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  1    Overview 

Social science research often entails the analysis of data with a hierarchical structure. A frequently cited example 

of multilevel data is a dataset containing measurements on children nested within schools, with schools nested 

within education departments. 

 

The need for statistical models that take account of the sampling scheme is well recognized and it has been shown 

that the analysis of survey data under the assumption of a simple random sampling scheme may give rise to 

misleading results. 

 

Multilevel models are particularly useful in the modeling of data from complex surveys. Cluster or multi-stage 

samples designs are frequently used for populations with an inherent hierarchical structure. Ignoring the 

hierarchical structure of data has serious implications. The use of alternatives such as aggregation and 

disaggregation of information to another level can induce an increase in collinearity among predictors and large 

or biased standard errors for the estimates. In order to address concerns regarding the appropriate analyses of 

survey data, the LISREL multilevel module features an option for users to include design weights on levels 1, 2 , 

3, 4 or 5 of the hierarchy. 

 

2 Multilevel models  

2.1 Introduction 

There has been a growing interest in recent years in fitting models to data collected from longitudinal surveys 

that use complex sample designs. This interest reflects expansion in requirements by policy makers and 

researchers for in-depth studies of social processes over time.  

 

Although structural equation modeling allows for a tremendous flexibility in modeling error structures, it is in 

general not straightforward to analyze nested data structures with it. This, on the other hand, is a strong point of 

multilevel modeling, which is also more flexible than structural equation modeling when repeated measurement 

occasions vary between individuals. In order to address concerns regarding the appropriate analyses of survey 

data, the LISREL multilevel module features an option for users to include design weights on levels 1, 2, 3, 4 or 

5 of the hierarchy. Correct parameter estimates and robust standard error estimates, using a Taylor linearization 

approach, are produced. 

 

Section 2.2 is a brief overview of the graphical user interface (GUI) for the linear multilevel linear modeling 

module implemented in LISREL. Section 2.3 gives the multilevel linear model syntax that is generated via the 

dialog boxes. For advanced users, there are additional syntax specifications presently not available via the 

interface dialog boxes. A number of examples are given in Section 2.4. In Section 2.5 we provide evaluation and 

simulation studies. Section 2.6 describes the general weighting strategy of Pfeffermann et al. (1997), followed 

by a more rigorous theoretical treatment. 

 

Additional examples to illustrate various aspects of hierarchical linear modeling are contained in the Multilevel 

Examples folder. A list of these examples is given in the table below. 

     

  



 

LIST OF MULTILEVEL EXAMPLES 

 

Mouse data: Variance decomposition 
Data File:  MOUSE.LSF  
Input File:  MOUSE1.PRL 

Mouse data: Modeling linear growth  
Data File:   MOUSE.LSF  
Input Files: MOUSE2.PRL, MOUSE3.PRL 

Mouse data: Modeling non-linear growth 
Data File:  MOUSE.LSF  
Input File:  MOUSE4.PRL 

Mouse data: Adding a covariate  
Data File:  MOUSE.LSF  
Input File:  MOUSE5.PRL 

Mouse data: Non-homogeneous level-1 
variation  
Data File:  MOUSE.LSF  
Input File:  MOUSE6.PRL 

Air traffic data: Variance decomposition  
Data File:   KANFER.LSF  
Input File:  KANFER1.PRL 

Air traffic data: Non-linear model  
Data File:   KANFER.LSF  
Input File:  KANFER2.PRL 

Air traffic data: Adding additional predictors  
Data File:   KANFER.LSF  
Input File:  KANFER3.PRL 

Educational data: 3-Level Model. Variance 
decomposition 
Data File:   JSP.LSF  
Input File:  JSP1.PRL 

Educational data: 3-Level Model. Adding 
additional predictors  
Data File:   JSP.LSF  
Input File:  JSP2.PRL 

CPC data: 3-level model, all data  
Data File:   INCOME.LSF  
Input File:  INCOME1.PRL, INCOME2.PRL, 
INCOME3.PRL 

CPC data: 3-level model, education sector  
Data File:   EDUC.LSF  
Input File:  EDUC.PRL 

CPC data: 3-level model, construction sector  
Data File:   CONS.LSF  
Input File:  CONS.PRL 

Simulated data: 4-level model  
Data File:   SIM_LEV4.LSF  
Input File:  SIM1_LEV4.PRL 

Simulated data: 5-level model  
Data File:   SIM_LEV5.LSF  
Input File:  SIM1_LEV5.PRL 

Assessment data: 4-level model  
Data File:   THERAPIS_L4.LSF  
Input File:  THERAPIS1_L4.PRL 

Survey design data  
Data File:   SURVEYHLM.LSF  
Input File:  SURVEYHLM1.PRL 

Survey design data (Saturated model) 
Data File:   SURVEYHLM.LSF  
Input File:  SURVEYHLM2.PRL 

 

2.2 Graphical User Interface 

2.2.1  The Multilevel Models menu 

The Multilevel menu provides you access to three options: Linear Model, Generalized Linear Model and Non-Linear 

Regression. In this chapter, the Linear Model option is introduced. This menu as shown below provides you 

access to a sequence of five dialog boxes that can be used to create a basic syntax file interactively. It is located 

on the LSF (LISREL System File) window of LISREL which is used to display, manipulate and process raw data. 

In other words, this menu is only available when a LISREL system data file (*.lsf) is opened. To illustrate this, 

the LSF window for the file simlev_5.lsf is shown below with the Multilevel, Linear Model menu expanded. 

 

Presently, the Multilevel, Linear Model menu has five dialog boxes that can be used to perform basic multilevel 

analyses. Advanced options that enable the user to specify more complex models must be typed in once a syntax 

file has been generated. These options are described in this section. 

 

The typical first step for using the Multilevel, Linear Model menu would be to click on the Title and Options option 

to activate that dialog box (see Section 2.2.2). However, you can click on other options to go directly to the 

Identification Variables (see Section 2.2.3), Weight Variables (see Section 2.2.4), Response and Fixed Variables 

(see Section 2.2.5) or Random Variables dialog box (see Section 2.2.6).  



 

2.2.2       The Title and Options dialog box 

The Title and Options dialog box is used to provide a title for the analysis and keywords concerning the iterative 

procedure. The image below shows the default settings for this dialog box and, to the right, the corresponding 

syntax commands. See the alphabetical list of syntax commands for details on the options available other than 

the defaults settings: TITLE command (section 2.3.16); OPTIONS command, including the MAXITER, NFREE and 

OUTPUT keywords (section 2.3.12); and MISSING_DAT (section 2.3.10). 

 

 

 

The Next button takes you to the Identification of Variables dialog box.  

  

Title = <string>; 

 

Options  

MaxIter = 25  

Converge = 0.0001 

 

 

Missing_Dat = -999999 

Missing_Dep = -999999 

NFree = 0 

Deviance = <value> 

ACM = No 

Output = Standard 

Summary = None 

CovBW = No; 

 

 

 
 

 



 

2.2.3       The Identification Variables dialog box 

The Identification of Variables dialog box is used to select the variables in the LISREL data file (*.lsf) that identify 

the various levels of the hierarchy. The image below shows the default settings for this dialog box and, to the 

right, the corresponding syntax commands. See the alphabetical list of syntax commands for details on the 

options available other than the default settings: IDn command (section 2.3.9). 

 

 

 

The Next button provides access to the Weight Variables dialog box.  

 

2.2.4         The Weight Variables dialog box 

The Weight Variables dialog box is used to select the weight variables in the LISREL system data file for each 

level of the model. The image below shows the default settings for this dialog box and, to the right, the 

corresponding syntax commands. See the alphabetical list of syntax commands for details on the options 

available other than the default settings: WEIGHTn command (section 2.3.17). 

