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1 Introduction 

The term "ordinal" is applied to variables where the response measure of interest is measured 

in a series of ordered categories. Examples of such variables include Likert scales and 

psychiatric ratings of severity. Nominal and ordinal outcome models can be seen as 

generalizations of the binary outcome model. The ordinal model becomes important when the 

outcome variable is not dichotomous, or not truly continuous. If an ordinal outcome is analyzed 

within a continuous model, such a model can yield predicted values outside the range of the 

ordinal variable. As with binary data, some transformation or link function becomes necessary 

to prevent this from happening. The continuous model can also yield correlated residuals and 

regressors when applied to ordinal outcomes because the continuous model does not take the 

ceiling and floor effects of the ordinal outcome into account. This can then result in biased 

estimates of regression coefficients, and is most critical when the ordinal variable in question 

is highly skewed. Armstrong & Sloan (1989) also report efficiency losses between 89% and 

99% when comparing an ordinal to a continuous outcome, depending on the number of 

categories and distribution within the ordinal categories.  

 

Extensive work on the development of methods for the analysis of ordinal response data has 

been undertaken by numerous researchers, including Hedeker & Gibbons (1994). These 

developments have focused on the extension of methods for dichotomous variables to ordinal 

response data, and have been mainly in terms of logistic and probit regression models. The 

proportional odds model proposed by McCullagh (1980) is a common choice for analysis of 

ordinal data. This model, which is described in detail in Section 2.2, is based on the logistic 

regression formulation. 

 

In this chapter we will now build on the dichotomous model discussed earlier and introduce 

the ordinal model, illustrating the use of this model using the TVSFP (Flay, et. al., 1988) data 

previously used in this manual. 

 

2 Two-level ordinal analysis of TVSFP data 

2.1 The data 

The study was designed to test independent and combined effects of a school-based social-

resistance curriculum and a television-based program in terms of tobacco use and cessation. 

 

The structure of this study indicates a three-level hierarchical structure. However, for 

illustration purposes in this chapter we will consider a two-level structure in which students 

are nested within schools. Data for the first 10 participants on most of the variables used in this 

section are shown below in the form of a LISREL spreadsheet file, named tvsfpors.lsf, located 

in the Multilevel Generalized Linear Model examples subfolder. 
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The variables of interest are: 

o School indicates the school a student is from (28 schools in total). 
o Class identifies the classroom (135 classrooms in total). 

o THKSord represents the post-intervention tobacco and health knowledge scaled score, 

with 4 categories ranging between 1 and 4. The frequency distribution of the post-

intervention THKS scores indicated that approximately half the students had scores of 2 

or less, and half of 3 or greater. In terms of quartiles, four ordinal classifications were 

suggested corresponding to 0 – 1, 2, 3, and 4 – 7 correct responses. 
o PreTHKS indicates a student's score prior to intervention, i.e. the number correct of 7 

items.  

o CC is a binary variable indicating whether a social-resistance classroom curriculum was 

introduced, where 0 indicates "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with a "1" 

indicating the use of media intervention, and "0" the absence thereof. 

o CC*TV was constructed by multiplying the variables TV and CC, and represents the CC 

by TV interaction. 

 

In this example we will explore a random intercept model using the ordinal variable THKSord 

as outcome. The original post-intervention score was assumed to be a continuous variable. In 

contrast, here categories are created and the implied data collapse may lead to a loss of 

information and thus results may differ from those obtained previously.  

 

2.1.1 Exploring the data 

The focus in this chapter is on the influence of the intervention on the tobacco health 

knowledge scores of the students, as represented by the ordinal outcome variable THKSord. A 

cross-tabulation of the variables CC, TV, and THKSord are given in Table 1.1 below.  

