2, …, without fractional values such as 2.4 or 6.75. 

They also mean that the variable is a tally that records how often some behavior occurred, or of how many 

incidents of a particular kind were observed in each subject of a study. 

 

In many situations, count variables are skewed. The percentage of subjects with a score of zero or 1 is very large, 

those with a score of 4 or 5 or 6 considerably less common, and those with a score of 11 or 12 rare. For example, 

the number of delinquent acts committed by a teenager is a count variable. It is zero for the great majority. A 

young person who commits 1 or 2 or 3 delinquent acts is relatively rare compared to those who have no offenses. 

The frequencies of 1 or 2 or 3 decrease rapidly compared to those with no offenses. Juveniles who commit as 

many as 9 or 10 delinquent acts are very rare. As another example, the number of visits that a person makes to 

his or her primary care physician in a year is a count. The great majority visit the doctor not at all or once or 

twice in a year. Some may seek help 5, 6, or 7 times. A very few chronically ill may visit on as many as 15 

occasions. 
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Count variables are often analyzed in exactly the same way that a continuous variable is handled, most often 

with a method that incorrectly assumes the count is a bell-shaped normal distribution. But counts are ordinal 

variables, usually skewed with a small range. They have none of the characteristics of a continuous variable. 

While in many instances there are few practical problems treating them as if they were continuous variables, it 

is easy to find examples where an inappropriate analysis of a count variable loses important information that a 

better approach would convey. GLIMs for counts are a special kind of model that is designed to represent the 

unique features of count variables in a statistically optimal way. 

 

GLIMs for counts usually assume a Poisson distribution for the response variable. In this section, we illustrate the 

use of the SurveyGLIM module of LISREL by using some practical examples based on health-related count data. 

More specifically, a Poisson-log and a Negative Binomial-log model are fitted to substance abuse data. A description 

of the data follows. 

 

2.4.1.2 The data 

The data set forms part of the data library of the Alcohol and Drug Services Study (ADSS). The ADSS is a national 

study of substance abuse treatment facilities and clients. Background data and data on the substance abuse of a 

sample of 1752 clients were obtained. The sample was stratified by census region and within each stratum a 

sample was obtained for each of three facility treatment types within each of the four census regions. The specific 

data set is provided as the LSF cntdiag.lsf. The first portion of this file is shown in the following LSF window. 

 

 
 

A brief description of the variables to be used in the subsequent GLIM analyses follows. 

 

o CENREG is the census region of the client (1 for Northeast, 2 for Midwest, 3 for South and 4 for West). 

o FACTYPE is the facility treatment type of the client (1 for residential treatment, 2 for outpatient methadone 

treatment, 3 for outpatient non-methadone treatment and 4 for more than one type of treatment). 

o A2TWA0 is the design weight of the client. 

o cntdiag is the number of abuse diagnoses of the client (0, 1, 2 or 3). 

o sex is the value of a dummy variable for the gender (0 for male and 1 for female) of the client. 

o race_d is the value of a dummy variable for the race (0 for nonwhite and 1 for white) of the client. 

 

More information on the ADSS and the data are available at http://www.icpsr.umich.edu. 

 

http://www.icpsr.umich.edu/cgi/archive.prl?study=3088&path=SAMHDA&regex=&dslist=&email=&agree=yes&I+Agree=I+Agree
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2.4.1.3 The models 

The sampling distributions 

 

The sampling distribution of the Poisson-log GLIM is the Poisson distribution whose probability density function 

is given by 
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where ky  denotes the response variable y  for respondent k  and k  denotes the mean of ky . The Poisson 

sampling distribution has the unique feature that its variance is equal to its mean. A common empirical finding 

in fitting a Poisson variable is that the actual variance is somewhat larger or smaller than the mean value. The 

data are said to have over-dispersion or under-dispersion compared to the original model. When this occurs, the 

variance can be freed up so that it is not exactly equal to the mean. This is handled by adding a scale parameter 

for the variance. When this change is implemented, the model is no longer a Poisson process. But one still can 

use the algorithm for generalized linear models and obtain good parameter estimates with the modified approach. 

Another approach for dealing with the over-dispersion problem would be to consider a more appropriate 

sampling distribution for the data. In this regard, the Negative Binomial distribution can be very useful. The 

probability density function of the Negative Binomial distribution is given by 
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where   denotes the dispersion parameter. The variance of the Negative Binomial distribution is given by 

( )2 2

k k ky  = + . 

 

The mean model 

 

The mean model for the Poisson-log and Negative Binomial-log GLIMs is given by 

 

( )1 1 2 2expk k k r rkx x x    = + + + +  

 

where k  denotes the mean value of the response variable for client k , jkx  denotes the value of the j -th 

predictor ( 1,2, ,j r= ) for client k , and  , 1 , … 1r − , and r  denote unknown parameters. In practice, it can 

occur that the coefficient of some covariate is assumed to be unity. This covariate is commonly known as an 

offset variable. Offsets are typically used when the response variable is a rate rather than a number or count. For 

this specific example, the mean model may be expressed as 

 

  ( )1 2E cntdiag exp *sex *race_dk k k  = + +  

 

where  E cntdiagk  denotes the mean number of diagnoses for client k , sexk  and race_dk  denotes the values 

of the variables sex and race_d respectively and  , 1  and 2  denote unknown parameters. From this model, it 
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follows that the ratio of the mean numbers of diagnoses for female ( sex 1k = ) and male (sex 0k = ) clients may 

be expressed as 
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Similarly, it follows that ( )2exp   is the ratio of the mean numbers of diagnoses for white and nonwhite clients. 

The model fitted value is a mean number of diagnoses for client k  and is given by 

 

  ( )1 2
ˆ ˆˆ ˆE cntdiag exp *sex *race_dk k k  = + +  

 

where ̂ , 
1̂  and 

2̂  denote the maximum likelihood estimates of   , 1  and 2  respectively. 

 

2.4.1.4 Analyzing counts from a complex sampling design 

A question that a researcher may want to address is whether ethnicity and gender effects are associated with the 

number of substance abuse diagnoses. An appropriate statistical model for this type of count variable is a GLIM 

with a Poisson distribution and a log link function.  

 

2.4.1.4.1 Setting up the analysis 

 

The first step is to open the LSF shown above in the LISREL LSF window. This is accomplished as follows. 

 

Use the Open option on the File menu of the root window of LISREL to load the Open dialog box. Select the 

Lisrel Data (*.lsf) option from the Files of type drop-down list box. Browse for and open the file cntdiag.lsf. 

 

 
 

next step is complete the sequence of four dialog boxes of the SurveyGLIM GUI described in Section 3.2. The Title 

and Options dialog box is the first dialog box and is accessed by selecting the Title and Options option on the 

SurveyGLIM menu above. In order to identify the analysis, enter the string Poisson-Log Model for ADSS Data into 

the Title string field to produce the following Title and Options dialog box. 
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Since the default options will be used for this example, no changes are necessary. Click the Next button to access 

the Distributions and Links dialog box. Since we intend to fit a Poisson-log model, select the Poisson option from 

the Distribution type drop-down list box. For this example, we will estimate the scale parameter of the model by 

using the Pearson 2  estimate (see Section 6.11). Select the Pearson option from the Estimate scale? drop-down 

list box to produce the following Distributions and Links dialog box.  
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Move on to the Dependent and Independent Variables dialog box by clicking on the Next button. Specify the 

response variable cntdiag by selecting it from the Variables in data list box and clicking on the Add button of the 

Dependent variable section. In a similar fashion, add the covariates sex and race_d to the Independent variables 

list box to produce the following Dependent and Independent Variables dialog box. 

 

 
 

 

Since the data are not frequency table data and no offset variable is used for this example, go to the Survey Design 

dialog box by clicking on the Next button. The strata are the census regions (CENREG) and are specified by 

selecting the variable CENREG from the Variables in data list box and clicking on the Add button of the 

Stratification variable section. Similarly, add the PSU variable FACTYPE and the design weight variable A2TWA0 

to the Cluster variable and Weight variable boxes respectively to produce the following Survey Design dialog 

box.  
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Since no finite population information is available, we are done. The next step is to click on the Finish button to 

open the following text editor window for cntdiag.prl. 

 

 
 

We are now ready to submit our GLIM analysis. This is achieved by clicking on the Run Prelis toolbar icon to 

produce the text editor window for cntdiag.out. 

 

2.4.1.4.2 Discussion of results – Poisson-log model 

 

A portion of the results of the Poisson-log GLIM analysis is shown in the following text editor window. 
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SurveyGLIM reports the Adjusted Wald F  and 2  test statistic values for testing the null hypothesis that all the 

regression weights are equal to zero which may be expressed as (cf. American Institutes for Research & Cohen, 

2003) 
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respectively where H  denotes the number of strata, 
1

H

h

h

n
=

  denotes the number of PSUs, r  denotes the number 

of covariates of the model, β̂  denotes the estimate of the parameter vector, β , of regression weights and ̂  

denotes the estimated asymptotic covariance matrix of the estimators of the elements of β . If the null hypothesis 

is correct, wF  and 
2

wX  approximately follow an F  distribution with r  and 
1

1
H

h

h

n H r
=

− − +  degrees of freedom 

and a 
2  distribution with r  degrees of freedom respectively. 

 

Both the values of the Wald F  and 
2  test statistics are not statistically significant if a significance level of 5% 

is used. Hence, there is insufficient evidence to conclude that both gender and race influence the number of 
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diagnoses of a client. This finding is supported by the non-significant z  test statistic values for the significance 

of the individual parameters.  

 

The scale parameter estimate is less than unity which indicates under-dispersion for the response variable. In 

other words, the sample variance of the variable cntdiag is less than its mean. 

 

Estimated outcomes for different groups 
 

The fitted model follows from the output file above as 

 

  ( )Ê cntdiag exp 0.33 0.06*sex 0.12*race_dk k k= + +  

 

Although gender and race did not significantly affect the number of diagnoses, the following examples illustrate 

how the fitted model can be used to calculate the mean of number of diagnoses for various subgroups when there 

are statistically significant differences among them. This fitted model implies that the mean number of diagnoses 

for a white female client ( sex 1k =  and race 1k = ) is given by 

 

( ) ( )exp 0.33 0.06 0.12 exp 0.51 1.67+ + = =  

 

Similarly, the mean number of diagnoses for a nonwhite female client ( sex 1k =  and race 0k = ) is 1.48. It also 

follows from the output above that ( ) ( )1
ˆexp exp 0.06 1.06 = =  is the multiplicative effect of gender on the fitted 

number of diagnoses for a client. This implies that, on the average, female clients have a 6% higher estimated 

mean number of diagnoses than male clients. Similarly, it follows that ( ) ( )2
ˆexp exp 0.12 1.13 = =  which 

implies that, on the average, the fitted number of diagnoses is 13% higher for white clients than for nonwhite 

clients. 

 

2.4.1.5 Ignoring stratification and clustering in the sample 

2.4.1.5.1 Setting up the analysis 

 

The stratification and clustering can be ignored by not specifying the stratification and cluster variables on the 

Survey Design dialog box. However, it is recommended to change the title of the analysis to distinguish it from 

the previous analysis. This is done by selecting the Title and Options option on the SurveyGLIM menu to go to 

the Title and Options dialog box and then by entering the string Fitting a Poisson-Log model with design weights 

only in the Title string field. Since our model remains the same, click on the Next buttons of the Title and Options, 

the Distributions/Links and the Dependent and Independent Variables dialog boxes respectively to go to the 

Survey Design dialog box. Remove the stratification and cluster variables by clicking on the Remove buttons of 

the Stratification variable and Cluster variable sections to produce the following Survey Design dialog box.  
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As this completes our modifications, click on the Finish button to open the following text editor window for 

cntdiag.prl. 

 

 

 
As before, submit the analysis by clicking on the Run Prelis toolbar icon to produce the text editor window for 

cntdiag.out. 