 

ID2 = <name of variable 

identifying level-2 units>; 

 

ID3 = <name of variable 

identifying level-3 units>; 

 

ID4 = <name of variable 

identifying level-4 units>; 

 

ID5 = <name of variable 

identifying level 5 units>; 

 



 

 

 

The Next button provides access to the Select Response and Fixed Variables dialog box.  

 

2.2.5       The Response and Fixed Variables dialog box 

The Select Response and Fixed Variables dialog box is used to select the outcome and fixed variables to be 

included in the model from the LISREL system data file (*.lsf). The image below shows the default settings for 

this dialog box and, to the right, the corresponding syntax commands. See the alphabetical list of syntax 

commands for details on the option available other than the default settings: RESPONSE command (section 

2.3.14), FIXED command (section 2.2.6) and DUMMY command (section 2.3.5). 

 

Weight5 = <name of variable 

identifying level 5 units>; 

 

Weight4 = <name of variable 

identifying level-4 units>; 

 

Weight3 = <name of variable 

identifying level-3 units>; 

 

Weight2 = <name of variable 

identifying level-2 units>; 

 

Weight1 = <name of variable 

identifying level-1 units>; 

 



 

 

 

The Next button takes you to the Random Variables dialog box.  

 

2.2.6       The Random Variables dialog box 

The Random Variables dialog box is used to select the variables for which coefficients are assumed to be random 

from the LISREL system data file (*.lsf).  Default settings for this dialog box are shown in the image below. To 

the right, the corresponding syntax commands are given. See the alphabetical list of syntax commands for details 

on the options available other than the default settings: RANDOMn command (section 2.3.13). 

 

RESPONSE = 
<response variables>; 

 

FIXED = <list of variable names 
included as fixed effects>; 

DUMMY = <categorical variable 
from which dummies are to be 
created>; 

 



 

 

 

Once all the options are set as desired, click the Finish button to generate the syntax.  

 

2.3 Syntax 

2.3.1       The structure of the syntax file 

The basic structure of the syntax file is as given below, and the required commands are indicated. In this section, 

commands appear in the order in which they are used in the syntax file. In the sections to follow, the commands 

are listed in alphabetical order. 

 

OPTIONS;           Required 
SY  = name of LISREL system file;       Required 
IDn = name of variable identifying level n units;     Required 
WEIGHT = label;          Optional 
MISSING_DAT = real value;         Optional 
MISSING_DEP = real value;         Optional 
RESPONSE = name(s) of response variables(s);     Required 
FIXED =  names of variables included as fixed effects in the model ;   Required 
RANDOMn =  names of variables included as random effects  
                       on level n of the model ;      Required 
TITLE = job title;          Optional 
CONTRAST = name of contrast file;        Optional 
COVnVAL  = starting values for level n random coefficient covariance matrix;  Optional 
COVnPAT =  pattern for level n random coefficient covariance matrix;  Optional 
FIXVAL  = starting values for fixed effect parameters;     Optional 
FIXPAT = pattern for fixed effect parameters ;     Optional  
DUMMY = categorical variable from which dummies are to be created;  Optional 
SUBPOP = names of variables to be used to construct subpopulations;  Optional 
 
 

 

RANDOM1 = <names of 

variables random on 

level-1 of the model>; 

RANDOM2 = <names of 

variables random on 

level-2 of the model>; 

RANDOM3 = <names of 

variables random on 

level-3 of the model>; 

RANDOM4 = <names of 

variables random on 

level-4 of the model>; 

RANDOM5 = <names of 

variables random on 

level 5 of the model>; 



 

 

Guidelines for constructing or changing the syntax file: 

When syntax is generated through the interface, the commands generated and saved to a *.prl file will 

automatically conform to the syntax rules given in the next section. When the syntax file is constructed or edited 

outside the interface, the following guidelines should be kept in mind: 

 

o All commands start with a keyword and conclude with a semi-colon.  

o There is no specific required order in which commands have to be given, with the exception of the 

OPTIONS command, which must always be the first line in the syntax file.  

o Lines may be left blank between commands.  

o Multilevel commands and keywords are not case-sensitive, but variable names are. 

o Not all of the available commands have to be included in the syntax file.  

 

In LISREL, the CONTRAST, COVnPAT, COVnVAL, FIXVAL and FIXPAT commands are not available via the 

graphical user interface. These commands are typically used in more advanced applications and can be added by 

editing the syntax file, or by writing an syntax file in a text editor. The separate commands are discussed, in 

alphabetical order, in the next 16 sections. 

 

2.3.2       CONTRAST command 

The CONTRAST command is used to specify the path to and name of the syntax file containing information on 

any contrast(s) between the fixed effects in the model to be tested. This is an optional command. 

 

Syntax 

 
 

CONTRAST = <filename>; 
 

where <filename> denotes the complete name (including drive and folder names) of the file containing information 

on the fixed effects contrasts to be tested.    

 

Examples: 

 

Specifying the filename: 

 

 CONTRAST= C:\MLEVEL\EXAMPLES\MLEVEL.CTR; 

 

The drive and folder names may be omitted if the contrast file and the syntax file are in the same folder.  

 

Specifying the contrasts between fixed effects in a *.ctr file: 

Suppose that there are six fixed effects in a particular model, these being INTERCEPT, GENDER, MATHS, 

READING, SCIENCE and WRITING. 

 

  



 

If, for example, one wishes to test 

 

 

0 : 0;

0;

READING WRITING

MATHS SCIENCE

H  

 

− =

− =
 

this can be tested by specifying 

 0 : 0H =Cβ
 

where 

 

0 0 0 1 0 1

0 0 1 0 1 0
C

− 
=  

−   

and 

 

 INTERCEPT GENDER MATHS READING SCIENCE WRITING      =

 
 

Note that each row of C has six elements, corresponding to the six fixed effects. The first contrast between fixed 

effects is in the first row. Since the fourth element in the first equals 1, and the sixth element is -1, this denotes a 

contrast between the READING  and WRITING  effects. 

 

The contrast file will have the following form: 

 

2 
0   0   0   1   0  -1 
0   0   1   0  -1   0 

 

The first row indicates the number of contrasts and the second and third rows the actual contrasts to be tested. 

 

If the contrast file is specified as 

 

1 

0   0   0   1   0  -1 

1 

0   0   0   0  -1   0, 

 

two separate contrast tests are performed as opposed to a simultaneous test for two contrasts. 

 

2.3.3       COVnPAT command 

The COVnPAT commands are used to place constraints on the covariance matrices of random coefficients on the 

different levels of the model. We denote these covariance matrices by (1) , (2) , (3) , (4)  and (5)  or, in 

general, by ( ) , 1, 2, 3, 4, 5.n n =   

 



 

One COVnPAT command is allowed for each level of the hierarchy. If, for instance, a 5-level model with random 

components on all five levels of the hierarchy is to be fitted, up to five COVnPAT commands may be included in 

the syntax file. 

 

Note that on level-1, only structures pertaining to the diagonal elements of the level-1 random effects covariance 

matrix are permissible. The use of COVnPAT commands is optional. 

 

Syntax 
 

COVnPAT= <keywords>; 

 

Valid keywords are as follows: 

 

DIAG In this case the covariance matrix of random parameters on level n of the model will be constrained 

to be a diagonal matrix. 

TOEPLITZ The covariance matrix on levels 2 or 3 will be constrained to be of the form of a so-called Toeplitz 

matrix, that is 

 

 

0 1 2

1 0 1

( ) 2 1 0 2

1

2 1 0

n

  

  

   



  

 
 
 
 =
 
 
  

Φ

 

 

INTRA The covariance matrix of random parameters on levels 2 or 3 will be constrained to have an intra-

class structure, that is 

 

 
( )n

  

  

 



  

 
 
 
 =
 
 
  

Φ

 

 

MA1 Constrains the covariance matrix on level n to be similar to that of a time series process of order MA1. 