 

In general, students not exposed to the social-resistance classroom curriculum (CC = 0) seem 

to have less health knowledge than those students exposed to the social-resistance classroom 

curriculum (CC = 1), regardless of their exposure to media intervention. The opposite is true 

for students from groups assigned the social-resistance classroom curriculum (CC = 1). 
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Table 1.1: Crosstabulation of CC, TV and THKSord 
 

TV  CC Total 

 0 1  

0 THKSord 1 117 62 179 

    2 129 78 207 

    3 89 106 195 

    4 86 134 220 

  Total 421 380 801 

1 THKSord 1 110 66 176 

    2 105 86 191 

    3 91 114 205 

    4 110 117 227 

  Total 416 383 799 

 

The trend is also apparent when the post-intervention scores are expressed as proportions (see 

Table 1.2 below). 

 

First, notice that the outcome variable THKSord has a skewed distribution. By combining the 

proportions per category over interventions, we find that 0.2219 of the 1600 students had a 

value of 1 for THKSord, 0.2488 had a value of 2, 0.25 had a value of 3, and 0.2794 a value of 4 

for THKSord. The monotonic increase in the proportion observed in each category of THKSord 

indicates that it would be inappropriate to try to fit a continuous model to the data.  

 

The pre-intervention scores of the students may be used as a covariate in the analysis. To get 

some idea of the relationship between the scale score PreTHKS and the post-intervention score 

THKSord, an exploratory graph may be useful. 
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Table 1.2: Observed proportion of high post–intervention scores 

 

TV  CC Total 

 0 1  

0 THKSord 1 0.0731 0.0388 0.1119 

    2 0.0806 0.0488 0.1294 

    3 0.0556 0.0663 0.1219 

    4 0.0538 0.0838 0.1375 

  Total 0.2631 0.2375 0.5006 

1 THKSord 1 0.0688 0.0413 0.1100 

    2 0.0656 0.0538 0.1194 

    3 0.0569 0.0713 0.1281 

    4 0.0688 0.0731 0.1419 

  Total 0.2600 0.2394 0.4994 

 

To take a closer look at the distribution of PreTHKS, select the Graphs, Univariate… option 

from the File menu after opening the Lisrel spreadsheet tvsfpors.lsf. 
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The Univariate plots dialog box is activated. Select the variable PreTHKS, and request a Bar 

Chart. Click Plot. 

 

 

Figure 1.1: Distribution of the PreTHKS scores 

 

Figure 1.1 is obtained. In contrast to the outcome variable THKSord, the distribution of the 

PreTHKS score has a lower mean, with very few students exhibiting extensive knowledge on 

the subject matter (PreTHKS = 5 or PreTHKS = 6). 

 

We now take a closer look at the distribution of the outcome variable at each distinct pre-

intervention score value by utilizing the Graphs, Bivariate option on the File menu. By default, 

a bar chart will be produced. Select the variable THKSord in the Y column and the variable 

PreTHKS in the X column, and request a Box and Whisker plot before clicking the Plot button. 
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The figure below shows a reasonably steady increase in the mean THKSord with increasing 

PreTHKS scores. This seems to be expected: students with more initial knowledge ending up 

having higher post-intervention scores as well. Note that only 55 of the 1600 observations 

showed a score of 5 or higher on the pre-intervention score, and that no student obtained a 

post-intervention score of 7 out of 7.  

 

 

Figure 1.2: Box-and-whisker plot of THKSord for values of PreTHKS 

 

Finally, we also take a look at the mean pre-intervention scores of the students for each of the 

four subgroups. These are summarized in Table 1.3 below, and show that the mean pre-

intervention scores do not differ much. 

 

Table 1.3: Mean pre-intervention scores 

 

Study condition Mean 

CC = 0, TV = 0 2.152 

CC = 0, TV = 1 2.087 

CC = 1, TV = 0 2.050 

CC = 1, TV = 1 1.979 
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2.2 A multilevel ordinal model with logistic link function 

2.2.1 The proportional odds model 

The model we use for the analysis of ordinal data is based on McCullagh's (1980) proportional 

odds model, which characterizes the ordinal responses in C categories in terms of 1C −  

cumulative category comparisons, specifically 1C −  cumulative logits. The McCullagh model 

can be written as 

'( )
log

1 ( )
c

P y c

P y c


 
= − 

−  
xβ

 

where  

 

o 1,..., 1c C= −  for the C  categories of the ordinal outcome 

o x  is the vector of explanatory variables, plus the intercept 

o c  represent the threshold parameter(s); and reflect the cumulative odds when 0=x . 