 
 

2.4.1.5.2 Discussion of results 

 

A portion of the text editor window for cntdiag.out is shown below. 
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The results above indicate that although the parameter estimates are identical to those obtained when the design 

of the complex survey was taken into account, the standard error estimates are significantly smaller (cf. Brogan, 

1998). As a consequence, both gender and race appear to have a statistically significant effect on the number of 

substance abuse diagnoses at a p < 0.00001 level of confidence. This is a reversal of the results obtained when 

the complex sampling design was taken into account. As this example indicates, inferences based on an analysis 

that does not correct for the reduced precision of a complex sampling design can be very misleading. 

 

2.4.1.6 Correcting for over-dispersion in an analysis of counts 

The results for the Poisson-log model indicated the presence of under-dispersion. Although the negative Binomial 

distribution is intended for dealing with over-dispersion, we will use it here for illustrative purposes. 

 

2.4.1.6.1 Setting up the analysis 

 

In order to fit the Negative Binomial-log model interactively to the data in cntdiag.lsf, we only need to re-specify 

the sampling distribution. As in the previous analysis, start by modifying the title to Fitting a Negative Binomial-

Log model by accessing the Title and Options dialog box and clicking the Next button to go to the Distributions 

and Links dialog box. Select the Negative Binomial option from the Distribution drop-down list box to produce 

the following Distributions and Links dialog box. 
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Since the rest of the model remains the same, click on the Next buttons of the Distributions and Links and the 

Dependent and Independent Variables dialog boxes respectively to go to the Survey Design dialog box. Specify 

the complex survey design again by selecting the variables CENREG and FACTYPE from the Variables in data list 

box and clicking on the Add buttons of the Stratification variable and Cluster variable sections respectively to 

produce the following Survey Design dialog box. 
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Click on the Finish button to open the following text editor window for cntdiag.prl. 

 

 
 

Submit the analysis by clicking on the Run Prelis toolbar icon to open the text editor window for the 

corresponding output file cntdiag.out. 

 

2.4.1.6.2 Discussion of results – negative Binomial model 

 

A portion of the text editor window for cntdiag.out is shown below. 

 

 
 

A comparison of these results with those obtained for the Poisson-log model shows that the estimates are the 

same, but that the standard error estimates are different. However, the conclusions are the same as those made 

based on the results for the Poisson-log model. 

 

The zero estimate of the dispersion parameter of the Negative Binomial distribution indicates that over-dispersion 

seen with the Poisson distribution does not apply to this particular analysis. This finding is in agreement with the 

Poisson scale estimate less than unity, which indicated the presence of under-dispersion rather than over-

dispersion. 
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2.4.2 GLIMs for continuous responses 

2.4.2.1 Introduction 

In many research studies, the response variable of interest is a continuous variable. Examples of continuous 

response variables are inpatient expenditure of medical interns, earnings of software engineers, insurance claim 

costs, failure times of machine parts, total cholesterol scores of heart patients, aggregate loss dollars for life 

insurance policies, etc. SurveyGLIM can also fit models with continuous response variables to complex survey or 

simple random sample data. This feature is illustrated in this section by fitting a Normal-identity, a Gamma-log and 

an Inverse Gaussian-log model to health data. A description of the specific data set follows. 

 

2.4.2.2 The data 

The data set forms part of the data library of the Medical Expenditure Panel Survey (MEPS). The MEPS is a 

longitudinal national survey that is used to yield national estimates of health care expenses. During 1999, 

background data and data on the health expenditures of a sample of 23,565 participants were obtained. The 1999 

sample was stratified into 143 strata (VARSTR99) and into 460 PSUs (VARPSU99). The first portion of the data 

set to be used (meps.lsf) is shown in the following LSF window. 

 

 
 

The following variables are used in the subsequent analyses. 

 

o VARSTR99 is the variance estimation stratum of the respondent. 

o FACTYPE is the variance estimation PSU of the respondent. 

o PERWT99F is the final design weight of the respondent. 

o TOTEXP99 is the natural logarithm of the total health care expenditure of the respondent during 1999. 

o racex is the value of a nominal variable for the race (1 for American Indian, 2 for Aleut or Eskimo, 3 for 

Asian or Pacific Islander, 4 for black and 5 for white) of the respondent. 

o inscov9 is the value of a nominal variable for the type of insurance coverage (1 for private, 2 for public 

and 3 for uninsured) of the respondent during 1999. 

 

More information on the MEPS and the data are available at 

http://www.meps.ahrq.gov/Puf/PufDetail.asp?ID=93. 

http://www.meps.ahrq.gov/Puf/PufDetail.asp?ID=93
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2.4.2.3 The models 

The sampling distributions 

 

The probability density function of the Normal sampling distribution is given by 

 

( ) ( )
21 1

, , exp
22

k k k kf y y  


 
= − − 

 
 

 

where ky  denotes the response variable y  for respondent k , k  denotes the mean of ky  and   denotes the 

dispersion parameter. The Normal distribution is symmetric about its mean. Two examples of non-symmetric 

distributions are the Gamma and the Inverse Gaussian distributions. These distributions are used as statistical 

models for continuous variables that only take positive values. In contrast to the normal distribution, which has 

the same basic shape irrespective of the mean and variance, the Gamma and Inverse Gaussian can take many 

different shapes depending on the mean and scale parameters. Both distributions are used in situations where the 

variable being studied is roughly continuous but may be strongly skewed. The corresponding probability density 

functions are given by 
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respectively. 

  
The mean models 

 

The mean model for the Normal-identity GLIM is given by 

 

1 1 2 2k k k r rkx x x    = + + + +  

 

while the mean model for the Gamma-log and Inverse Gaussian-log GLIMs is given by 

 

( )1 1 2 2expk k k r rkx x x    = + + + +  

 

where k  denotes the mean value of the response variable for respondent k , jkx  denotes the value of the j -th 

predictor ( 1,2, ,j r= ) for respondent k , and  , 1 , …, 1r −  and r  denote unknown parameters. The two 

specific mean models are given by 

 

  1 1 2 2 3 3 4 4 5 5 6 6E TOTEXPk k k k k k kx x x x x x      = + + + + + +  
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and 

 

  ( )1 1 2 2 3 3 4 4 5 5 6 6E TOTEXP expk k k k k k kx x x x x x      = + + + + + +  

 

where  E TOTEXPk
 denotes the mean of the natural logarithm of the total medical expenditures during 1999 

recorded for respondent k ; where 1kx  (1 for Aleut or Eskimo and 0 otherwise), 2kx  (1 for American Indian and 

0 otherwise), 3kx  (1 for Asian or Pacific Islander and 0 otherwise), 4kx  (1 for Black and 0 otherwise) denote 

dummy variables for the race of respondent k . Note that 1 2 3 4 1k k k kx x x x= = = = −  for White respondents, who 

serve as the reference category. Also, 5kx  (1 for any private insurance and 0 otherwise), and 6kx  (1 for any public 

insurance only and 0 otherwise) denote dummy variables for the insurance coverage category of respondent k . 

Here 5 6 1k kx x= = −  represent respondents with no insurance coverage. Finally  , 1 , 2 , 3 , 4 , 5 , and 6  

denote unknown parameters. In the case of the Gamma-log and Inverse Gaussian-log GLIMs, the ratio of means of 

the natural logarithm of the total medical expenditures of Aleut or Eskimos may be expressed as 

 

( )

( )
( )1 5 5 6 6

1

5 5 6 6

exp
exp

exp

x x

x x

   


  

+ + +
=

+ +
. 

 

Similarly, ( )2exp  , ( )3exp  , ( )4exp   and ( )1 2 3 4exp    − − − −  denote the ratios of the means natural 

logarithm of the total medical expenditures of American Indians, Asians or Pacific Islanders, Blacks and Whites 

and other races respectively. In addition, ( )5exp  , ( )6exp   and ( )5 6exp  − −  are ratios of the means natural 

logarithm of the total medical expenditures of respondents with any private insurance, public insurance only and 

no insurance respectively. 

 

The estimated mean logarithmic total medical expenditures for respondent k  follows as 

 

  1 1 2 2 3 3 4 4 5 5 6 6
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆE TOTEXPk k k k k k kx x x x x x      = + + + + + +  

 

for the Normal-identity GLIM and as 

 

  ( )1 1 2 2 3 3 4 4 5 5 6 6
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆE TOTEXP expk k k k k k kx x x x x x      = + + + + + +  

 

for the Gamma-log and Inverse Gaussian-log GLIMs respectively where ˆ ,  1
ˆ ,  2

ˆ , …, 6̂  denote the maximum 

likelihood estimates of  , 1 , 2 , …, 6  respectively. 

 

2.4.2.4 Analyzing normally distributed outcomes from complex survey designs 

In this example, we are interested in exploring the linear relationship between a respondent's total health related 

expenditure and his/her ethnicity and gender. To make the assumption of normality more plausible, we use the 

natural logarithm of the total health care expenditure of the respondent during 1999 (TOTEXP99) as outcome. A 

normal distribution with identity link function defines the GLIM model used in this case. 
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2.4.2.4.1 Setting up the analysis 

 

As in Section 3.4.1, the first step is to open the file meps.lsf in a LSF window. This is done as follows.  

 

Use the Open option on the File menu of the root window of LISREL to load the Open dialog box. Select the Lisrel 

Data (*.lsf) option from the Files of type drop-down list box. Browse for and open the file meps.lsf. 

.  

 

 
 

We are now ready to use the SurveyGLIM menu to fit the Normal-identity GLIM to the data in meps.lsf. Select the 

Title and Options option on the SurveyGLIM menu. Enter the descriptive title A Normal-Identity Model for MEPS 

Data into the Title string field to produce the following Title and Options dialog box. 

 

 
 

Since the default options will be used for this illustration, click on the Next button to go to the Distributions and 

Links dialog box.  
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The default values are correct, so click on the Next button to go to the Dependent and Independent Variables 

dialog box. Specify the response variable, TOTEXP99, by selecting it from the Variables in data list box and then 

by clicking on the Add button of the Dependent variable section. Specify the two categorical covariates, racex 

and inscov9, by selecting them from the Variables in data list box and then by clicking on the Categorical button 

of the Independent variables section to produce the following Dependent and Independent Variables dialog box.  
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Click on the Next button to load the Survey Design dialog box. Specify the stratum variable, VARSTR99, by 

selecting it from the Variables in data list box and then by clicking on the Add button of the Stratification variable 

section. Similarly, use the Add buttons of the Cluster variable and the Weight variable sections to specify the 

cluster variable, VARPSU99, and the weight variable, PERWT99F, respectively to produce the following Survey 

Design dialog box.   

 
 

Since this completes the specification of our intended GLIM analysis, click on the Finish button to open the 

following text editor window for meps.prl. 

 

 
 

Click on the Run Prelis toolbar icon to submit the syntax file above and to obtain the output file meps.out. 

 

2.4.2.4.2 Discussion of results – Normal-identity model 

 

A portion of the output file meps.out is shown in the following text editor window. 
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The results above indicate that both the race and the insurance coverage category of a respondent exert a 

statistically significant influence on the respondent’s total medical expenditures if a significance level of 5% is 

used. In particular these results suggest that respondents with more comprehensive medical insurance coverage 

(inscov91 = 1 or inscov92 = 1) spend, on the average, more on medical expenses than those who have less 

comprehensive insurance coverage (inscov91 = inscov92 = -1). In addition, there is sufficient evidence that Whites 

(racex1 to racex4 = -1) spend, on the average, more on medical expenses than American Indians, Eskimos, Asians 

and Blacks.  