The form of the covariance matrix will then be 

 

 
( )

0 0

0 0

0 0

n

 

  

 



 

 
 
 
 =
 
 
  

Φ

 

 



 

The following conventions apply to the use of the COVnPAT command: 

 

o Any line of input may not exceed 127 characters. Thus, if a large COVnPAT matrix is entered, care should 

be taken that no row of this matrix exceeds this limit. If a row of the matrix is too long, it may simply be 

continued on the next line of the syntax file. 

o If elements of the covariance matrix to be estimated are constrained to be equal in value, the number 

assigned to those elements must be the same. 

o As with all other commands in the syntax file, the command should end with a semi-colon that may be 

placed directly after the last element of the matrix as specified or on the next line of the syntax file. 

o The matrix specified must have the same number of elements as implied by the RANDOMn command. 

That is, if there are p variables listed in the RANDOMn command, a total number of  ½  p (p + 1) elements 

must be entered. 

o In order to assign initial values to elements of the covariance matrix on level-n or to set fixed elements 

of the matrix to user specified values, the COVnPAT command must be used in conjunction with the 

COVnVAL command. 

 

User-specified values  

To constrain the elements of the covariance matrix to be of a form other than those discussed above, you may 

specify this required structure with the COVnPAT command. This can be done by entering a lower-triangular 

matrix with the required structure on the COVnPAT command. If, for example, the covariance matrix 

corresponding to the RANDOMn command  

 

  RANDOMn = X1 X2 X3 X4; 

 

is to be constrained, it can be accomplished by following a row-wise numbering convention for the lower 

triangular elements of the covariance matrix as shown below. 

 

1 

2  3 

4  5  6 

7  8  9  10 

  

The elements to be fixed are then replaced with "0." If, for example, the matrix is constrained to be diagonal, the 

command to be used is as follows: 

 

COVnPAT = 1 

                    0  3 

                    0  0  6 

                    0  0  0  10;  

 

The structure as specified indicates that there are four parameters to be estimated (i.e. numbers 1, 3, 6 and 10, 

corresponding to the variances) and six fixed parameters (corresponding to the covariances), indicated by 0. The 

values which the fixed parameters are to be set equal to can be supplied using the COVnVAL command. If the 

COVnVAL command is omitted, the fixed parameters will be constrained to be equal to zero, as the initial structure 

of all covariance matrices are assumed to be diagonal at the start of the iterative procedure. 

 

 
 



 

Examples: 

 

In the case of an MA1 process, for example, the command will be as follows: 

 

COVnPAT = 1 

                    2  1 

                    0  2  1 

                    0  0  2  1; 

 

From this structure it follows that there are only two parameters to be estimated (numbers 1 and 2) while all other 

parameters are constrained to be equal to zero, unless otherwise specified using the COVnVAL command. 

 

It is permissible to constrain diagonal elements of the level-n covariance matrix to be fixed through the use of 

the COVnVAL command.  

 

The following commands, for example, are permissible: 

 

COVnPAT = 1 

                    2  0 

                    4  2  0 

                    0  0  2  0; 

 

 

COVnPAT = 0 

                    2  0 

                    4  2  0 

                    0  0  2  0; 

 

Notes: 

• 0-values indicate that the corresponding elements remain fixed at the values specified in the COVnVAL 

paragraphs. 

• No line of input may exceed 80 charcters. Thus, if a large COVnPAT matrix is entered, care should be 

taken that no row of this matrix exceeds this limit. If a row of a matrix is too long, it may simply be 

continued on the next line of the input file.  

• The matrix specified by the user must have the same number of elements as implied by the RANDOMn 

command. That is, if there are p variables listed in the RANDOMn command, a total number of 
1

( 1)
2

p p +  

elements must be entered by the user. 

• In order to assign initial values to elements of the covariance matrix at level n or to set fixed elements of 

the matrix to user specified values, the COVnPAT command should be used in conjunction with the 

COVnVAL command.  

 

2.3.4  COVnVAL command 

COVnVAL commands may be used to provide either initial values for elements of the covariance matrix on level 

n of the model or to provide values for elements fixed through the use of keywords of the COVnPAT command. 

Note that the use of COVnVAL commands is optional. 



 

 

One COVnVAL command is allowed for each level of the hierarchy. If, for instance, a 5-level model with random 

coefficients on all five levels of the hierarchy is to be fitted, up to five COVnVAL commands may be included in 

the syntax file. 

 

The values to be used for the elements of the covariance matrix must be entered in the form of a lower-triangular 

matrix. The number of values entered must be the same as the number of elements implied by the relevant 

RANDOMn command. If there are p variables listed in the RANDOMn command, ½ p (p + 1) values must be 

entered. If a large number of values is entered, a row of the lower-triangular matrix may be continued on the next 

line of the syntax file if the number of characters in that row of the matrix exceeds 127 characters. The command 

must end with a semi-colon, which may be entered on the last line of the values given or on the next line of the 

syntax file. 

 

Syntax 

 
COVnVAL = <values specified by user>;  

 

Examples: 

 

Providing values for the elements of the covariance matrix:  

Continuing with the example used to illustrate the use of the COVnPAT command to obtain a user specified 

covariance structure, the following command illustrates how you may provide values for the elements of the 

covariance matrix  (n): 

 

COVnVAL = 1.00 

                    0.32  0.85 

                    0.63  0.62  0.78 

                    0.19  0.00  0.25  0.99; 

 

If an accompanying COVnPAT command is not used, these values will function as starting values for the level-n 

covariance matrix. When good starting values for the elements of this covariance matrix are known, the use of 

the command as shown above together with the use of the keyword OLS = NO in the OPTIONS command could 

decrease the number of iterations required to obtain convergence. 

 

Specifying a diagonal structure for a covariance matrix: 

When the command 

  

  COVnPAT = DIAG; 

 

is used together with the COVnVAL command given in the previous example, the values specified on the diagonal 

of the lower-triangular matrix will be used as initial values for the parameters which are to be estimated. The off-

diagonal elements of the covariance matrix will then be constrained to be equal to the values of off-diagonal 

elements of the matrix given above. 

 



 

2.3.5        DUMMY command 

The DUMMY command is used to create dummy variables for a selected variable. Names for the dummy variables 

are denoted by dummy1, dummy2, …, dummyk, where k equals the number of distinct values of the selected 

variable. Use of the DUMMY command is optional. 

 

Syntax 
 

DUMMY = <varname>; 

 
Example: 

 

DUMMY = TIME; 

 
 
Note: 

o If the variable TIME has 4 distinct values, 0, 1, 2, and 3, then the command above will result in the creation 

of four dummy variables: dummy1, dummy2, dummy3, and dummy4. 

o You can change the default names of the dummy variables by the inclusion of the PREFIX keyword on 

the DUMMY command. For example: 

 

   DUMMY = TIME PREFIX = TIM; 

 

  In this case, the dummy variable names will be TIM1, TIM2, TIM3, and TIM4. 

2.3.6       FIXED command 

The FIXED command is used to identify the fixed effects for the model to be analyzed. When the syntax file is 

created through the interface, the FIXED command is automatically generated. If, however, the file is edited 

manually, the guidelines below should be followed. Identification of the fixed effects are done on the Select 

Response and Fixed Variables dialog box (see below). The FIXED command is a required command, and must 

appear in any syntax file. 

 
Syntax 
 

FIXED = <list of variables names to be included as fixed effects>; 

 

The fixed effects may be all of the predictor variables contained in the raw data file or any subset of these 

predictors and may be specified in any order. Variable names are case sensitive and thus spelling of the names 

must correspond to the spelling used in the data spreadsheet (*.lsf file). 