 

The positive association between a predictor variable x  and the ordinal outcome variable y  

is reflected by  . It is assumed that the effect of x  is the same for each of the cumulative odds 

ratios.   

 

To illustrate, consider a model with a single predictor x .The odds that the response is less than 

or equal to c  (for any fixed c ) is divided by e
 for every unit change in x , as shown below: 

 ( )
( )

( )
exp .

1 ( )

c

c x

P y c e
x

P y c e




 

 
= − = 

−  
 

On the other hand, the odds that the response is greater than or equal to c  (again for a fixed c) 

is multiplied by e
 for every unit change in x : 

( )
1 ( )

.
( )

c
xP y c

e e
P y c

 − − 
=  

 
 

To motivate the ordinal regression model, it is often assumed that there is an unobservable 

latent variable ( *y ) which is related to the actual response through the "threshold concept." 

An example of this is when respondents are asked to rate their agreement with a given 

statement using the categories "Disagree," "Neutral," "Agree." These three options leave no 

room for any other response, though one can argue that these are three possibilities along a 

continuous scale of agreement that would also make provision for "Strongly Agree" and 
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"Disagree somewhat." The ordinal responses capture in y  and the latent continuous variable 

*y  are linked through some fixed, but unknown, thresholds. 

 

For the dichotomous model, one threshold value is assumed, while for the ordinal model, a 

series of threshold values 0 1 2, , ,..., C    , where C  equals the number of ordered categories, 

0 = − , and C =  , is assumed. Here, a response occurs in category c  (Y c= ) if the latent 

response process y  exceeds the threshold value 1C − , but does not exceed the threshold value 

c . The cumulative probabilities are given in terms of the cumulative logits with 1C −  strictly 

increasing model thresholds 1 2 1, ,..., C   − . In the current case, we will thus have 1C −  = 3 

cumulative probabilities, given in terms of 3 thresholds 1 , 2  and 3 . The thresholds represent 

the marginal response probabilities in the C  categories. We will illustrate the use of the logistic 

link function in this example.  

 

To set the location of the latent variable, it  is common to set a threshold to zero. Usually, the 

first of the threshold parameters ( 1 ) is set to zero. Alternatively, the model intercept ( 0 ) is 

set to zero and 1C −  thresholds are estimated.  

 

2.2.2 The mixed-effect proportional model 

The mixed-effect proportional odds model can be formulated as: 

' '( )
log

1 ( )
c ij ij i

P y c

P y c


 
 = − +   −  
x β z v . 

In this model, as in the proportional odds model, the origin of the latent variable y  is set by 

setting the first threshold, 1 , equal to zero. It is assumed that ( ),i vNIDv 0 Σ . The unit of 

measurement is / 3 = . 

 

For this model, the category probabilities are defined as 

 ( )( )' '( )ij c ij ij iP y c   = − +x β z v  

 and 

 ( ) ( )( ) ( )( )' ' ' '

1ij c ij ij i c ij ij iP y c     −= = − + − − +x β z v x β z v  

     where the cumulative standard logistic distribution function is 
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 ( )( )
( )

' '

' '

1
.

1 exp
c ij ij i

c ij ij i

 


− + =
 + − − +
 

x β z v
x β z v

 

Various link functions may be used with this model. If we define ( )1

ijG P y c−  
 

 as 

( ) ( )1 ' '

ij c ij ij iG P y c −   = − +
 

x β z v , 

or, equivalently,  

( ) ( )' ' ,ij c ij ij iP y c G   = − +
 

x β z v  

three types of models can easily be fitted: 

 

o Using ( ) ( )1 log / 1G P P P− = −  will give a cumulative logit model, i.e. a proportional 

odds model, 

o using ( ) ( )1 1 / 1G P P P− −= −    will produce a cumulative probit model, and 

o using ( ) ( )1 log log 1G P P− = − −   , the so-called complementary log-log link, will give 

a proportional hazards model.   