 

Estimated outcomes for different groups 
 

By using the results above, the estimated model may be expressed as 

 

  1 2 3 4 5 6Ê TOTEXP 4.59 0.02 0.19 0.27 0.53 0.73 1.00k k k k k k kx x x x x x= + + − − + +  

 

The estimated model above implies that the estimated mean health care expenditure for an Asian respondent with 

no insurance ( 3 1kx = , 5 1kx = − , 6 1kx = −  and 1 2 4 0k k kx x x= = = ) is given by  

 

( ) ( )exp 4.59 0.27 0.73 1.00 exp 2.59 $13.33− − − = =  

 

Similarly, the estimated mean health care expenditures for an Asian respondent with any private insurance and 

public insurance only follow as $156.39 and $204.69 respectively. For a White respondent with any private 

insurance coverage ( 1 2 3 4 1k k k kx x x x= = = − , 5 1kx = , and 6 0kx = ) the mean health care expenditures is estimated 

as 

 

 

( ) ( )exp 4.59 0.02 0.19 0.27 0.53 0.73 exp 5.91 $368.70.− − + + + = =
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Likewise, for a White respondent with public insurance the corresponding estimate is $482.99. This estimate of 

average health care expenditures will only be accurate if the outcome variable has a normal distribution. An 

analysis that takes the strongly skewed distribution of health care expenditures into account may produce quite 

different estimates, as will be seen in the next example. 

 

2.4.2.5 Analyzing skewed outcome variables from complex survey designs 
(method 1) 

The Normal-Identity GLIM assumes that the distribution of the response variable is symmetric about its mean. In 

the case of skewed response variables, which only assume values greater than zero, the Gamma and Inverse 

Gaussian sampling distributions will be more appropriate than the Normal distribution.  

 

2.4.2.5.1 Setting up the analysis 

 

The Gamma-log model can be fitted interactively to the data in meps.lsf by replacing the Normal sampling 

distribution with the Gamma sampling distribution. Before doing so, specify a different title by selecting the Title 

and Options option on the SurveyGLIM menu to access the Title and Options dialog box and then entering the title 

A Gamma-Log model for MEPS Data in the Title string field. Click on the Next button to go to the Distributions 

and Links dialog box and select the Gamma option from the Distribution type drop-down list box to produce the 

following Distributions and Links dialog box. 

 

 
 

Since this is all we need to modify, click on the Next buttons of the Distributions and Links and the Dependent 

and Independent Variables dialog boxes and the Finish button of the Survey Design dialog box to open the 

following text editor window for meps.prl. 
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Submit the syntax file above by clicking on the Run Prelis toolbar icon to generate the corresponding output file 

meps.out.  

 

2.4.2.5.2 Discussion of results – Gamma-log model 

 

A portion of the resulting output file is shown in the text editor window below. 

 

 
 

At first glance, comparing the parameter estimates produced by the Normal-identity model (which assumes a 

normal distribution) and the Gamma-log model (which takes skewness in the outcome variable into account), it 

seems as if the race-related effects are radically different between the two. If, however, we order the values of 

the racex coefficients according to size, it turns out that for both the Normal-identity model and Gamma-log models 

the ordering is the same. This result is not unexpected since there exists a monotone relationship between any set 

of real numbers so that 1 2 1 2exp( ) exp( ).r r r r →   Recall that for the identity link function 

 

 

  1 1 2 2 3 3 4 4 5 5 6 6
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆE TOTEXPk k k k k k kx x x x x x      = + + + + + +
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whereas for the log-link function 

 

 

  ( )1 1 2 2 3 3 4 4 5 5 6 6
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆE TOTEXP expk k k k k k kx x x x x x      = + + + + + +

 
 

Substitution of the predictor values, using the appropriate parameter estimates, in any of the equations above, 

shows that the expected total expenditure values do not differ substantially.  

 

Estimated outcomes for different groups 
 

The fitted model is given by 

 

  ( )1 2 3 4 5 6Ê TOTEXP exp 1.49 0.01 0.05 0.06 0.12 0.17 0.22k k k k k k kx x x x x x= + + − − + + . 

 

The estimated model above implies that the estimated mean health care expenditure for a White respondent with 

no insurance ( 1 2 3 4 5 6 1k k k k k kx x x x x x= = = = = = − ) is given by  

 

( )( ) ( )exp exp 1.49 0.01 0.05 0.06 0.12 0.17 0.22 exp 1.22 $29.58.+ − − + + − − = =  

 

Similarly, the estimated mean health care expenditures for a White respondent with any private insurance and 

public insurance only follow as $376.10 and $509.73 respectively. The results above also indicate that 

( ) ( )4
ˆexp exp 0.12 0.88 = − =  which implies that, on the average, Black respondents spent 12% less on health 

care in 1999 than other respondents. Similarly, it follows that ( ) ( )5 6
ˆ ˆexp exp 0.39 0.68 − − = − =  which implies 

that, on the average, respondents with no insurance spent 32% less than other respondents on health care in 1999. 

 

2.4.2.6 Analyzing skewed outcome variables from complex survey designs 
(method 2) 

To explore the relationship between a respondent's total health related expenditure and his/her ethnicity and level 

of insurance coverage, we fit a GLIM model with inverse Gaussian distribution and log link function. Note that 

the mean model of the Inverse Gaussian-log GLIM is identical to that of the Gamma-log GLIM.   

 

2.4.2.6.1 Setting up the analysis 

 

Again, first modify the title by selecting the Title and Options option on the SurveyGLIM menu and entering the 

title An Inverse Gaussian-Log Model for MEPS Data in the Title string field. Go to the Distributions and Links 

dialog box by clicking on the Next button and select the Inverse Gaussian option from the Distribution type list 

box to produce the following Distributions and Links dialog box. 
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This completes our modifications. Click on the Next buttons of the Distributions and Links and the Dependent 

and Independent Variables dialog boxes and the Finish button of the Survey Design dialog box to open the 

following text editor window for meps.prl. 

 

 
 

The corresponding output file meps.out is obtained by clicking on the Run Prelis toolbar icon. 

 

2.4.2.6.2 Discussion of results – Inverse Gamma-log model 

 

Some selected results of the output file meps.out are shown in the following text editor window. 
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Like the Gamma-log model, the Inverse Gaussian-log model produced results that were very different from the 

Normal-identity model. Since the Gamma-log model and Inverse Gaussian-log model both take the skewed 

distribution of the outcome variable into account, it is not surprising that they produced similar parameter 

estimates, standard error estimates, and estimates of statistical significance in this example. 

 

Estimated outcomes for different groups 
 

The estimated model follows from the results above as 

 

  ( )1 2 3 4 5 6Ê TOTEXP exp 1.50 0.01 0.06 0.06 0.13 0.17 0.22k k k k k k kx x x x x x= + + − − + +  

 

The fitted model above implies that the estimated mean health care expenditure for a Black respondent with no 

insurance ( 4 1kx = ,  5 6 1k kx x= = − , and 1 2 3 0k k kx x x= = = ) is given by  

 

( )( ) ( )exp exp 1.50 0.13 0.17 0.22 exp 2.69 $14.74− − − = =  

 

Similarly, the estimated mean health care expenditures for a Black respondent with any private insurance and 

public insurance only follow as $106.12 and $134.79 respectively. The results above also indicate that 

( ) ( )2
ˆexp exp 0.06 1.06 = =  which implies that, on the average, American Indian respondents spent 6% more on 

health care in 1999 than other respondents. Similarly, it follows that ( ) ( )5
ˆexp exp 0.17 1.19 = =  which implies 

that, on the average, respondents with any private insurance spent 19% more than other respondents on health 

care in 1999. 
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2.4.3 GLIMs for binary responses 

Binary response variables are often the focus of empirical studies. Examples of binary response variables are 

diagnosis of breast cancer (absent or present), heart disease (yes or no), damage to solid rocket booster joints 

(damage or no damage), and depression in substance abuse clients (yes or no), credit risk (good or bad), etc. The 

analysis of GLIMs with binary response variables with SurveyGLIM is illustrated in this section. More specifically, 

Bernoulli-logit and Binomial-logit models are fitted to substance abuse data. 

 

SurveyGLIM can also fit models with binary response variables to either simple random sample or complex sample 

data. This feature is illustrated in this section by fitting Bernoulli-logit and Binomial-logit models the substance abuse 

data. In the special case of one trial for each observation, the Binomial distribution simplifies to the Bernoulli 

distribution, and either distribution can be used. However, if a number of trials variable is available, the Binomial 

distribution would be the appropriate choice. 

 

2.4.3.1 The data 

The data set forms part of the data library of the Alcohol and Drug Services Study and is described in section 

3.4.1. The data set to be analyzed consists of the complete cases for a selection of variables and is provided as 

the LSF abuse1.lsf. The first portion of this data set is shown in the following LSF window. 

 

 
 

The variables to be used in the subsequent GLIM analyses are 

 

o CENREG is the census region of the client (1 for Northeast, 2 for Midwest, 3 for South and 4 for West). 

o FACTYPE is the facility treatment type of the client (1 for residential treatment, 2 for outpatient methadone 

treatment, 3 for outpatient non-methadone treatment and 4 for more than one type of treatment). 

o A2TWA0 is the design weight of the client. 

o depr is the value of a dummy variable for the depression status (0 for no depression history and 1 for a 

history of depression) of the client. 

o sex is the value of a dummy variable for the gender (0 for male and 1 for female) of the client. 

o race_d is the value of a dummy variable for the race (0 for nonwhite and 1 for white) of the client. 
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2.4.3.2 The models 

 
The sampling distributions 

 

The sampling distribution of the Bernoulli-logit GLIM is the Bernoulli distribution whose probability density 

function is given by 

 

( ) ( )
1

, 1 kk
yy

k k k kf y   
−

= −  

 

where ky  denotes the binary response variable y  for respondent k  and k  denotes the probability that ky  

assumes a unit value. Another sampling distribution for binary response variables is the Binomial distribution, 

which is the sampling distribution of the Binomial-logit GLIM and has the following probability density function 

 

( ) ( ) ( )
( )1

, 1 k kk k k

k k

n yn n y

k k n y k kf y   
−

= −  

 

where kn  denotes the number of trials. In the special case of one trial for each observation, the Binomial 

distribution simplifies to the Bernoulli distribution. The number of trials for each observation is usually provided 

as a variable of the data to which the Binomial-logit GLIMs are to be fitted. Similar to the Poisson sampling 

distributions, a scale parameter can be used for the Binomial distribution to address under-dispersion or over-

dispersion (see Section 6.11). 

 

The probability models 

 

The general probability model for the Bernoulli-logit and Binomial-logit GLIMs may be expressed as 

 

( )

( )
1 1

1 1

exp

1 exp

k r rk

k

k r rk

x x

x x

  


  

+ + +
=

+ + + +
 

 

where k  denotes the probability that subject k  has a unit value for the response variable, jkx  denotes the value 

of the j -th predictor ( 1,2, ,j r= ) for respondent k , and  , 1 , …, 1r − , and r  denote unknown parameters. 

The probability model for the specific Bernoulli-logit and Binomial-logit GLIMs is given by 

 

( )
( )

( )
1 2

1 2

exp *sex *race_d
P depr 1

1 exp *sex *race_d

k k

k

k k

  

  

+ +
= =

+ + +
 

 

where ( )P depr 1k =  denotes the probability that client k  has a history of depression and  , 1  and 2  denote 

unknown parameters. The ratio of the probabilities that a female client ( sex 1k = ) and a male client (sex 0k = ) 

has a history of depression respectively follows as 

 

( )

( )
( )1 2

1

2

exp *race_d
exp

1 exp *race_d

  


 

+ +
=

+ +
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In a similar fashion, it follows that ( )2exp   is the ratio of the probabilities that a white client and a nonwhite 

client have a history of depression respectively. The corresponding estimated model follows as 

 

( )
( )
( )

1 2

1 2

ˆ ˆˆexp *sex *race_d
P̂ depr 1

ˆ ˆˆ1 exp *sex *race_d

k k

k

k k

  

  

+ +
= =

+ + +
 

 

where ( )P̂ depr 1k =  denotes the estimated probability that client k  has a history of depression and ̂ , 
1̂  and 

2̂  denote the maximum likelihood estimates of  , 1  and 2  respectively. 

 

2.4.3.3 Analyzing binary outcomes from complex survey designs (method 1) 

To explore a potential link between depression and a respondent's gender and ethnicity, a GLIM with Bernoulli 

distribution and logit link function is fitted to the data described above. The Bernoulli distribution is used since 

the outcome variable, depr, is dichotomous (0 for no depression history and 1 for a history of depression).  