 

If a covariate is included in the analysis, this should be reflected in the FIXED command. The format in which 

the covariate should be entered is as follows: 

 

     FIXED = intcept1 var1 var2 . . . varn covariate covariate*var1 covariate*var2 . . . covariate*varn; 

 

 



 

 
 

The covariate can be used in combination with any of the predictors listed in the FIXED paragraph. Note, however, 

that the multilevel module accepts a FIXED command of the form FIXED = var1*var2; The specification var1*var2 

cannot be generated by the interface, only by manually editing the syntax file. A specification of the form 

var1*var2*var3 is not presently allowed. 

 

Initial estimates for the fixed effects may be provided manually. This is done through use of the optional FIXVAL 

command that will be discussed in Section 2.3.8. See also Section 2.3.7 for a description of the FIXPAT command. 

 
Examples: 

 

FIXED = INTCEPT AGE AGESQ; 

FIXED = Dummy1:Dummy6; 

 

or any other similar command. The first command shown corresponds to the settings in the Select Response and 

Fixed Variables dialog box shown below. 

 



 

 
 

If the variable GENDER is to be included as covariate in (1), the appropriate FIXED command is as follows: 

 

      FIXED = intcept AGE AGESQ GENDER GENDER*AGE GENDER*AGESQ; 

 

2.3.7       FIXPAT command 

To specify a patterned structure for the vector of fixed parameters, the FIXPAT command may be used, with or 

without an additional FIXVAL command (see Section 2.3.8). Use of this command is optional.  

 

Syntax 
 

FIXPAT = <list of numbers>; 

 

where <list of numbers> denotes a list of positive integers separated by blank spaces. The number of values entered 

must equal the number of predictors in the model. 

 

Examples: 

 

1. Constraining fixed effects to be equal: 

  

FIXPAT = 1 1 3 3 5 6; 

 

This statement specifies that the vector of six parameters in the fixed part of the model are constrained as follows: 

BETA1 = BETA2; BETA3 = BETA4  while BETA5 and BETA6 are estimated freely. In the command shown above, 

the actual numbers correspond to the order of the parameter in question: "1" denotes the first parameter, "3" the 

third and "5" and "6" the fifth and sixth of the parameters in the fixed part of the model.  

 

 



 

2. Fixing fixed effects to user-specified values: 

 

FIXPAT = 0 0 3; 

 

If '0' values are in the list of numbers, then the FIXPAT command should be used in conjunction with the FIXVAL 

command. If, for example, FIXVAL = 10 2.5 0.15; then BETA1 and BETA2 are fixed at their initial values (10 and 

2.5 respectively) while BETA3 is estimated freely. 

 

2.3.8       FIXVAL command 

It is also possible to provide initial values for the fixed parameters in the model to be analyzed. This may be 

achieved with the FIXVAL command, which allows you to provide starting values for these parameters. The use 

of the FIXVAL command and the OLS = NO keyword of the OPTIONS command may be particularly effective 

when good starting values of these parameters are available. Use of this command is optional. 

 

Syntax 
 

FIXVAL = <as specified by user>; 

 

The number of values entered by you using this command must be equal to the number of fixed parameters to be 

estimated. There is no specific format in which the values have to be entered.  

 

Example 

 

The commands 

FIXVAL = 0.151 0.355 0.654;   

FIXVAL = 0.151  

                0.355 

                0.654; 

 

and 

 

FIXVAL = 0.151  0.355 

                 0.654 

                 ;  

 

are all permissible. If the first of these commands is used and the number of characters in the user specified string 

exceeds 127 characters, the next line of the syntax file should be used.  

 

2.3.9       IDn command 

The ID command(s) are used to indicate the variable(s) identifying the units on the different levels of the 

hierarchy. ID command(s) are required command(s). 

 

 If the model specified is a 2-level model, the command ID2 is required. Likewise, if a level-5 model is to be 

considered, the ID2, ID3, ID4, and ID5 commands are required in the syntax file.  

 



 

Variables listed in the ID commands must be included in the data file (*.lsf file). Variable names are case 

sensitive; therefore the spelling and case in which they are given need to correspond to that given in the 

spreadsheet.  

 

Syntax 
 

IDn = <variable name identifying level-n units>; 

 

where n denotes a positive integer, (1, 2, 3, 4 or 5).  

 

Example 
 

Suppose the raw data file contains information on the test scores, age and gender of pupils belonging to classes 

within schools, and the variables school, class, pupil, age, gender and score are contained in the data file. The 

following ID commands may be used to identify the levels of the hierarchical structure: 

 

     ID3 = school; 

     ID2 = class;  

     

The Identification Variables dialog box shown below shows the settings needed to obtain these commands. 

 

 
 

2.3.10 MISSING_DAT command 

The MISSING_DAT and MISSING_DEP commands may be used when missing data are present in the raw data file. 

The MISSING_DAT command allows you to specify a numeric value, which will represent a missing value on any 

of the variables used in the analysis. This command may also be used in conjunction with the MISSING_DEP 

command, as described in Section 2.3.11. Note that use of the MISSING_DAT command is optional. 

 



 

Syntax 
 

MISSING_DAT = <value>; 

 

Any positive or negative value may be used. Only one value is allowed in this command. All records with data 

values equal to the code specified in this command will subsequently be removed from the analysis. 

 

Default 

 

-999999.0. 

 

Examples 

 

Valid examples of the use of this command include the following: 

 

MISSING_DAT = 99; 

MISSING_DAT = -998.0; 

MISSING_DAT = 0; 

 

2.3.11 MISSING_DEP command 

The MISSING_DEP command may be used to specify a code assigned to missing values on the response variables 

only. The consequence of using the MISSING_DEP command is that only records with response variable values 

equal to the code assigned through the MISSING_DEP command will be removed from the analysis. Note that use 

of this command is optional. 

 

The MISSING_DEP command is recommended for use in the case of multivariate analysis. If only one of the 

response variables to be used in the multivariate analysis has a missing response, only that particular response 

will be considered missing while the remaining responses will still be used.  

 

Syntax 
 

MISSING_DEP = <value>; 

 

Any positive or negative value may be used. Only one value is allowed in this command. All records with 

response variable values equal to the code specified in this command will subsequently be removed from the 

analysis. 

 

Default 

 

-999999.0. 

 

Example 

 

Consider the observations 

 

  



 

Response variables     Predictor variables 

 4.0  5.3  1.7   99        1  10  14.5   999 

 3.2  4.4  99   7.7        3  12  13.7   53.2 

 

and the command 

 

MISSING_DEP = 99; 

 

If the code 99 is identified as the code for missing data values on the dependent variables, this will imply that the 

analysis of this record will use the first three response values and disregard the fourth one in the case of the first 

observation. The third response variable will be omitted for the second observation. 

 

If, additionally, the code 999 is specified (MISSING_DAT = 999) as the code for missing data values on all the 

variables included in the analysis, the whole first record as given above will be deleted from the data set to be 

analyzed. The second observation will be retained with the exception of the third response variable value. 

 

This is accomplished by using both the MISSING_DEP and MISSING_DAT commands as follows: 

 

MISSING_DEP = 99; 

MISSING_DAT = 999;  

 

Note that if only the MISSING_DEP command is used for the two observations given above, the value of 999 for 

the last predictor variable on the first observation will be considered valid data and will be used as such in the 

analysis. 

 

2.3.12 OPTIONS command 

Each problem for a multilevel analysis starts with an OPTIONS command. The keywords of the OPTIONS 

command are used to control the estimation procedure and the amount of output to be written at convergence of 

the iterative procedure. All keywords are set via the Title and Options dialog box through selection of the Title 

and Options option from the Multilevel Models menu on the main menu bar. Inclusion of an OPTIONS command 

in a syntax file is required. 

 



 

 
 

Syntax 
 

            OPTIONS <keywords>; 

 

The keywords and options that may be used with the OPTIONS command are listed below. Details on each 

keyword, option, and its default value are provided below. In the generated syntax file, keywords may occur in 

any order. If any OPTIONS keywords are not given, the default values will be used. Also see the examples of 

OPTIONS commands on p. 31 of this guide. 