 

2.2.3 The mixed-effect non-proportional logistic regression model 

A limitation of the model specified in the previous section is that it is assumed that the effect 

of covariates is the same across the cumulative logits. To overcome this limitation, an 

extension of the mixed-effects ordinal logistic regression model to allow for nonproportional 

odds for a set of regressors was developed by Hedeker & Mermelstein (1998). This 

generalization of the proportional odds model can be formulated as 

' '( )
log

1 ( )
c ij ij i

P y c

P y c


 
 = − + +   −  

'

ij c
u θ x β z v . 

In this model, as in the proportional odds model, the origin of the latent variable y  is set by 

setting the first threshold, 1 , equal to zero. It is assumed that ( ),i vNIDv 0 Σ . The unit of 

measurement is / 3 = . 

'

ij
u  = hx1 vector for the set of h covariates for which the proportional odds is not assumed. 

For this model, the category probabilities are defined as 

 ( )( )' '( )ij c ij ij iP y c   = − + +'

ij cu θ x β z v  

• The effects of the u variables do vary across the c-1 cumulative logits 
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• The non-proportional odds model is a more flexible model for ordinal response relations 

 

2.2.4 A general multilevel ordinal model 

The multilevel ordinal model is defined in terms of the cumulative probability ( )ijP y c  

where c  denotes the category of interest. The level-1 model is written in terms of the 

cumulative logits, as shown below. 

 

Level-1 model: 

 
( )
( )

'log
1

ij

c ij i

ij

P y c

P y c


 
 = −   −   

x b . 

where ijx  represent the values of the covariates corresponding to level-1 unit j  nested within 

level-2 unit i . 

 

Level-2 model: 

If all the elements of the coefficient vector ib  are allowed to vary randomly across level-2 

units, then 

 ,i i= +b β v  

which models the level-2 effects as a function of an overall mean β  and a unique random 

component ( , )i vNIDv 0 Σ . The latter is also referred to as the level-2 residuals and indicates 

the extent to which a given level-2 unit differs from the average, as estimated by the first part 

of the level-2 model. 

 

Note that the level-2 model does not depend on the response variable. As the regression 

coefficients 0 1 2, ,    and 3  are without subscript, it is assumed that they do not vary across 

the categories and hence that the relationship between the predictor variables and the 

cumulative logits is not dependent on c . McCullagh (1980) referred to this as the assumption 

of identical odds ratios across the 1C −  categories.  

 

In practice, a subset of the coefficients ib  are assumed to have fixed, but unknown, values. For 

example, a random intercept-and-slope model with 2 predictors of which the first has a random 

slope would have a level-2 model of the form 
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0 0 0

1 1 1

2 2

i i

i i

i

b v
b v
b





= +
= +
=

 

In this model, only the first two coefficients are assumed to vary randomly across the level-2 

units. 

 

Another characteristic of the current model is that a positive coefficient for a regressor indicates 

that the odds that the response is greater than or equal to c  increases with an increase in 

regressor values. However, another formulation as shown below, in which the regression 

parameters β  are identical but of opposite sign, is commonly used in survival analysis models 

(see Chapter Error! Reference source not found.): 

 
'log ( 1,..., 1).

1

ijc

c i i

ijc

P
c C

P


 
 = + = −   −  

x b  

 

2.2.5 An ordinal model with 2 covariates and an interaction term 

As in the case of the binary variable THKSbin, we intend to explore the relationship between 

the type of intervention, the pre-intervention scores of students and the ordinal outcome 

variable THKSord. We do so using a 2-level model, with students nested within schools. 

 

Level-1 model: 

At the first level, the pre-intervention score is used as predictor. 

( )
( ) 0 1

THKSord
log PreTHKS ( 1,..., subjects)

1 THKSord

ij

c i i ij i

ij

P c
b b j n

P c


 
 = − + =   

−   

 

Level-2 model: 

At the school level, the types of intervention (represented by the dummy variables CC and TV) 

are used to explain differences in the intercepts of the groups. In addition, the interaction 

between CC and TV is included in the model. 