 

2.4.3.3.1 Setting up the analysis 

 

We first open the file abuse1.lsf in a LSF window using the the Open option on the File menu of the root window 

of LISREL to load the Open dialog box and selecting the Lisrel Data (*.lsf) option from the Files of type drop-down 

list box. 

 

 
 

We can now use the SurveyGLIM menu to fit the Bernoulli-logit GLIM to the data in abuse1.lsf. First, select the Title 

and Options option on the SurveyGLIM menu to go to the Title and Options dialog box. Enter the title A Bernoulli-

Logit Model for ADSS Data into the Title string field to produce the following Title and Options dialog box. 
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Click on the Next button to access the Distributions and Links dialog box and select the Bernoulli option from the 

Distribution type drop-down list box to produce the following Distributions and Links dialog box. 

 

 
 

Click on the Next button to go to the Dependent and Independent Variables dialog box.  
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Specify the response variable depr by selecting it from the Variables in data list box first and then clicking on the 

Add button of the Dependent variable section. Specify the covariates, sex and race_d, by selecting them from the 

Variables in data list box and clicking on the Continuous button of the Independent variables section to produce 

the following Dependent and Independent Variables dialog box.    

 

 
 

Click on the Next button to access the Survey Design dialog box. Specify the stratification variable, CENREG, by 

selecting it from the Variables in data list box first and then clicking on the Add button of the Stratification variable 

section. Similarly, specify the cluster variable, FACTYPE, and the weight variable, A2TWA0, by using the Add 

buttons of the Cluster variable and the Weight variable section to produce the following Survey Design dialog 

box.    
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As this concludes our specifications, click on the Finish button to open the following text editor window for 

abuse1.prl.    

 

 
 

Submit the syntax file above by clicking on the Run Prelis toolbar icon to obtain the output file abuse1.out.   

 

2.4.3.3.2 Discussion of results – Bernoulli-logit model 

 

A portion of the output file abuse1.out is shown in the following text editor window. 
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The results above indicate that both the gender and the race of clients have a statistically significant influence on 

their depression status if a significance level if 5% is used. There is sufficient evidence to conclude that female 

clients (sex = 1) are more likely than male clients to have a depression history and that white clients (race_d = 1) 

are less likely than nonwhite clients to have a history of depression.  

 

Estimated outcomes for different groups 
 

The estimated model is obtained from the results above as 

 

( )
( )

( )

exp 0.14 0.70*sex 0.57*race_d
P̂ depr 1

1 exp 0.14 0.70*sex 0.57*race_d

k k

k

k k

− + −
= =

+ − + −
. 

 

The estimated probability that a nonwhite female client ( sex 1k =  and race_d 0k = ) has a history of depression 

follows from this fitted model as 

 

( )

( )

( )

( )

exp 0.14 0.70 exp 0.56
0.64

1 exp 0.14 0.70 1 exp 0.56

− +
= =

+ − + +
 

 

Similarly, the estimated probability that a nonwhite male client has a history of depression follows as 0.47. From 

the results above, it follows that ( ) ( )1
ˆexp exp 0.70 2.01 = =  which implies that female clients are twice as likely 

as male clients to have a history of depression. Similarly, ( ) ( )1
ˆexp exp 0.57 0.57 = − =  implies that whites are 

43% less likely than nonwhites to have a history of depression. 

 

2.4.3.4 Analyzing binary outcomes from complex survey designs (method 2) 

In this example, we illustrate that a GLIM with a Binomial distribution is identical to a GLIM with a Bernoulli 

distribution when the number of trials is one for each observation. If the NTrials command is omitted from the 

syntax file, the number of trials will automatically be set to unity.  

 



 56                      

2.4.3.4.1 Setting up the analysis 

 

We fit the Binomial-logit GLIM to the data in abuse1.lsf by specifying the Binomial sampling distribution instead 

of the Bernoulli sampling distribution. First, however, select the Title and Options option on the SurveyGLIM 

menu to go to the Title and Options dialog box and enter the title A Binomial-Logit Model for ADSS Data into the 

Title string field. Click the Next button and select the Binomial option from the Distribution type drop-down list 

box to produce the following Distributions and Links dialog box. 

 

 
 

Click on the Next button and add the variable intcept as the NTRIALS variable. 
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Since these are the only changes we needed to specify, click on the Next button of the Dependent and Independent 

Variables dialog box and the Finish button of the Survey Design dialog box to open the following text editor 

window for abuse1.prl. 

 

 
 

Submit abuse1.prl by clicking on the Run Prelis toolbar icon to generate the corresponding output file abuse1.out. 
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2.4.3.4.2 Discussion of results – Binomial-logit model 

 

A selection of the results in the output file abuse1.out is shown in the following text editor window. 

 

 
 

We note that the results above are identical to those obtained for the Bernoulli-logit GLIM. Hence, the conclusions 

based on the results above are identical to those reported for the Bernoulli-logit GLIM results. The reason for the 

identical results is that the number of trials was set to unity for each observation, in which case the Binomial 

sampling distribution simplifies to the Bernoulli sampling distribution. 

  

2.4.4       GLIMs for ordinal responses using substance abuse data 

 

Researchers are often involved in studying ordinal response variables such as mental impairment (well, mild 

symptom formation, moderate symptom formation or impaired), patient satisfaction measured on a 5-point Likert 

scale, severity of lower back pain (none, mild, moderate or severe), arthritis improvement (none, some or 

marked), etc. In this section, we illustrate generalized linear modeling for ordinal response variables with 

SurveyGLIM. Cumulative logit and cumulative probit models are fitted to substance abuse data. Both logit and probit 

models usually lead to the same conclusion for the same data. Guidelines on when either of these models would 

be the more appropriate choice for given data are still being debated.   

 

2.4.4.1 The data 

The data set comes from part of the data library of the Alcohol and Drug Services Study (ADSS) and is described 

in section 2.4.1.2. The data set to be analyzed consists of the complete cases for a selection of variables and is 

provided as the LSF cntdiag.lsf. The first portion of this data set is shown in the following LSF window. 

 



 59                      

 
 

 

A brief description of the variables to be used in the subsequent GLIM analyses follows. 

 

o CENREG is the census region of the client (1 for Northeast, 2 for Midwest, 3 for South and 4 for West). 

o FACTYPE is the facility treatment type of the client (1 for residential treatment, 2 for outpatient methadone 

treatment, 3 for outpatient non-methadone treatment and 4 for more than one type of treatment). 

o A2TWA0 is the design weight of the client. 

o cntdiag is the number of abuse diagnoses of the client (0, 1, 2 or 3). 

o sex is the value of a dummy variable for the gender (0 for male and 1 for female) of the client. 

o race_d is the value of a dummy variable for the race (0 for nonwhite and 1 for white) of the client. 

 

2.4.4.2 The models 

 
The sampling distribution 

 

The sampling distribution of the cumulative logit and cumulative probit models is the Multinomial distribution whose 

probability density function is given by 
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where ky  denotes the vector of dummy variables for the p  categories of the categorical response variable y  for 

respondent k ,  kl  denotes the probability that category l  is recorded for client k  and k =π [ 1k  2k   kp ]

. 

 
The probability models 

 

The general probability models for the cumulative logit and cumulative probit models are given by 
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( )

( )
1 1*

1 1 1

exp
1,2, , 1

1 exp

l
l k r rk

kl km

m l k r rk

x x
l p

x x

  
 

  =

+ + +
= = = −

+ + + +
  

and 

( )*

1 1

1

1,2, , 1
l

kl km l k r rk

m

x x l p    
=

= =  + + + = −  

 

respectively where km  denotes the probability that category m  is recorded for subject k , jkx  denotes the value 

of the j -th predictor ( 1,2, ,j r= ) for subject k , 1 , 2 , …, 1p − , 1 , …, 1r − , and r  denote unknown 

parameters and ( )   denotes the cumulative distribution function of the standard Normal distribution. For 

illustrative purposes, the response variable cntdiag is treated here as ordinal rather than a count variable. The 

probability models for the specific cumulative logit and cumulative probit models are given by 

 

( )
( )

( )
1 2

1 2

exp *sex *race_d
P cntdiag 1, 2, 3

1 exp *sex *race_d

l k k

k

l k k

l l
  

  

+ +
 = =

+ + +
 

and 

( ) ( )1 2P cntdiag *sex *race_d 1, 2, 3k l k kl l   =  + + =  

 

respectively where ( )P cntdiagk l  denotes the cumulative probability that category l  was recorded for client 

k  and  1 , 2 , 3 , 1  and 2  denote unknown parameters. The specific probabilities for each response category 

for client k  for both these models may be obtained from the following expressions. 

 

( ) ( )P cntdiag 1 P cntdiag 1k k= =   

( ) ( ) ( )P cntdiag 2 P cntdiag 2 -P cntdiag 1k k k= =    

( ) ( ) ( )P cntdiag 3 P cntdiag 3 -P cntdiag 2 .k k k= =    

 

In the case of the cumulative logit model, the ratio of the odds in the first l categories for a female client (sex 1k =

) and a male client ( sex 0k = ) respectively follows as 

 

( )

( )
( )1 2

1

2

exp *race_d
exp

exp *race_d

l

l

  


 

+ +
=

+
 

 

Similarly, it follows that ( )2exp   is the ratio of the odds for a white client and a nonwhite client respectively. 

The corresponding estimated probability models are given by 

 

( )
( )
( )

1 2

1 2

ˆ ˆˆexp *sex *race_d
P̂ cntdiag 1, 2, 3

ˆ ˆˆ1 exp *sex *race_d

l k k

k

l k k

l l
  

  

+ +
 = =

+ + +
 

and 

( ) ( )1 2
ˆ ˆˆ ˆP cntdiag *sex *race_d 1, 2, 3k l k kl l   =  + + =  



 61                      

 

respectively where ( )P̂ cntdiagk l  denotes the estimated cumulative probability that at most the number of 

diagnoses listed in the first l  categories are recorded for client k  and  1̂ , 2̂ , 3̂ , 
1̂  and 

2̂  denote the 

maximum likelihood estimates of 1 , 2 , 3 , 1  and 2  respectively. 

 

2.4.4.3 Analyzing ordinal outcomes from complex survey designs (method 1) 

In a previous example, a GLIM with a Poisson distribution and a log link function was used to examine the possible 

association between ethnicity and gender effects and the number of substance abuse diagnoses (cntdiag). Since 

this variable assumes values between 0 and 3 in the sample data, an alternative approach is to examine the 

strength of the relationship between the predictors and the cumulative number of diagnoses. A GLIM with a 

multinomial distribution and a cumulative logit link function may be used for this purpose. 

 

2.4.4.3.1 Setting up the analysis 

 

We start by opening the data file to be processed, cntdiag.lsf, in a LSF window.  

 

 
 

Next, we specify the analysis as follows. Select the Title and Options option on the SurveyGLIM menu to go to 

the Title and Options dialog box. Then enter the title A cumulative logit model into the Title string field to produce 

the following Title and Options dialog box. 
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Click on the Next button to access the Distributions and Links dialog box and select the Multinomial option from 

the Distribution type drop-down list box and the Ordinal logit option from the Link function drop-down list box 

to produce the following Distributions and Links dialog box. 

 

 
 

Click on the Next button to go to the Dependent and Independent Variables dialog box. Specify the response 

variable cntdiag by selecting it from the Variables in data list box first and then clicking on the Add button of the 

Dependent variable section. Specify the covariates, sex and race_d, by selecting them from the Variables in data 

list box and clicking on the Continuous button of the Independent variables section to produce the following 

Dependent and Independent Variables dialog box.  
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Click on the Next button to access the Survey Design dialog box. Specify the stratification variable, CENREG, by 

selecting it from the Variables in data list box first and then clicking on the Add button of the Stratification variable 

section. Similarly, specify the cluster variable, FACTYPE, and the weight variable, A2TWA0, by using the Add 

buttons of the Cluster variable and the Weight variable sections respectively to produce the following Survey 

Design dialog box.    
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Since our desired analysis is now specified, click on the Finish button to open the following text editor window 

for cntdiag.prl.    