 

ACM  Requests printing of asymptotic covariance matrices 

Converge   Sets a value for the test for convergence made at the end of each iteration 

CovBW  Requests printing of the within- and between-clusters covariance matrices 

Deviance  Provides the value of 2ln L−  as reported in a previous analysis, with the purpose to  

   obtain a chi-square test statistic for comparing two nested models 

Effect  Estimates and print indirect effects of coefficients in the fixed part of the model Maxiter.  

   Indicates the maximum number of iterations to be performed  

Nfree  Indicates the number of free parameters as reported in a previous analysis 

OLS   Indicates whether OLS estimates are to be calculated during the first iteration 

Output   Sets the amount and type of output required 

Summary  Requests printing of summary table containing sample sizes of units 

Maxiter  The maximum number of iterations to be performed. 

 

ACM keyword 

The ACM keyword is used to print the large-sample covariance matrices of the estimated parameters in the fixed 

part and random part of the model. This keyword is controlled from the Title and Options dialog box. 

 



 

Standard errors of the estimated parameters are equal to the square roots of the diagonal elements. The non-

duplicated elements of these asymptotic covariance matrices are written to external files with the following 

default names: 

 

<Outputfilename>_random.acm 

<Outputfilename>_random.acm 

 

If the output file name is, for example, kanfer1.out, then the large-sample covariance matrices are saved to the 

files kanfer1_fixed.acm and kanfer1_random.acm. 

 

Syntax 
 

ACM = Yes/No 

 
Default 

 

No: asymptotic covariance matrices will not be printed. 

 

Example 

 

In the OPTIONS command below, the ACM keyword is used to request the printing of the asymptotic covariance 

matrices at convergence. A convergence criterion of 0.0001 is set as the requirement for convergence, and 30 

iterations is indicated as the maximum number of iterations to be performed. 

 

OPTIONS MAXITER = 30 CONV = 0.0001 ACM = Yes; 

 

CONVERGE Keyword 

A test for convergence is made at the end of each iteration. If the absolute difference between the estimated 

parameters and their previous values are all smaller than the convergence criterion, convergence is said to have 

been reached. In the Title and Options dialog box shown above, the default value is automatically shown next to 

Convergence Criterion. To change the value, click in the box and enter the required convergence criterion. 

 

Syntax 
 

CONVERGE = <value> 

 

Default 

 

0.001  (10-2 ). 

 

Example 

 

In order to use a value of, for example, 0.0001 as convergence criterion, the keyword CONVERGE = 0.0001 must 

be included as part of the OPTIONS command, as shown in the following example: 

 

OPTIONS MAXITER = 10 CONVERGE = 0.0001; 

 



 

The iterative procedure will terminate if this requirement is met, or if 10 iterations (set with  MAXITER the 

keyword described below) have been performed without meeting this requirement.  

 

COVBW keyword 

The COVBW keyword is used to request printing of the within-clusters and between-clusters matrices of the 

random effects. The non-duplicated elements of these matrices are written to external files with the following 

default names: 

 

<Outputfilename> _between.cov 

<Outputfilename> _within.cov 

 

For example, consider jsp1.prl in the Multilevel Examples folder. For this syntax file, the default names are 

jsp1_between.cov and jsp1_within.cov. This keyword is applicable to multivariate response models only and is 

controlled from the Title and Options dialog box (see example above). 

 

Syntax 
 

COVBW = Yes/No 

 
Default 

 

No: the within- and between-clusters covariance matrices will not be printed. 

 

Example 

 

In the OPTIONS command below, the COVBW keyword is used to request the printing of the within- and between-

cluster matrices at convergence, for which a convergence criterion of 0.0001 is set as the requirement for 

convergence, to be attained within a maximum number of 30 iterations. 

 

OPTIONS MAXITER = 30 CONVERGE = 0.0001 COVBW = Yes; 

 

DEVIANCE keyword 

The DEVIANCE keyword is used to provide the value of –2 log likelihood as reported in a previous analysis, in 

order to obtain a 2  test statistic for comparing two nested models. The 2  statistic is defined as the difference 

in the deviance statistics for the two models and has as associated degrees of freedom the difference in the number 

of parameters estimated in the models compared. It must be accompanied by the NFREE keyword, which is used 

to indicate the number of parameters estimated in the previous model. The DEVIANCE and NFREE keywords are 

controlled from the Title and Options dialog box (see earlier example of a Title and Options dialog box). 

 
 
Syntax 
 

DEVIANCE = <value> 

 

where value equals the deviance (- 2 log L) value at convergence printed to the output file of the previous analysis. 

 

 
 



 

Default 

 

None: no –2 log likelihood value provided. 

 

Example 

 

In the OPTIONS command below, the DEVIANCE keyword indicates that a – 2 log likelihood value of 22735.524 

was obtained in the previous analysis, and that 44 parameters were estimated (NFREE = 44). See Section 2.4.2 for 

a detailed example.  

 

OPTIONS NFREE = 44 DEVIANCE = 22735.524; 

 

EFFECTS keyword 

The EFFECTS keyword is used to estimate and print indirect effects of coefficients in the fixed part of the model. 

This keyword is controlled from the Title and Options dialog box. 

 

Syntax 
 

EFFECTS = Yes/No 

 

where Yes indicates that indirect effects will be computed and listed for all the predictors in the model. 

 

Default 

 

No: Indirect effects will not be computed. 

 

Example 

 

When the OPTIONS command shown below, with EFFECTS keyword set to Yes, is used in combination with 

accompanying FIXED command, indirect effects will be computed and listed for the predictors INTCEPT, AGE, 

and AGESQ. 

 

OPTIONS EFFECTS = Yes;  

FIXED = INTCEPT AGE AGESQ; 

 

Typical output generated in the case of EFFECTS = Yes is shown below. 

 

------------------------------------------------------------------------- 

COEFFICIENTS LEVEL T-SQUARED APPROX DF EFFECT SIZE 

------------------------------------------------------------------------- 

Ability  1  50.83568 839  0.23902 

intcept  2   4.51051 138  0.17791 

time  2      520.05345 138  0.88898 

timesq  2 284.90950 138  0.82079 

 

Effect sizes are obtained by replacing the Z-values reported in the fixed part of the model by t-

values with DF as listed above. 

 

Effect Size = sqrt[tsq/(DF + tsq)] 

 

Level = 2: DF equals the number of level2 units – the number of level2 random coefficients – the 

number of level2 covariates associated with level2 random coefficients. 

 



 

MAXITER keyword 

The keyword MAXITER is used to indicate the maximum number of iterations to be performed. The value of the 

keyword is set on the Title and Options dialog box (see Section 2.3.2). To change the value, click in the box and 

enter the required maximum number of iterations. 

 

Syntax 
 

MAXITER = <value> 

 

Default 

 

10. 

 

The default number of iterations should be sufficient for convergence to be reached in most cases. If, however, 

a more stringent convergence criterion is used or previous experience with a particular data set indicates slow 

convergence, this keyword may be used to increase the maximum number of iterations. If, on the other hand, 

you wish to obtain only the OLS estimates calculated in the first iteration, MAXITER may be set equal to 1. 

 

Example 

 

In the OPTIONS command below, MAXITER is set to 30, indicating that a maximum of 30 iterations should be 

performed. The iterative procedure may terminate before this number is reached if the convergence criterion of 

0.0001 (CONVERGE = 0.0001) is met. 