 
( )0 0 2 3 4 0

1 1

CC TV CC*TV ( 1,..., groups)i i i ii

i

b v i N

b

   



= + + + + =

=
 

It is assumed that 
2

0 (0, )i vv NID  .  

 

The model can also be formulated in a single expression as: 
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( )
( )

( )0 1 2 3 4 0

THKSord
log

1 THKSord

[ PreTHKS CC TV CC*TV ]

ij

ij

c ij i i ii

P c

P c

v     



− 

=

 
 
  

− + + + + +
 

Recall that the outcome variable has 4 categories. There are thus 3 thresholds. In this model 

 

o 00 −  (remember that 1 0 =  for identification purposes) is the first logit (category 1 

vs. categories 2 to 4) for groups with no intervention (CC = TV = 0). This logit is 

adjusted for the effect of PreTHKS. 

o 2 0 −  is the second logit, representing categories 1 and 2 vs. categories 3 and 4, for 

groups with no intervention (CC = TV = 0). This logit is also adjusted for the effect of 

PreTHKS. 

o 3 0 −  is the third logit, representing categories 1 to 3 vs. category 4, for the same 

groups and again adjusted for the effect of PreTHKS. 

o The coefficient 1  represents the effect of PreTHKS on THKSord. 

o The coefficient 2  denotes the PreTHKS adjusted logit differences between CC = 1 and 

CC = 0 (for TV = 0). 

o The coefficient 3  denotes the PreTHKS adjusted logit differences between TV = yes 

and TV =no (for CC = 0). 

o The coefficient 4  is the adjusted difference in logit attributable to interaction between 

CC and TV (CC * TV). 

o The random school deviation is represented by 0iv . Note that we assume a single, fixed 

and  thus common PreTHKS slope over the level-2 units.  

o The interpretation of the coefficients is dependent on the coding of the variables used 

in the model. 

 

2.2.6 Setting up the analysis: Proportional Odds Model 

Using the data in tvsfpors.lsf, we consider the situation where students are nested within 

schools and fit a two-level model with the ordinal variable THKSord as outcome. We wish to 

examine the relationships between the outcome and the two intervention methods employed, 

simultaneously taking students' pre-intervention scores into account. To do so, we use the 

model described above with schools as the level-2 units.  

 

Use the File, Open Spreadsheet option to activate the display of an Open dialog box. Browse 

for the file tvsfpors.lsf. Select the Multilevel, Generalized Linear Model option from the main 

menu.  
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We are now ready to provide model specifications by clicking on the Title and Options… menu 

item. We opt to increase the number of quadrature points to be used during estimation. to 25 

(default is 10). 

 

 

 

Click the Next button to obtain the ID and Weight Variables dialog. 

The School identification variable is used to define the hierarchical structure of the data, and is 

selected as the Level-2 ID Variable from the Variables in data list. 
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To proceed to the Distribution and Links dialog click the Next button and select Multinomial as 

the distribution type and Ordinal Logit as the link function type as shown below: 
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Note (see the dialog above) that covariate and random effect means are subtracted from the 

thresholds, implying that a positive coefficient indicates a positive association between the 

outcome and the predictor in question. To add the covariate and random effect means instead 

of using the default subtract setting, the add option must be selected in the Model Terms field 

on the Advanced tab of the Model Setup dialog box.  

 

By clicking the Next button on the dialog shown above, the Dependent and Independent 

Variables dialog is displayed. 

 

Start by selecting the ordinal outcome variable THKSord from the Variables in data list. 

Complete the model specifications by selecting PreTHKS, CC, TV and CC*TV as the independent 

variables (predictors).  