 

 

 

Click on the Run Prelis toolbar icon to submit the syntax file above to obtain the output file cntdiag.out.  

 

2.4.4.3.2 Discussion of results – Cumulative-logit model 

 

A portion of the output file cntdiag.out is shown in the following text editor window. 

 

 

 

At a 5% level of significance the results above indicate that there is insufficient evidence that gender and race 

affect the cumulative probabilities of the number of diagnoses of clients. Although the results for race_d border 

on statistical significance, interpreting the test of the parameter estimate precisely is consistent with the non-

significance of the omnibus test of the model (see the Wald F-test and Wald 
2 -statistic). 
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Estimated outcomes for different groups 
 

Since 1
ˆ 1.69 = − , the estimated probability that a white female client ( race 1k =  and sex 1k = ) has no diagnoses 

follows from the results above as 

 

( ) ( )
( )

( )

exp 1.69 0.20 0.39ˆ ˆP cntdiag 1 P cntdiag 1 0.09
1 exp 1.69 0.20 0.39

k k

− − −
= =  = =

+ − − −
 

 

Similarly, the estimated probabilities that a white female client has at most 1 diagnosis and 2 diagnoses follow 

as 0.44 and 0.79 respectively. These estimated cumulative probabilities imply that the estimated probabilities 

that a white female client has 1 diagnosis, 2 diagnoses and 3 diagnoses are 0.44 - 0.09 = 0.35, 0.79 - 0.44 = 0.35 

and 1 - 0.09 - 0.35 - 0.35 = 0.21 respectively. The effect estimates, 
1

ˆ 0.20 = −  and 
2

ˆ 0.39 = − , suggest that the 

cumulative probability starting at the no diagnoses end of the scale decreases for both females and whites. Given 

the race of a client, the estimated probability of a number of diagnoses below any level for a female client is 

( )exp 0.20 0.82− =  times the estimated probability for a male client. Similarly, given the gender of a client, the 

estimated probability of a number of diagnoses below any level for a white client is ( )exp 0.39 0.68− =  times the 

estimated probability for a nonwhite client. 

 

2.4.4.4 Analyzing ordinal outcomes from complex survey designs (method 2) 

In the previous example we examined the strength of the relationship between ethnicity, gender, and the 

cumulative number of substance abuse diagnoses. A GLIM with a multinomial distribution and a cumulative logit 

link function was used to do so. To study the effect of using a different type of link function, a probit link function 

is used here. 

 

2.4.4.4.1 Setting up the analysis 

 

We fit the cumulative probit model to the data in cntdiag.lsf by specifying the cumulative probit link function instead 

of the cumulative logit link function. This is accomplished as follows. First modify the title by selecting the Title 

and Options option on the SurveyGLIM menu to go to the Title and Options dialog box and enter the title A 

cumulative probit model into the Title string field. Then click on the Next button to access the Distributions and 

Links dialog box and select the Ordinal probit option from the Link function drop-down list box to produce the 

following Distributions and Links dialog box. 
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Since this concludes the modifications, click on the Next buttons of the Distributions and Links and the Dependent 

and Independent Variables dialog boxes and the Finish button of the Survey Design dialog box to open the 

following text editor window for cntdiag.prl. 

 

 
 

Click on the Run Prelis toolbar icon to submit cntdiag.prl to generate the corresponding output file cntdiag.out. 

 

2.4.4.4.2 Discussion of results – Cumulative-probit model 

 

A portion of the output file cntdiag.out is shown in the following text editor window. 
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A comparison of the results above with those obtained for the cumulative logit model indicates that although they 

differ, the same conclusions about the effect of gender and race on the cumulative probabilities of the number of 

diagnoses apply. 

 

Since 1
ˆ 1.01 = − , the estimated probability that a nonwhite male client (race_d = 0, sex = 0) has no diagnoses 

follows from the results above as 

 

( ) ( ) ( )ˆ ˆP cntdiag 1 P cntdiag 1 1.01 0.16k k= =  = − =  

 

Similarly, the estimated probabilities that a nonwhite male client has at most 1 diagnosis and 2 diagnoses follow 

as 0.58 and 0.87 respectively. These estimated cumulative probabilities imply that the estimated probabilities 

that a white female client (race_d = 1, sex = 1) has 1 diagnosis, 2 diagnoses and 3 diagnoses are 0.58 - 0.16 = 

0.42, 0.87 - 0.58 = 0.29 and 1 - 0.16 - 0.42 - 0.29 = 0.13 respectively. The effect estimates, 1
ˆ 0.10 = −  and 

2
ˆ 0.19 = − , suggest that the cumulative probability starting at the no diagnoses end of the scale decreases for 

both females and whites. 

 

2.4.5       GLIMs for nominal responses using NHIS data 

SurveyGLIM can also be used to fit models to nominal response variables. The primary food choice of alligators 

(fish, invertebrate, reptile, bird or other), smoking status (never smoked, former smoker or current smoker), 

preference for U.S. President (Democrat, Republican or Independent), cancer type of female cancer patients 

(breast, lung, brain, leukemia, liver, colon or other), etc. are examples of nominal response variables. In this 

section, we illustrate this feature by fitting a generalized logistic model to health-related data. A description of the 

data follows. 
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2.4.5.1 The data 

The data set comes from the data library of the National Health Interview Survey (NHIS). The NHIS is a national 

longitudinal health survey. During 2002, background data and data on the health conditions of a sample of 28,737 

participants were obtained. The 2002 sample was stratified into 64 strata and into 601 PSUs. The first portion of 

the data set to be used is shown in the following LSF window. 

 

More information on the NHIS and the data are available at 

http://www.cdc.gov/nchs/about/major/nhis/quest_data_related_1997_forward.htm 

 

 

 
 

The variables to be utilized in the subsequent analyses are 

 

o CSTRATM is the stratum of the participant. 

o CPSUM is the PSU of the participant. 

o PATWT is the design weight of the participant. 

o PASTVIS is the value of a nominal variable for the number of visits to a medical doctor during the past 12 

months (1 for blank, 2 for none, 3 for 1-2 visits, 4 for 3-5 visits, 5 for 6 or more visits, 6 for unknown 

and 7 for not ascertained) of the participant. 

o AGE is the age of the participant. 

o EXERCISE is the value of a dummy variable for the exercise status (0 for do exercise and 1 for do not 

exercise) of the participant. 

 

2.4.5.2 The models 

The sampling distribution 

 

The sampling distribution of the generalized logistic model is the Multinomial distribution whose probability 

density function is given by 
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http://www.cdc.gov/nchs/about/major/nhis/quest_data_related_1997_forward.htm
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where ky  denotes the vector of dummy variables for the p  categories of the categorical response variable y  for 

respondent k , kl  denotes the probability that client k  responded with category l  and k =π [ 1k  2k   kp ]  

 
The probability model 

 

The general probability model for the generalized logistic model is given by 

 

( )

( )

1 1

1

1 1

1

exp
1,2, , 1

1 exp

l l k rl rk

kl p

l l k rl rk

l

x x
l p

x x

  


  
−

=

+ + +
= = −

+ + + +
 

 

where kl  represents the probability that client k  responded with category l , jkx  denotes the value of the j -th 

predictor ( 1, 2, ,j r= ) for subject k  and 1 , 2 , …, 1p − , 11 , 12 , … , 1 1p − , …, 1r , 2r , …, and 1rp −  

denote unknown parameters. 

 

The probability model for the specific generalized logistic model is given by 

 

( )
( )

( )

1 2
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1

exp AGE EXERCISE
P PASTVIS 1,2, ,6
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l l k l k
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l l
  
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where ( )P PASTVISk l=  denotes the probability that client k  responded with category l , and 1 , 2 , 3 , 4 , 

5 , 6 , 11 , 12 , 13 , 14 , 15 , 16 , 21 , 22 , 23 , 24 , 25  and 26  denote unknown parameters. 

 

The corresponding estimated probability model is given by 

 

( )
( )

( )

1 2

6

1 2

1

ˆ ˆˆexp AGE EXERCISE
P̂ PASTVIS 1,2, ,6

ˆ ˆˆ1 exp AGE EXERCISE

l l k l k

k

l l k l k

l

l l
  
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=

+ +
= = =
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where ( )P̂ PASTVISk l=  is the estimated probability that client k  responded with category l , and 1̂ , 2̂ , 3̂ , 

4̂ , 5̂ , 6̂ , 11̂ , 12̂ , 13̂ , 14̂ , 15̂ , 16̂ , 21̂ , 22̂ , 23̂ , 24̂ , 25̂  and 26̂  denote the maximum likelihood 

estimates of 1 , 2 , 3 , 4 , 5 , 6 , 11 , 12 , 13 , 14 , 15 , 16 , 21 , 22 , 23 , 24 , 25  and 26  respectively. 

 

2.4.5.3 Analyzing nominal outcomes from complex survey designs 

In this example, we wish to examine the effect of exercise and age on the number of visits (PASTVIS) to a medical 

doctor during the past 12 months. Since the last two categories of the outcome variable are defined as "unknown" 

and "not ascertained", PASTVIS is a nominal variable. A suitable GLIM model is obtained by specifying a 

multinomial distribution with logit link function. 
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2.4.5.3.1 Setting up the analysis 

 

Before the specific analysis can be specified, we need to open the file nih1.lsf in a LSF window. Continue by 

selecting the Title and Options option on the SurveyGLIM menu to access the Title and Options dialog box and 

entering the title A Multinomial-Logit Model into the Title string field to produce the following Title and Options 

dialog box. 

 

 
 

Go ahead and click on the Next button to access the Distributions and Links dialog box and select the Multinomial 

option from the Distribution type drop-down list box to produce the following Distributions and Links dialog box. 

 

 
 

Click on the Next button above to go to the Dependent and Independent Variables dialog box. Specify the 

response variable, PASTVIS, by selecting it from the Variables in data list box first and then clicking on the Add 

button of the Dependent variable section. Specify the covariates, AGE and EXERCISE, by selecting them from the 
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Variables in data list box and clicking on the Continuous button of the Independent variables section to produce 

the following Dependent and Independent Variables dialog box.  

 

 
 

Click on the Next button to go to the Survey Design dialog box. Specify the stratification variable, CSTRATM, by 

selecting it from the Variables in data list box first and then clicking on the Add button of the Stratification variable 

section. Specify the cluster variable, CPSUM, and the weight variable, PATWT, by using the Add buttons of the 

Cluster variable and the Weight variable sections respectively to produce the following Survey Design dialog box.    
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This concludes the specifications, so click on the Finish button to open the following text editor window. 

 

 
 

Submit the syntax file above by clicking on the Run Prelis toolbar icon to obtain the corresponding output file 

nih1.out. 
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2.4.5.3.2 Discussion of results – generalized logistic model 

 

A portion of the results in nih1.out is shown in the following text editor window. 

 

 
 

Recall that AGE 1 represents the lowest category of the outcome variable, while AGE 6 represents the highest. At 

a 5% level of significance, the results above suggest that there is sufficient evidence that the age of a respondent 

exerts a positive influence on the probability of the number of visits to a doctor in the past 12 months by the 

respondent. In particular, it seems that older respondents are more likely than younger respondents to have visited 

a doctor more regularly in the past 12 months. The estimated coefficients for the EXERCISE variables are mostly 

positive, and a value of 1 on any of these indicates a patient that does not exercise. The results thus indicate that 

exercising exerts a significant influence on the probabilities of 1-2 and 3-5 annual visits to a doctor in the past 

12 months. It appears that respondents who do not exercise are more likely than those who do exercise to have 

visited a doctor regularly in the past 12 months.  

 

The estimated probability that a 60-year old respondent who does not exercise regularly does not visit the doctor 

(category 2) is obtained from the results above as 
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The corresponding probability that a 60-year old respondent who does exercise regularly does not visit the doctor 

(category 2) follows as 

 

( )
( )

( )
6

1 2

1

exp 0.97 0.007*60 0.35
P̂ PASTVIS 2 0.35

ˆ ˆˆ1 exp *60
k

l l l

l
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=

+ +
= = =

+ + +
 

 

The effect estimate for no visit to the doctor, 
22

ˆ 0.35 = , suggests that the probability of no visit to the doctor 

increases for respondents who exercise regularly. 