 

OPTIONS MAXITER = 30 CONVERGE = 0.0001; 

 

NFREE keyword 

The NFREE keyword is used to denote the number of free parameters as reported in a previous analysis, in order 

to obtain a 2  test statistic for comparing two nested models. The 2  statistic is defined as the difference in the 

deviance statistics for the two models and has as associated degrees of freedom the difference in the number of 

parameters estimated in the models compared. It must be accompanied by the DEVIANCE keyword, which is used 

to provide the value of – 2 log likelihood as reported in the previous analysis. The DEVIANCE and NFREE 

keywords are controlled from the Title and Options dialog box. 

 

Syntax 
 

NFREE = <number>; 

 

where number is the number of free parameters, that is, the total number of parameters estimated during the 

previous analysis, as reported in the output file. 

  

Default 

 

None: number of parameters for previous model not given. 

 

  



 

Example 

 

In the OPTIONS command below, the NFREE keyword indicates that 44 parameters were estimated in the previous 

model, with a – 2 log likelihood value of 22735.524 (DEVIANCE = 22735.524). 

 

OPTIONS NFREE = 44 DEVIANCE = 22735.524; 

 

See Section 2.4.2 for a detailed example.  

 

OLS keyword 

OLS estimates of the fixed effects are calculated as a first step of the iterative procedure unless otherwise 

specified. The OLS keyword is used to indicate whether the OLS estimates are to be calculated during the first 

iteration. On the Title and Options dialog box, the default value for this keyword is shown for Use OLS for Starting 

Values.  

 

Syntax 
 

OLS = <Yes/No>; 

 

If starting values (see the FIXVAL command described in Section 2.3.8) are provided, use the OLS = NO option. 

To set OLS to NO, use the check box on the Title and Options dialog box.  

 

Default 

 

Yes: OLS estimates will be calculated during the first iteration. 

 

Example 

 

As starting values are provided for the fixed effects on the FIXVAL command, the OLS keyword is set to NO on 

the OPTIONS command below. 

  

OPTIONS OLS = No; 

FIXVAL = 0.151 0.355 0.654; 

 

OUTPUT keyword 

The OUTPUT keyword determines the amount of output produced. The output options are controlled from the 

Title and Options dialog box. To get more than the default output, check one or both of the boxes next to Residuals 

or Empirical Bayes Estimates (see description of the valid options listed below). 

 

Syntax 
 

OUTPUT = <option>; 

 

where the valid options are as follows: 

 

STANDARD The default output only 



 

BAYES  The default output and empirical Bayes estimates 

RESIDUAL  The default output and residuals 

ALL   The default output, residuals and empirical Bayes estimates. 

 

Details on each of these options are given below.  

 

Default output (STANDARD): 

 

The following information is written to the default output file: 

 

1. Input specifications as supplied by you in the syntax file. 

2. A summary of the hierarchical structure of the raw data. 

3. Details of the iterative procedure at iteration 1 and at convergence, or MAXITER if convergence was 

not attained. For each iteration, aside from the first iteration, these details include the estimates, their 

standard errors, z-values and exceedance probabilities.  

4. The covariance and correlation matrices of the random parameters on the different levels of the model. 

5. The value of –2 log likelihood (deviance) at each iteration and number of parameters estimated. 

6. The CPU time for completion of the iterative procedure and writing of required results to the output 

file. 

 
Empirical Bayes estimates (BAYES): 

 

If OUTPUT = BAYES is specified, (1) to (6) are written to the output file. One, or in the case of a 3-level model, 

two additional output files are also created.  

 

The empirical Bayes estimates on levels 2 and 3 of the model are calculated and, along with their variance and 

relevant variable codes, are written to the files *.ba2 and *.ba3, where these file names refer to the second and 

third level of the hierarchy respectively. The filename and path are the same as for the .out file. 

 
Residuals (RESIDUAL): 

 

If OUTPUT = RESIDUAL is specified, (1) to (6) are written to the output file. An additional file, *.res, is created, 

and contains the residuals as at convergence. The following information is provided: 

• the residuals 
^

'

( )( )ijk f ijky − x β , 

• the expected value ( )ijky , and 

• observed value  ( )ijky  for each observation in the raw data set. 

 

All output (ALL): 

 

All of the above files are created. 

 

 
 
 
 



 

Example 

 

By using the OPTIONS command shown below (without keywords), the convergence criterion will be 0.001, a 

maximum number of 10 iterations will be carried out and partial output will be written to the output file *.out. 

OLS estimates will be calculated during the first iteration.  

 

OPTIONS; 

 

Use of the command shown below will exclude the calculation of the OLS estimates during the first iteration. 

The convergence criterion is 0.0001 and the maximum number of iterations is 20. Lack of convergence will be 

noted in the default output file. All output files (standard output, Empirical Bayes estimate and residual files) 

will be created based on the solution obtained at termination. 

 

OPTIONS OLS=NONE MAXITER=20 OUTPUT=ALL CONVERGE=0.0001; 

 

SUMMARY keyword 

The SUMMARY keyword is used to suppress the printout of the data summary table. This keyword is controlled 

from the Title and Options dialog box. In the example of a Title and Options dialog box (see above), the No data 

summary check box is not checked, indicating that the SUMMARY keyword is not used. 

 

Syntax 
 

SUMMARY = Yes/No 

 

Default 

 

Yes: the summary table containing sample sizes of units within the various levels of the hierarchy is printed. 

 
Example 

 

The OPTIONS command below request use of the default values for the OLS, MAXITER, and CONVERGE 

keywords, along with suppression of the printing of the summary table, as indicated by the absence of the 

SUMMARY keyword. 

 

OPTIONS OLS=YES MAXITER=10 CONVERGE=0.001; 

 

2.3.13 RANDOMn command 

The RANDOMn command is used to identify those variables whose coefficients are allowed to vary randomly 

over a given level of the hierarchy. One RANDOM command is allowed for each level of the hierarchy. When the 

syntax file is created through the interface, the RANDOM command(s) are automatically generated. Variables 

listed, except for the variable intcept (intercept), must be included in the data spreadsheet (*.lsf file). The spelling 

and case in which they are given need to correspond to that given in the spreadsheet. By default, the intercept is 

automatically included as a random effect at each level of the model. To exclude the intercept term at any level, 

the corresponding Intercept check box (see the Random Variables dialog box below) must be unchecked. At least 

one RANDOMn command is required if a 2-level model is fitted. For a 3-level model, at least two RANDOMn 

commands must be included in the syntax file. For a 4-level model, at least three RANDOMn commands must be 



 

included in the syntax file. At least four RANDOMn commands must be included in the syntax file for a level-5 

model. 

 

Syntax 
 

RANDOMn = <list of variables names to be included as random effects on level n> ; 

 
Example 
 

The Random Variables dialog box shown below corresponding to the commands 

 

RANDOM1 = intcept; 

RANDOM2 = intcept Age Agesq; 

RANDOM3 = intcept; 

 

 
 

 

The settings corresponding to the following commands are shown on the Random Variables dialog box below: 

   

   RANDOM5 = X1; 

   RANDOM4 = intcept X1; 

   RANDOM3 = intcept X1 X2; 

   RANDOM2 = intcept X1 X2; 

   RANDOM1 = intcept; 

 



 

 
 

From this hypothetical example the following can be seen: 

 

o The random variables may be listed in any order. 

o Any or all of the possible predictors may be included in a RANDOM command at any level of the model. 

 

The RANDOM1 command may be omitted in the case of a multivariate model or if a model with no random 

component on level-1 of the hierarchy is to be fitted. Thus the following set of commands may be used: 

 

     ID3 = iden3; 

     ID2 = iden2; 

     RANDOM3 = X1:X4 ; 

     RANDOM2= X3:X4 ; 

 

It is possible to place constraints on elements of the random coefficient covariance matrices. Information on the 

constraints permitted and on the provision of initial values for elements of these matrices are discussed elsewhere 

(see Sections 2.3.3 and 2.3.4 for the COVnPAT and COVnVAL commands respectively). 