 

  

 

After selecting all the independent (explanatory) variables, the random effect(s) at level 2 must 

be selected. This is accomplished by again clicking Next to proceed to the last dialog.  In this 

case, we wish to allow only the intercept to vary randomly over the schools. By default, the 

intercept is assumed to vary randomly over higher levels of the hierarchy as indicated by the 

checked boxes for the Include Intercept options.  
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Run the analysis by clicking the Run Prelis icon on the main menu bar. 

 

 

2.2.7 Discussion of results  

 Portions of the output file tvsfpors.out are shown below.  
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The section shown below contains a description of the model specifications and of the number 

of level-2 and level-1 units in the data.  

 

  

 

Descriptive statistics 

After the observation counts, descriptive statistics for all variables included in the model are 

given.  
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Fixed effects results 

The output describing the estimated parameters after convergence is shown next. Two 

iterations were required to obtain convergence, using 25 quadrature points per dimension. The 

likelihood function value at convergence as well as the deviance are also given, and may be 

used to compare a set of nested models. The estimates are shown in the column with heading 

Estimate and correspond to the coefficients 0 1 4, , ,    in the model specification. Significant 

effects of PreTHKS and CC are observed. With the exception of the CC *TV interaction term, 

positive relationships between the predictors and the ordinal outcome variable are indicated by 

these results. We also note that the coefficient associated with the curriculum-based 

intervention (CC) is almost three times the size of the estimated coefficient for media 

intervention (TV).  

 

 

The alternative parameterization, setting threshold = 0 is shown next. The estimates of 2  and 

3  are 1.242 and 2.420 respectively – recall that for identification purposes 1  was set to zero. 
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Random effects results 

The last part of the output file contains information on the random effects and calculation of 

the intra-cluster correlation coefficient. The variation in intercept over schools is estimated at 

0.0735, with the associated p-value of 0.055 indicating its statistical significance.  
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In the case of the fixed effects, a 2-tailed p -value is used, as the alternative hypothesis 

considered here is of the form 1 : 0H   . As variances are constrained to be elements of the 

interval [0, )+ , the p -values used for these effects are 1-tailed. If the model is true, it is 

assumed that the level-1 error variance,
2

e , is equal to 
2 / 3  for the logistic link function, 

where   represents the constant 3.141592654 (see, e.g., Hedeker & Gibbons (2006), p. 157).  

 

Finally, the calculation of the intra-cluster correlation is shown. The value of 0.022 indicates 

that almost all variation is attributable to students, rather than to the schools. 

 

2.2.8 Setting up the analysis: Non-Proportional Odds Model 

Use the File, Open and browse for the syntax file tvsfpors.prl (see Section 1.2.2.6): 

 

 

 

Suppose that we want to check the non-proportional assumption for the variables CC and TV. 

In this case we need to reorder the predictors (CoVars) so that the variables CC and TV are listed 

first. Since there are two predictors of interest, we need to change Interactions=0 to 

Interactions=2. The revised syntax file (saved as tvsfpors1.prl) is shown below: 
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Run the analysis by clicking the Run Prelis icon on the main menu bar. 

 

 

 

2.2.9 Discussion of results  

 Portions of the output file Ttvsfpors1.prl are shown below.  

 

Fixed effects results 

The output describing the estimated parameters after convergence is shown next. Two 

iterations were required to obtain convergence, using 25 quadrature points per dimension. The 

likelihood function value at convergence as well as the deviance are also given, and may be 

used to compare a set of nested models.  
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Random effects results 

The last part of the output file contains information on the random effects and calculation of 

the intra-cluster correlation coefficient. The variation in intercept over schools is estimated at 

0.0721, with the associated p-value of 0.058 indicating its statistical significance.  

 

 

 

Testing the proportional odds assumption 

For a pair of nested models, the difference in 2ln L−  values has a 2  distribution, with degrees 

of freedom equal to the difference in number of parameters estimated in the models compared.  

From the information contained in tvsfpors.out (proportional odds model) and tvsfpors1.out 

(non-proportional odds model) it follows that 2 =4239.49 – 4234.02 = 5.47 with degrees of 

freedom 12 – 8 =4. Since this is a non-significant result, we conclude that the proportional 

odds assumption cannot be rejected.  
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