 

2.5 Evaluation studies 

2.5.1      A Monte Carlo study 

The accuracy of the results of the SurveyGLIM module of LISREL was assessed by using a small Monte Carlo 

study and numerical comparisons with SAS PROC SURVEYLOGISTIC and AM. The Monte Carlo study is presented 

in this section. 

 

The Monte Carlo results can be compared to the example in Section 3.4.1 (GLIMs for count responses, Poisson-

log model). 

 

2.5.1.1 The finite population 

The finite population data form part of the data library of the Alcohol and Drug Services Study described in 

Section 2.4.1.2. The background data and data on the substance abuse of 3799 clients formed one of the finite 

population data sets of the Monte Carlo study. The population consists of four census regions and each census 

region contains three facility treatment types.  

 

2.5.1.2 The simulated response variable 

SAS PROC GENMOD (SAS Institute 2004) was used to fit a Poisson-log GLIM to the finite population data. The 

resulting mean model for the specific Poisson-log GLIM may be expressed as 

 

( )1 1 2exp 0.6762 0.0823 0.0743k k kx x = − −  

 

where k  denotes the mean number of diagnoses recorded for client k , 1kx  denotes a dummy variable for the 

gender of client k  and 2kx  denotes a dummy variable for the race of client k . The value of the simulated response 

variable for client k , ky , was obtained as a random value of a Poisson ( )k  distribution. 

 

2.5.1.3 The replicates 

SAS PROC SURVEYSELECT (SAS Institute 2004) was used to select 1000 complex samples with replacement of 

sizes 500 and 1000 from the finite population. The population was stratified by census region, and a systematic 

sample was selected for each facility type within each census region. 
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2.5.1.4 The Poisson-log GLIM 

The mean model for the Poisson-log GLIM is given by 

( )1 1 2 2expk k kx x   = + +  

 

where k  denotes the mean simulated number of diagnoses recorded for client k , 1kx  denotes a dummy variable 

for the gender of client k , 2kx  denotes a dummy variable for the race of client k  and  , 1   and 2  denote 

unknown parameters. 

 

2.5.1.5 Monte Carlo results 

The SurveyGLIM module of LISREL was used to fit the Poisson-log GLIM above to each complex sample (replicate). 

The estimation results were processed to assess the performance of the maximum likelihood method for complex 

samples from finite populations in terms of bias and standard error estimation. The following statistics were 

computed for each sequence of 1000 parameter estimates and corresponding standard error estimates: 

 

o Mean estimate  

o Estimated bias 

o Percentage bias 

o 95% confidence interval for bias 

o Standard deviation of parameter estimates 

o Estimated root mean squared error 

o Mean standard error estimate 

o Overall coverage percentage 

 

The overall coverage percentages were computed for the standard error estimates, based on Binder (1983), as 

well as for the traditional standard error estimates obtained from the information matrix.  

 

2.5.1.6 Bias 

The Maximum Likelihood (ML) bias results for 1000 random samples of sizes 500n =  and 1000n =  are 

summarized in Tables 3 and 4 respectively. The bias confidence intervals in Tables 3 and 4 reveal that the ML 

estimates are not significantly biased for the parameters of the Poisson-log model. 

 

Table 3: Bias results for n = 500 

 

 Parameter 
Population 
Value 

Mean 
Estimate 

Point 
Estimate 
of Bias  

Percentage 
Bias 

Lower 
95% CI 
Limit for 
Bias 

Upper 
95% CI 
Limit for 
Bias 

  0.6762 0.6733 0.0029 0.004327 -0.0094 0.00359 

1  -0.0823 -0.0811 -0.0012 0.015164 -0.0041 0.00663 

2  -0.0743 -0.0757 0.0014 0.018802 -0.0072 0.00439 
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Table 4: Bias results for n = 1000 

 

 Parameter 
Population 
Value 

Mean 
Estimate 

Point 
Estimate 
of Bias  

Percentage 
Bias 

Lower 
95% CI 
Limit for 
Bias 

Upper 
95% CI 
Limit for 
Bias 

  0.6762 0.6776 -0.0014 0.002081 -0.0039 0.00668 

1  -0.0823 -0.0833 0.0010 0.011604 -0.0057 0.00382 

2  -0.0743 -0.0754 0.0012 0.015451 -0.0046 0.00226 

 

2.5.1.7 Standard error estimation 

Tables 5 and 6 show the standard error estimation results for 1000 random samples of sizes 500n =  and 

1000n =  respectively.  

 

Table 5: Standard error results for n = 500 

 

Parameter 
Root Mean 
Squared 
Error 

Standard 
Deviation of 
Parameter 
Estimates 

Mean 
Standard 
Error 
Estimate 

Overall 
Coverage 
Percentage 
for Binder 

Overall 
Coverage 
Percentage 
for 
Information 
Matrix 

  0.105194 0.105153 0.132099 95.30% 83.00% 

1  0.086859 0.086850 0.118180 98.60% 82.20% 

2  0.093449 0.093439 0.112153 96.20% 94.70% 

 

The overall coverage percentages indicate that the Binder standard error estimates are not significantly biased 

for the standard errors of the estimators of the parameters of the Poisson-log model. The only exception is the 

estimate of the standard error of the estimator of 1  for the samples of size 1000n = . However, the corresponding 

bias is negligible. It is also evident that the standard error estimates, based on the information matrix, are 

significantly biased.  
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Table 6: Standard error results for n = 1000 

 

Parameter 
Root Mean 
Squared 
Error 

Standard 
Deviation of 
Parameter 
Estimates 

Mean 
Standard 
Error 
Estimate 

Overall 
Coverage 
Percentage 
for Binder 

Overall 
Coverage 
Percentage 
for 
Information 
Matrix 

  0.085082 0.085070 0.089482 95.10% 89.50% 

1  0.076991 0.076985 0.076371 93.70% 91.80% 

2  0.054992 0.054980 0.091016 99.60% 89.40% 

 

2.5.2       Numerical comparisons 

2.5.2.1 GLIMs for the Bernoulli sampling distribution 

The SurveyGLIM module of LISREL, SAS PROC SURVEYLOGISTIC and AM can fit Bernoulli-logit and Bernoulli-probit 

models to complex survey data. In this section, the parameter estimates and standard error estimates produced 

by SurveyGLIM, SAS PROC SURVEYLOGISTIC and AM for these two GLIMs are compared. 

 

The numerical results reported here can be compared to the example in Section 4.3 (GLIMs for binary responses, 

Bernoulli-logit model). 

 

2.5.2.1.1 The data 

The data set forms part of the data library of the Alcohol and Drug Services Study described in section 2.4.1.2. 

The data set to be analyzed consists of the complete cases for a selection of variables and is provided as the LSF 

abuse1.lsf. The first portion of this data set is shown in the following LSF window. 
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2.5.2.1.2 The mean models 

The mean models for the Bernoulli-logit and the Bernoulli-probit GLIMs are given by 

 

( )

( )
1 1 2 2

1 1 2 2

exp

1 exp

k k

k

k k

x x

x x

  


  

+ +
=

+ + +
 

and 

( )1 1 2 2k k kx x   =  + +  

 

respectively where k  denotes the probability that client k  suffers from depression, 1kx  denotes a dummy 

variable for the gender of client k , 2kx  denotes a dummy variable for the race of client k ,  , 1   and 2  denote 

unknown parameters and ( )   denotes the cumulative distribution function of the standard Normal distribution. 

 

2.5.2.1.3 Estimates and standard error estimates 

The SurveyGLIM, AM and SAS PROC SURVEYLOGISTIC estimates and standard error estimates for the two GLIMs 

are shown in Tables 7 and 8 respectively. These results show that the SurveyGLIM, AM and SAS PROC 

SURVEYLOGISTIC estimates and standard error estimates for the two GLIMs agree at least to 3 decimal places. 

 

Table 7: Estimates and standard error estimates for a Bernoulli-logit GLIM 

 
     
           Program 
 
 
 
Parameter 

SurveyGLIM AM 
SAS PROC 
SURVEYLOGISTIC 

Estimate 
Standard 
Error 

Estimate 
Standard 
Error 

Estimate 
Standard 
Error 

Intcept -0.1433 0.2337 -0.1433 0.2337 -0.1433 0.2337 

Sex 0.6949 0.1332 0.6949 0.1332 0.6949 0.1332 

race_d -0.5683 0.1735 -0.5683 0.1735 -0.5682 0.1735 

 

Table 8: Estimates and standard error estimates for a Bernoulli-probit GLIM 

 

           Program 
 
 
Parameter 

SurveyGLIM AM 
SAS PROC 
SURVEYLOGISTIC 

Estimate 
Standard 
Error 

Estimate 
Standard 
Error 

Estimate 
Standard 
Error 

Intcept -0.0897 0.1461 -0.0897 0.1461 -0.0897 0.1461 

Sex 0.4330 0.0831 0.4330 0.0831 0.4330 0.0831 

race_d -0.3530 0.1079 -0.3531 0.1079 -0.3530 0.1079 
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2.5.2.2 GLIMs for the Multinomial sampling distribution 

The SurveyGLIM module of LISREL and SAS PROC SURVEYLOGISTIC can fit generalized logistic (logit), cumulative 

logit and cumulative probit models for the Multinomial sampling distribution to complex survey data. The 

parameter estimates and standard error estimates produced by SurveyGLIM and SAS PROC SURVEYLOGISTIC are 

compared for these GLIMs in this section. 

 

2.5.2.2.1 The data 

The data set forms part of the data library of the Alcohol and Drug Services Study and is described in section 

4.1. The data set to be analyzed consists of the complete cases for a selection of variables and is provided as the 

LSF cntdiag.lsf. The first portion of this data set is shown in the LSF window in section 4.3. 

 

2.5.2.2.2 The mean models 

The mean model for the generalized logistic, the cumulative logit and cumulative probit models are given by 

( )

( )

1 1 2 2

2

1 1 2 2

0

exp

1 exp

l l k l k

kl

l l k l k

l

x x

x x

  


  
=

+ +
=

+ + +
 

( )

( )
1 1 2 2*

1 1 1 2 2

exp

1 exp

l
l k k

kl km

m l k k

x x

x x

  
 

  =

+ +
= =

+ + +
  

and 

( )*

1 1 2 2

1

l

kl km l k k

m

x x    
=

= =  + +  

 

respectively where kl  denotes the probability that client k  had the number of diagnoses in category l  ( 1,2,3l =

), 1kx  denotes a dummy variable for the gender of client k , 2kx  denotes a dummy variable for the race of client 

k , 1 , 2 , 3 , 10 , 11 , 12 , 20 , 21  , 22 , 1  and 2  denote unknown parameters and ( )   denotes the 

cumulative distribution function of the standard Normal distribution. 