 

2.3.14 RESPONSE command 

The RESPONSE command contains information on the response variable(s) to be used in the analysis. When the 

syntax file is created using the interface dialogs, the RESPONSE command is automatically generated. This 

command is entered in the Select Response and Fixed Variables dialog box, which follows the Title and Options 

dialog box. Since variable names are case sensitive, spelling, etc. of the names of the response variables must be 

the same as those used in the data spreadsheet (*.lsf file). The RESPONSE command is a required command. 

 

 
 
 



 

Syntax 
 

RESPONSE = <response variable(s)>; 

 

In the case of a multivariate model, more than one response variable may be listed in the RESPONSE command. 

Response variables may be entered in any order. 

 

Example 

 

In the RESPONSE command below, the response variable is indicated as the variable Y1: 

 

        RESPONSE = Y1; 

 

The RESPONSE command for a multivariate model, in which 6 response variables are listed, 

 

RESPONSE = Math1 Math2 Math3 Eng1 Eng2 Eng3; 

 

corresponds to the selection shown on the Select Response and Fixed Variables dialog box shown below. 

 

 
 

  



 

2.3.15 SY command 

The SY command is used to specify the LISREL System File (LSF) to be analyzed, and is automatically generated 

if the multilevel model specifications are built via the dialog boxes. The SY command is a required command. 

 

Syntax 
 

SY = <filename>; 

 

where <filename> denotes the complete name (including folder name) of the LSF. The folder name may be 

omitted if the LSF and multilevel syntax file are in the same folder. 

 

Example 

 

The command shown below is used to open the LSF file kanfer.lsf. 

 

SY = 'kanfer.lsf'; 

 

2.3.16 TITLE command 

The TITLE command allows you to provide a description of the analysis to be performed. This command, like all 

commands excluding the OPTIONS command, can be placed anywhere in the syntax file. When generating syntax 

via the interface, the TITLE command corresponds to the first entry on the Title and Options dialog box. The 

maximum permissible length of this optional command is 70 characters.  

 

Syntax 
 

TITLE = <title as provided by the user>; 

 

Default 

 

No title. 

 

Example 

 

The TITLE command shown below corresponds to the screen shot discussed in Section 2.2.2. 

 

TITLE = Level-5 model with design weights; 

 

2.3.17 WEIGHTn command 

The WEIGHT command is used to specify design weights for each level of the multilevel model. One WEIGHT 

command  for each level of the hierarchy may be included in the syntax file. For a 2-level model, either or both 

level-1 and level-2 weights, if available, can be used. Likewise, any combination of weights can be selected for 

a 5-level model. Use of the command is optional. 

 

 



 

Syntax 
 

WEIGHTn = <name>; 

 

where n denotes a positive integer, (1, 2, 3, 4 or 5), for the weight level and <name> denotes the case sensitive 

name of the weight variable.  

 

Default 

 

No weights. 

 

Example 

 

The WEIGHT command shown below indicates the use of the level-4 weighting variable SPWT. 

 

WEIGHT4 = SPWT; 

 

2.3.18 SUBPOP command 

When categorical data are to be analyzed, subpopulations may be created through use of the SUBPOP command. 

Use of the command is optional. 

 

 

Syntax 
 

SUBPOP = <names of variables used to create subpopulations>; 

 

Default 

 

No subpopulations. 

 

Example 

Consider the two variables GENDER and AGE. If GENDER has two possible outcomes, for example 1 = Male and 

2 = Female and AGE has three outcomes, 1 = less than 20 years old, 2 = 21 – 40 years old, and 3 = 41+ years old, the 

use of the SUBPOP command 

 

SUBPOP = GENDER AGE; 

 

will induce the creation of six subpopulations for the combination (GENDER; AGE), namely: 

 

(GENDER = 1; AGE = 1)  (GENDER = 1; AGE = 2)  (GENDER = 1; AGE = 3)   

(GENDER = 2; AGE = 1)  (GENDER = 2; AGE = 2)  (GENDER = 2; AGE = 2)   

 

  



 

2.4 Examples 

The analysis of data with a hierarchical structure is known in the literature as, amongst others, hierarchical 

modeling, random coefficient modeling, latent curve modeling, growth curve modeling, or multilevel modeling. 

Here we opt to use "multilevel modeling" to describe models exhibiting nested hierarchical structures. 

 

The basic idea is that units, be it patients or measurements, are nested within units at a higher level of the 

hierarchy. For example, multiple blood pressure measurements may be “nested” within patients, where patients 

form the next, higher, level of the hierarchy. Alternatively, duration of stay within a hospital for each individual 

may form measurements nested within a hospital. Here the individuals are the lower-level units, nested within 

the hospitals that serve as the higher-level units. No matter which of these structures applies, the outcome 

measured at the lowest level may be described using regression coefficients at some or all the levels of the 

hierarchy. Variance components at different levels of the hierarchy can be included for study. This allows the 

researcher to evaluate the variation in outcome at various levels of the hierarchy, while inclusion of any 

moderating effects is optional. In addition, the dependence of repeated measurements belonging to one 

experimental unit in a typical growth curve analysis, for example, is taken into account with this approach. 

Multilevel models are also suited to the analysis of unbalanced data, and thus estimates can be obtained for units 

for which a very limited amount of information is available. 

 

Multilevel models are particularly useful in the modeling of data from complex surveys. Cluster or multi-stage 

samples designs are frequently used for populations with an inherent hierarchical structure. Ignoring the 

hierarchical structure of data has serious implications. The use of alternatives such as aggregation and 

disaggregation of information to another level can induce an increase in collinearity among predictors and large 

or biased standard errors for the estimates.  

 

Multilevel models may be fitted to complex survey data or to data from a simple random sample by using the 

options on the Multilevel Models menu. This feature is illustrated by fitting models to both real and simulated 

data in the sections to follow. 

 

2.4.1   Three-level analysis of health expenditure data 

2.4.1.1 The data 

The data set used here is the same as that used in Section 4.2 of the Generalized Linear Modeling Guide, and 

forms part of the data library of the Medical Expenditure Panel Survey (MEPS). Collected in 1999, these data 

from a longitudinal national survey were used to obtain regional and national estimates of health care use and 

expenditure based on the health expenditures of a sample of U.S. civilian non-institutionalized participants. The 

survey sample design utilized stratification, clustering, multiple stages of selection, and disproportionate 

sampling. The sample was drawn from 143 strata, divided into 460 PSUs. Information on 23,565 participants 

included positive person-level weights and forms the data set used here, excluding the 1,053 participants in the 

original data with zero person-level weights. Data for the first 10 participants on most of the variables used in 

this section are shown below in the form of a LISREL spreadsheet file, named meps2.lsf. 

 



 

 
 

The variables of interest are: 

 

o VARSTR99 is the stratum identification variable (143 strata in total). 

o VARPSU99 is the PSU identification variable (460 PSUs in total). 

o PERWT99F represents the final sample weight, with weights ranging between 307.16 and 80061.61, 

correcting for both non-response and adjustments to population control totals from the Current Population 

Survey. 

o TOTEXP99 is the natural logarithm of the total health expenditure of a respondent in 1999, ranging 

between 0 and 12.24 and representing actual expenditure of between $0 and $206,721.  

o RACE is an ethnicity indicator, with a value of 1 indicating white respondents, and 0 denoting all other 

ethnic groups as well as respondents for which ethnicity is not known. This variable was recoded from 

the original MEPS variable RACEX. 

o GENDER is a gender indicator, with a value of 0 indicating a male participant and 1 a female participant; 

recoded from the original MEPS variable RGENDER. 

o INSCOV is an indicator of the level of insurance coverage, where 0 indicates private coverage any time 

during 1999, and 1 indicates public coverage or no insurance at all during 1999. 

o RPOVC991 to RPOVC995 are five indicator variables, each associated with a category of the original MEPS 

variable RPOVC99 which was constructed by dividing family income by the applicable poverty line 

(selection of which depended on family size and composition), expressed as a percentage. 