 

2.5.2.2.3 Estimates and standard error estimates 

The estimates and standard error estimates yielded by SurveyGLIM and SAS PROC SURVEYLOGISTIC for the three 

GLIMs are shown in Tables 9, 10 and 11 respectively. The results in Tables 9, 10 and 11 reveal that SurveyGLIM 

and SAS PROC SURVEYLOGISTIC produce estimates and standard error estimates for the GLIMs that agree at least 

to 3 decimal places. 
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Table 9: Estimates and standard error estimates for a generalized logistic model 

 

             Program 
 
 
Parameter 

SurveyGLIM 
SAS PROC 
SURVEYLOGISTIC 

Estimate 
Standard 
Error 

Estimate 
Standard 
Error 

intcept 1 0.0412 0.3931 0.0411 0.3931 

intcept 2 1.3456 0.1553 1.3456 0.1553 

intcept 3 0.7894 0.0907 0.7894 0.0907 

sex 1 -0.1749 0.3930 -0.1749 0.3930 

sex 2 -0.3256 0.3053 -0.3255 0.3053 

sex 3 -0.0282 0.1827 -0.0282 0.1827 

Race_d 1 -0.1691 0.3385 -0.1691 0.3385 

Race_d 2 -0.9932 0.2777 -0.9927 0.2777 

Race_d 3 -0.2540 0.2254 -0.2537 0.2254 

 

Table 10: Estimates and standard error estimates for a cumulative logit model 

 

         Program 
 
 
Parameter 

SurveyGLIM 
SAS PROC 
SURVEYLOGISTIC 

Estimate 
Standard 
Error 

Estimate 
Standard 
Error 

Alpha1 -1.6891 0.3154 -1.6891 0.3154 

Alpha2 0.3493 0.1650 0.3493 0.1650 

Alpha3 1.9046 0.1348 1.9046 0.1348 

sex -0.2012 0.2157 -0.2012 0.2157 

race_d -0.3943 0.2020 -0.3942 0.2020 

 

Table 11: Estimates and standard error estimates for a cumulative probit model 

 

        Program 
 
 
Parameter 

SurveyGLIM 
SAS PROC 
SURVEYLOGISTIC 

Estimate 
Standard 
Error 

Estimate 
Standard 
Error 

Alpha1 -1.0128 0.1708 -1.0128 0.1708 

Alpha2 0.2017 0.1017 0.2017 0.1017 

Alpha3 1.1214 0.0766 1.1214 0.0766 

sex -0.1036 0.1255 -0.1036 0.1255 

race_d -0.1884 0.1171 -0.1884 0.1171 
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2.6 Statistical theory 

2.6.1      Introduction 

The statistical theory for fitting generalized linear models (GLIMs) to complex survey data is essentially an 

extension of the corresponding theory for simple random sample data (see McCullach & Nelder (1989) and 

Agresti (2002)). In this section we summarize the general GLIM theory. Equation Section 2 

We assume that the target population can be stratified into H  strata. Within each stratum h , hn  clusters or 

primary sampling units (PSUs) are drawn and within the 
thh stratum and 

thi  cluster, 
ihn  ultimate sampling units 

(USUs) are drawn with design weights 
ijhw , where j  denotes the thj  USU within the 

thi  cluster, which in turn is 

nested within stratum h . Furthermore, we assume that the rows of the matrix [ ]
ijh=Y y  represent 

1 1

i

i

nH

h

h i

n n
= =

=  

observations of the p  outcome variables y  with probability density function ( )f   and that the rows of the matrix 

[ ]
ijh=X x  are n  observations of the r  covariates x . We postulate a model for the mean vector [ ]

ij ijh hE=μ y  

which can be expressed as 

         ( , )
ij ijh h=μ m x θ                         (2.1) 

 

where ( )m  denotes a vector-valued function of 
ijhx  and the 1q  vector θ  of unknown parameters. 

 

The model in (2.1) is transformed to a linear model by using a link function which defines the relationship 

between the elements of the dependent variable vector, 
ijhη , of the linear model and the elements of the mean 

vector 
ijhμ . More specifically, the linear model of the GLIM is given by 

 

     
ij ijh h=η A θ      (2.2) 

 

where 
ijhA  denotes a known p q  design matrix and 

 

   

,1 ,1

,2 ,2
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( )

ij ij

ij ij

ij ij

ij ij

h h

h h

h h

h p h p

g

g

g
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   
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= = =   
   
   
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η g μ       (2.3) 

 

where ( ) : R R →g  denotes the link function. 

 

The log likelihood function for the maximum likelihood estimation of the elements of θ  is given by 

 

   
1 1 1

ln ( | ) ln ( ; )
hh i

ij ij ij

nnH

h h h

h i j

L w f f
= = =

=θ Y y θ    (2.4) 
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where 
ijhf  denotes the frequency for observation ijh . From (2.4), the maximum likelihood equations follows as 

 

   1

1 1 1

ˆ ˆ ˆ{ ( )} [ ]
hh i

ij ij ij ij ij ij

nnH

h h h h h h

h i j

w f −

= = =

 − = D Σ y y μ 0    (2.5) 

where 

     
ij

ij ij

ij

h

h h

h

  
=  

 

μ
D A

η
     (2.6) 

 

and ( )
ijhΣ y  denotes the covariance matrix of 

ijhy . In general, the equations in (2.5) do not have a closed form 

solution. Consequently, an iterative algorithm is required to obtain maximum likelihood estimates of the elements 

of θ . The Fisher scoring algorithm may be described as follows. If ( )ˆ t
θ  denotes the 

tht  successive approximation 

to θ̂ , then the ( 1)stt +  approximation is obtained from 

 

    
1

( 1) ( ) ( ) ( )ˆ ˆ ˆ ˆ( ) ( )t t t t

n

−
+ = +θ θ Ι θ g θ       (2.7) 

 

where the gradient vector ( )g  is given by 

 

    
1 1 1

( ) ( )
hh i

ij

nnH

h

h i j= = =

=g θ g θ      (2.8) 

where 

    
1

( ) ( ) [ ]
ij ij ij ij ij ij ijh h h h h h hw f

−

= −g θ D Σ y y μ     (2.9) 

 

and the Fisher information matrix is given by 

 

     
1

1 1 1

( ) ( )
hh i

ij ij ij ij ij

nnH

n h h h h h

h i j

w f
−

= = =

=Ι θ D Σ y D     (2.10) 

 

By using a similar derivation to that in the Complex Survey Sampling Guide, the approximate asymptotic 

covariance matrix of the parameter estimators may be expressed as 

 

       
1 1

( ) ( )n n

− −
 = Ι θ Γ Ι θ      (2.11) 

 

where Γ  denotes the covariance matrix of a scalar multiple of the estimated gradient vector. 

 

The application of this general theory to the Poisson-Log model is demonstrated extensively in section 6.2. Since 

this demonstration extends readily to the other specific GLIMs, only the necessary expressions for these GLIMs 

are provided in the subsequent sections.  
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2.6.2       The Poisson-log model 

Suppose that the elements of the vector [ ]
ijhy=y  represent 

1 1

i

i

nH

h

h i

n n
= =

=  observations of the outcome variable 

y  and that 
ijhy  follows a Poisson distribution with mean 

ijh . In other words, the probability density function of 

ijhy  is given by 

 ( ) ( )    , ln , ln ln !
!

h hij ij

ij

ij ij ij ij ij ij ij ij

ij

y

h

h h h h h h h h

h

e
f y f y y y

y




   

−

=  = − −   (2.12) 

 

and the variance of 
ijhy  is given by 

     ( )2

ij ijh hy =      (2.13) 

 

Suppose further that the following exponential model is imposed on the means of y  

 

      exp
ij ijh h = x β      (2.14) 

 

where 
ijhx  denotes observation ijh  of the r  covariates x  and the elements of 1 2[ ]r   =β  denote 

unknown parameters. The model in (2.14) is transformed to a linear model by using the log link function. In 

other words 

 

     ln
ij ij ij ijh h h h  = = =x β A θ      (2.15) 

 

where 
ij ijh h

=A x  and =θ β . By using (2.12), (2.14) and (2.15), the log likelihood function for the parameters of 

the Poisson-log model follows from (2.4) as 

 

     ( )
1 1 1

ln ( | ) exp ln !
hh i

ij ij ij ij ij ij

nnH

h h h h h h

h i j

L w f y y
= = =

 = − −β y x β x β  . (2.16) 

 

From (2.16), the gradient vector for the parameters of the Poisson-log model follows as 
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  (2.17) 

 

where 
ij ij ijh h h=D x . The Fisher information matrix for the parameters of the Poisson-log model follows as 
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   (2.18) 

 

It is evident that expressions (2.17) and (2.18) are equivalent to the general expressions (2.8) and (2.10) 

respectively. Since these derivations are similar for the other GLIMs, we provide the specific expressions for each 

individual GLIM without derivation. 

 

2.6.3       GLIMs for the Bernoulli sampling distribution 

 
Sampling distribution 

 

    
1

( ) (1 )
h hij ij

ij ij ij

y y

h h hf y  
−

= −      (2.19) 

 
Variance 

 

    
2( ) (1 )

ij ij ijh h hy  = −     (2.20) 

 

2.6.3.1 The logit model 

 
Model for means 
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where the elements of 1 2[ ]r   =β  denote unknown parameters. 

 
Link function 

    
,1

,1

,2

logit( ) ln
ij

ij ij

ij

h

h h

h


 



  
= =  

 

     (2.22) 

 
Linear model 

 

     
ij ijh h=η A θ       (2.23) 

 

where 
ij ijh h

=A x  and =θ β . 

 

The D matrix for observation ijh  

     

    
,1 ,1(1 )

ij ij ij ijh h h h  = −D x      (2.24) 

 

2.6.3.2 The complementary log-log model 

 
Model for means 

 

      1 exp exp
ij ijh h = − − x β      (2.25) 

 

where the elements of 1 2[ ]r   =β  denote unknown parameters. 

 
Link function 

 

     ln( ln(1 ))
ij ijh h = − −      (2.26) 

 
Linear model 

 

     
ij ijh h=η A θ       (2.27) 

 

where 
ij ijh h

=A x  and =θ β . 

 

The D matrix for observation ijh  

     

    (1 ) ln(1 )
ij ij ij ijh h h h  − − −D x      (2.28) 
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2.6.3.3 The probit model 

 
Model for means 

 

     ( )
ij ijh h =  x β      (2.29) 

 

where the elements of 1 2[ ]r   =β  denote unknown parameters and ( )   denotes the cumulative 

distribution function of the standard Normal distribution.  

 

Link function 

 

     1( )
ij ijh h −=      (2.30) 

 
Linear model 

 

     
ij ijh h=η A θ       (2.31) 

 

where 
ij ijh h

=A x  and =θ β . 

 

The D matrix for observation ijh  

    
( )( )

2
11

2
1

2

hij

ij ijh he




−− 

=D x      (2.32) 

 

2.6.3.4 The log model 

 
Model for means 

 

      exp
ij ijh h = x β      (2.33) 

 

where the elements of 1 2[ ]r   =β  denote unknown parameters. 

 
Link function 

 

     ( )ln
ij ijh h =       (2.34) 

 
Linear model 

  

     
ij ijh h=η A θ       (2.35) 

 

where 
ij ijh h

=A x  and =θ β . 
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The D matrix for observation ijh  

     

     
ij ij ijh h h =D x       (2.36) 

 

2.6.4       The Binomial-logit model 

 
Sampling distribution 
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    (2.37) 

 
Variance 
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h

h

y
n

 


−
=     (2.38) 

 

The model for means, the link function, the linear model and the D  matrix of the Binomial-logit model are identical 

to those of the Bernoulli-logit model (cf. (2.21), (2.22), (2.23) and (2.24)). 

 

2.6.5       The Negative Binomial-log model 

 
Sampling distribution 

 

   

( )

( )

( )
1

1

( )
1

1 1

hij

ij
ij

ij
hij

ij ij

y
h

h

h
y

h h

y

f y

y 






+

 
 + 
 =

 
 +  + 

 

    (2.39) 

 
Variance 

 

    ( )2 2

ij ij ijh h hy  = +     (2.40) 

 

The model for means, the link function, the linear model and the D  matrix of the Negative Binomial-log model are 

identical to those of the Bernoulli-log model (cf.(2.33), (2.34), (2.35) and (2.36)). 

 

 

  



 88                      

2.6.6 The Gamma-log model 

 
Sampling distribution 

 

   

1

1
( ) exp

1

ij ij

ij

ij ij

ij

h h

h

h h
h

y y
f y

y



   



   
   = −
    
    

 

    (2.41) 

 
Variance 

 

     ( )2 2

ij ijh hy =     (2.42) 

 

The model for means, the link function, the linear model and the D  matrix of the Gamma-log model are identical 

to those of the Bernoulli-log model (cf. (2.33), (2.34), (2.35) and (2.36)). 

 

2.6.7       The Inverse Gaussian-log model 

 
Sampling distribution 

 

  

2

3

1 1
( ) exp

22

ij ij

ij

ijij
ij

h h

h

hhh

y
f y

yy




 

  −
  = −

  
  

    (2.43) 

 
Variance 

 

     ( )2 3

ij hij
hy =     (2.44) 

 

The model for means, the link function, the linear model and the D  matrix of the Inverse Gaussian-log model are 

identical to those of the Bernoulli-log model (cf. (2.33), (2.34), (2.35) and (2.36)). 

 

2.6.8       The Normal-identity model 

 
Sampling distribution 

 

   ( ) ( )
21 1

exp
22ij ij ijh h hf y y 


 
= − − 

 
    (2.45) 

 
Variance 

 

     ( )2

ijhy =     (2.46) 
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Model for means 

 

     
ij ijh h = x β       (2.47) 

 

where the elements of 1 2[ ]r   =β  denote unknown parameters.  

 

Link function 

 

     
ij ijh h =       (2.48) 

 
Linear model 

 

     
ij ijh h=η A θ       (2.49) 

 

where 
ij ijh h

=A x  and =θ β . 

 

The D matrix for observation ijh  

     

     
ij ijh h

=D x       (2.50) 

 

2.6.9       GLIMs for the Multinomial sampling distribution 

 
Sampling distribution 

 

 ( )
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,
,

1

,

1

,1 1
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!
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y

h h k hp p
k

h k h k
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n
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y n y

 

−

=

− −

− −
=

==

 
=  
    −  

  




    (2.51) 

 

Covariance matrix 

 

    *( )
ij h ij ijij

h h h
= −Σ y D μ μ     (2.52) 

 

where 
*

,1 ,2 , 1h ij ij ijij
h h h py y y −

 =
 

y and 
hij

D denotes a ( 1) ( 1)p p−  −  diagonal matrix with the elements of 

,1 ,2 , 1ij ij ij ijh h h h p   −

 =
 

μ  on the diagonal. 
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2.6.9.1 The generalized logistic Model 

 
Model for means 

 

   
 

 
, 1

1

exp
1,2, , 1

1 exp

ij

ij

ij

h k

h k p

h k

k

k p
−

=


=  = −

+

x β

x β

   (2.53) 

 

where the elements of 1 2[ ] 1, 2, , 1k k k kr k p   =  = −β  denote unknown parameters. 

 
Link function 

 

    
,

, ,

,

logit( ) ln
ij

ij ij

ij

h k

h k h k

h p


 



  
= =  

 

    (2.54) 

 
Linear model 

 

     
ij ijh h=η A θ       (2.55) 

 

where ,1 ,2 , 1ij ij ij ijh h h h p   −

 =
 

η , 
1ij ijh p h−

= A I x  and   =θ α β . 

 

The D matrix for observation ijh  

     

    
ij h ij ij ijij

h h h h
  = − 
 

D D μ μ x      (2.56) 

 

where 
hij

D  denotes a ( 1) ( 1)p p−  −  diagonal matrix with the elements of ,1 ,2 , 1ij ij ij ijh h h h p   −

 =
 

μ  on the 

diagonal. 

 

2.6.9.2 The cumulative logit model 

 
Model for means 

 

  
 
 , ,

*

1

exp
1,2, , 1

1 exp

ij

h k h lij ij

ij

k
k h k

l
k h k

k p


 
=

+
= =  = −

+ +


x β

x β
   (2.57) 

 

where the elements of 1 2 1[ ]p   −
=α  and 1 2[ ]r   =β  denote unknown parameters. 
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Link function 

 

    
,

,

,

*

*

, *
clogit( ) ln

1

h kij

ij h kij

h kij

h k


 



 
 

= =  
− 

    (2.58) 

 
Linear model 

 

     
ij ijh h=η A θ       (2.59) 

 

where ,1 ,2 , 1ij ij ij ijh h h h p   −

 =
 

η , 1 1ij ijh p p h− −
 = 
 

A I 1 x  and   =θ α β . 

 

The D matrix for observation ijh  

     

    
* *

* *

ij ij
h hij ij

h h
 

 
=  

 
D UD Ud x     (2.60) 

 

where U  denotes a ( 1) ( 1)p p−  −  matrix given by 

 

    

1 0 0 0 0

1 1 0 0 0

0 1 1 0 0

0 0 0 1 0

0 0 0 1 1

 
 
− 
 −

=  
 
 
  − 

U     (2.61) 

 

  ( ) ( ) ( )*

* * * * * * *

,1 ,1 ,2 ,2 , 1 , 11 1 1
h h h h h hij ij ij ij ij ij

hij

p p


     − −

 = − − −
  

d   (2.62) 

 

2.6.9.3 The proportional hazards model 

 
Model for means 

 

  ( ), ,

*

1

1 exp exp 1,2, , 1
h k h l ijij ij

k

k h k

l

k p  
=

= = − − +  = − x β    (2.63) 

 

where the elements of 1 2 1[ ]p   −
=α  and 1 2[ ]r   =β  denote unknown parameters. 
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Link function 

 

   ( )( ), ,

* *

, cloglog( ) ln ln 1
ij h k h kij ij

h k  = = − −     (2.64) 

 
Linear model 

 

     
ij ijh h=η A θ        (2.65) 

 

where ,1 ,2 , 1ij ij ij ijh h h h p   −

 =
 

η  1 1ij ijh p p h− −
 = 
 

A I 1 x  and   =θ α β . 

 

The D matrix for observation ijh  

 

    
* *

* *

ij ij
h hij ij

h h
 

 
=  

 
D UD Ud x     (2.66) 

 

where U  is as defined in (2.61) and 
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( ) ( )

*
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 

d     (2.67) 

 

2.6.9.4 The cumulative probit model 

 
Model for means 

 

  ( )
, ,

*

1

1,2, , 1
h k h l ijij ij

k

k h

l

k p  
=

= =  +  = − x β    (2.68) 

 

where the elements of 1 2 1[ ]p   −
=α  and 1 2[ ]r   =β  denote unknown parameters and ( )   

denotes the cumulative distribution function of the standard normal distribution. 

 

 

Link function 

 

     ( ),

1 *

,ij h kij
h k −=       (2.69) 
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Linear model 

 

     
ij ijh h=η A θ       (2.70) 

 

where ,1 ,2 , 1ij ij ij ijh h h h p   −

 =
 

η , 
1 1ij ijh p p h− −

 = 
 

A I 1 x  and   =θ α β . 

 

The D matrix for observation ijh  
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ij ij
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 

 
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 
D UD Ud x      (2.71) 

 

where 
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D  denotes a ( 1) ( 1)p p−  −  diagonal matrix with diagonal elements given by 
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2.6.9.5 The log model 

 
Model for means 

 

   ( )
,

exp 1,2, , 1
h k ijij

k h k p  = +  = −x β     (2.73) 

 

where the elements of 1 2 1[ ]p   −
=α  and 1 2[ ]r   =β  denote unknown parameters. 

 

Link function 

 

     
,, ln( )

ij h kij
h k =      (2.74) 

 
Linear model 

 

     
ij ijh h=η A θ       (2.75) 
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where ,1 ,2 , 1ij ij ij ijh h h h p   −

 =
 

η , 
1 1ij ijh p p h− −

 = 
 

A I 1 x  and   =θ α β . 

 

The D matrix for observation ijh  

     

    
ij ij

hijhij

h h
 

 
=  

  

D D d x      (2.76) 

 

where 
hij

D  denotes a ( 1) ( 1)p p−  −  diagonal matrix with the elements of 
,1 ,2 , 1h h h hij ij ij ij

p    −

 =
 

d  on the 

diagonal. 

 

2.6.9.6 The probit model 

 
Model for means 

 

   ( )
,

1,2, , 1
h k ijij

k h k p  =  +  = −x β    (2.77) 

 

where the elements of 1 2 1[ ]p   −
=α  and 1 2[ ]r   =β  denote unknown parameters and ( )   

denotes the cumulative distribution function of the standard normal distribution. 

 
 
Link function 

 

     ( ),

1

,ij h kij
h k −=       (2.78) 

 
Linear model 

 

     
ij ijh h=η A θ       (2.79) 

 

where ,1 ,2 , 1ij ij ij ijh h h h p   −

 =
 

μ , 1 1ij ijh p p h− −
 = 
 

A I 1 x  and   =θ α β . 

 

The D matrix for observation ijh  

     

    
ij h h ijij ij

h h 
 = 
 

D D d x      (2.80) 
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where  
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 
 
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d      (2.81) 

 

2.6.9.7 The complementary log-log model 

 
Model for means 

 

    , ,1 exp exp 1,2, , 1
h k ijij

k h k k p  = − − +  = −x β    (2.82) 

 

where the elements of 1 2 1[ ]p   −
=α  and 1 2[ ]r   =β  denote unknown parameters. 

 

 

Link function 

 

    ( )( ),, ln ln 1
ij h kij

h k = − −      (2.83) 

 
Linear model 

 

     
ij ijh h=η A θ       (2.84) 

 

where ,1 ,2 , 1ij ij ij ijh h h h p   −

 =
 

μ , 1 1ij ijh p p h− −
 = 
 

A I 1 x  and   =θ α β . 

 

The D matrix for observation ijh  

     

    
ij h h ijij ij

h h 
 = 
 

D D d x      (2.85) 

 

where 
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( ) ( )

( ) ( )
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h hij ij

h hij ij

hij
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

 
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 
 
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=  
 
 
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d     (2.86) 

 

and 
hij

D  denotes a ( 1) ( 1)p p−  −  diagonal matrix with the elements of 
hij

d  on the diagonal. 

 

2.6.10 The estimation of scale and dispersion parameters 

 

A number of sampling distributions discussed in the previous sections have a dispersion parameter and/or a scale 

parameter. A summary of these distributions with respect to dispersion and scale parameters and their estimates 

is shown in Table 12. 

 

Table 12:  Scale and dispersion parameters 

 

Distribution Deviance Dispersion 
Maximum 
Likelihood 

Pearson Scale 

Binomial x     x x 

Gamma x x x x x 

Inverse Gaussian x x x x x 

Negative binomial x x x x   

Normal x x x x x 

Poisson x     x x 

 

2.6.10.1 The deviance 
2
χ  estimate 

 

     
2

ˆ D
D

X

d
 =      (2.87) 

 

    
2 ˆ2ln ( | ) 2ln ( | )DX L L= −y y μ y    (2.88) 

 

    
1 1 1

hh i

ij ij

nnH

h h

h i j

d w f q
= = =

= −     (2.89) 
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2.6.10.2 The Pearson 
2
χ  estimate 

 

     
2

ˆ P
P

X

d
 =      (2.90) 
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2

2

2
1 1 1

ˆ
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hh i
ij ij ij ij
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nnH
h h h h

P

h i j
h

w f y
X

y



= = =

−
=    (2.91) 

 

2.6.10.3 The maximum likelihood estimate 

The Maximum Likelihood estimate, ˆ
ML , of   is obtained by using a three-stage estimation procedure. In stage 

one, the Fisher Scoring algorithm is used to obtain Maximum Likelihood estimates of the elements of θ . These 

estimates are then used as fixed values for the elements of θ  in a Newton-Raphson algorithm to obtain an 

estimate, ˆ
ML , of the dispersion parameter  . In this algorithm, the method of moments estimate of   is used 

as the starting values for ˆ
ML . In stage three of the procedure, the Fisher Scoring algorithm is extended to include 

the dispersion parameter to yield Maximum Likelihood estimates of the dispersion parameter and the elements 

of θ . This three-stage procedure is used in the case of the Negative Binomial, Inverse Gaussian and Gamma 

sampling distributions. In the case of the Gamma and Inverse Gaussian sampling distributions, the Maximum 

Likelihood estimate of the scale parameter, ˆ
ML , is computed from ˆ

ML  and the Delta method (Bishop, Feinberg 

& Holland 1988) is used to compute the corresponding standard error estimate. In the case of the Normal 

sampling distribution, ˆ
ML  is computed as 
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1 1 1

1 1 1

ˆ

ˆ

hh i
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hh i
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h h h h
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h h
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w f y

w f




= = =

= = =

−

=


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   (2.92) 

 

2.6.10.4 Corrections to standard error estimates 

The standard error estimates are multiplied with the scale parameter estimate to correct them with respect to 

scale. 
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