 

Income is a variable that is often transformed using its natural log. Doing so in effect causes the impact of each 

additional dollar to decrease as income increases. Logarithmic transformation is also useful in lessening the 

influence of outliers, as the natural logarithm of a variable is much less sensitive to extreme observations than is 

the variable itself. 

 

The original MEPS variable RPOVC99 assumed a value of 1 for a family with "high" income level where family 

income was equal to or greater than 400% of the applicable poverty line, and a value of 2 for those with a "low 

income" level (associated with 125% to 200% of the poverty line). Families with "middle income", "near poor" 

and "negative or poor" levels of income relative to poverty line income were coded 3, 4 and 5 respectively. For 

the "middle income" category, the ratio (as percentage) of family income to poverty line was 200% to less than 

400%. In the case of "near poor" families, the percentages ranged between 100% and 125%, and for "negative 

or poor," the family income was less than 100% of the relevant poverty line. Thus, a value of 1 on the indicator 

variable RPOVC991 indicates a family with income at the "high " level,  while a value of 1 on the variable 

RPOVC995 indicates a family with "negative or poor" income level. The variables RPOVC992, RPOVC993, and 

RPOVC994 are associated with the categories "low income", "middle income" and "near poor" respectively. 

 



 

Note that as each of the five indicator variables for categories of RPOVC99 is coded 1 if a participant responded 

in that category and 0 otherwise, only four of the five indicator variables can be used in a model where an 

intercept is included. Indicator variables of this type can easily be created by using the Create Dummies for option 

on the Select Response and Fixed variables dialog box as described in Section 2.2.5. Here, we opted to create 

them prior to analysis as illustration of that feature is not relevant to the example at hand. 

 

2.4.1.2 The model 

The multilevel model does not make provision for the specification of design related variables such as stratum 

or PSU. Instead, these design variables are used to define the hierarchical structure of the data. In this example, 

the stratum identification variable VARSTR99 is used as the level-3 identifier and the PSU identification variable 

VARPSU99 serves to identify level-2 units (i.e., PSUs) nested within a given stratum. We thus use the design 

variables to define a three-level hierarchical structure, with participants as level-1 observations nested within 

PSUs, in turn nested within strata. While not explicitly acknowledging the survey design or offering a 

conventional design effect estimate to measure the difference in estimates obtained when implementing this 

design compared to estimates obtained under a simple random sample, a multilevel model offers the advantage 

of estimating the variation in total health care expenditure within and between PSUs. 

 

A general three-level model for a response variable y  depending on a set of r  predictors 1 2 rx , x , ,x  can be 

written in the form 

 

3 2 1

' ' ' '

ijk ( f )ijk ( )ijk i ( )ijk ij ( )ijk ijky = + + +x β x v x u x e  

 

where 1 2i , , , N=  denotes the level-3 units, 1 2 ij , , , n=  the level-2 units, and 1 2 ijk , , , n=  the level-1 units. 

In this context, ijky  represents the response of individual k , nested within level-2 unit j  and level-3 unit i . The 

model shown here consists of a fixed and a random part. The fixed part of the model is represented by the vector 

product '

( f )ijkx β , where '

( f )ijkx  is a typical row of the design matrix of the fixed part of the model with, as 

elements, a subset of the r  predictors. The vector β  contains the fixed, but unknown parameters to be estimated. 

The vector products 3

'

( )ijk ix v , 2

'

( )ijk ijx u , and 1

'

( )ijk ijkx e  denote the random part of the model at levels 3, 2, and 1 

respectively. For example, 3

'

( )ijkx  represents a typical row of the design matrix of the random part at level-3, and 

iv  the vector of random level-3 coefficients to be estimated. The products 2

'

( )ijk ijx u and 1

'

( )ijk ijkx e  serve the same 

purpose at levels 2 and 1 respectively. It is assumed that 1 2 N, , ,v v v  are independently and identically 

distributed (i.i.d.) with mean vector 0  and covariance matrix (3) . Similarly, 1 2 ii i in, , ,u u u  are assumed i.i.d., 

with mean vector 0  and covariance matrix (2) , and 1 2 ijij ij ijn, , ,e e e  are assumed i.i.d., with mean vector 0  and 

covariance matrix (1) . 

 

Within this hierarchical framework, the model fitted to the data uses the participant's gender, ethnicity, type of 

health insurance cover, and measure of income relative to poverty level to predict the total expenditure on health 

care in 1999, the latter transformed to the natural logarithm of the actual expenses incurred.  
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where 0  denotes the average expected total expenditure on health care in 1999, and 1 2 7, , ,    indicate the 

estimated coefficients associated with the fixed part of the model which contains the predictor variables GENDER, 

RACE, INSCOV and the indicator variables for categories of income relative to the poverty level. The random part 

of the model is represented by 0iv , 0iju  and ijke , which denote the variation in average total health related 

expenditure over strata, between PSUs (or, in other words, over PSUs nested within strata) and between 

participants at the lowest level of the hierarchy.  

 

2.4.1.3 Multilevel analysis with sampling weights 

1.2 Setting up the analysis 

 

The model is fitted to the data in meps2.lsf by using the sequence of four dialog boxes accessed via the Multilevel, 

Linear Model option from the main menu bar in LISREL. Note that options such as Multilevel and SurveyGLIM are 

only available on the main menu bar when a *.lsf file is open. 

 

The first step is to open the LSF shown above, which is accomplished as follows: 

 

o Use the File, Open option to activate the display of an Open dialog box.  

o Set the Files of type drop-down list box to LISREL System Data (*.lsf) and browse for the file meps2.lsf.  

o Select the file and click the Open button to return to the main LISREL window, where the contents of the 

LSF are displayed. 

 

The next step is to describe the model to be fitted using the multilevel module in LISREL. From the main menu 

bar, select the Multilevel option. Here we limit our discussion to linear models, and thus the Linear Model option 

will be used throughout. 

 

 
 

The first of the four options on the pop-up menu provide access to the Title and Options dialog box discussed in 

Section 2.2.2. Start by providing a title for the analysis in the Title field. In this example, default settings for all 

other options associated with this dialog box are used. Click the Next button to go to the Identification Variables 

dialog box. 

 



 

  
 

On the Identification Variables dialog box, enter the variables defining the hierarchical structure as ID variables 

(see Section 2.3.9 for detailed information on the ID command). As mentioned before, the stratum identification 

variable is used to indicate the level-3 units in the hierarchical structure, and the PSU identification variable 

serves a similar purpose at level-2. Select the variables VARSTR99 and VARPSU99 as Level-3 ID variable and 

Level-2 ID variable respectively by clicking on the variable names in the Variables in data field at the left of the 

dialog box. Add them to the ID variable fields by clicking the appropriate Add button for each. 

 

  
 



 

  
 

The Weight Variables dialog box is used to provide information on weight variables, if any. In our case, only one 

weight, denoted by the variable PERWT99F, is available. Select this variable from the Variables in data field, and 

add it to the Level-1 weight field as shown below. As all available information is now entered on this dialog box, 

click the Next button to proceed to the Select Response and Fixed Variables dialog box. 

 

The Select Response and Fixed Variables dialog box, described in detail in Section 2.2.5, is used to identify the 

outcome variable and predictor variables, if any. Select and add the outcome variable TOTEXP99 to the Response 

Variables field in the same way as described for the previous dialog box. Next, select the variables starting from 

RACE to RPOVC994 by dragging the mouse over them and click the Add button next to the Fixed Variables field 

to include these variables as predictors in the model. This completes the specification of the response and fixed 

variables. 

 

Before moving to the next dialog box, two other options available on this dialog box are worth noting.  

 

As previously discussed, the indicator variable associated with the highest level of income relative to the poverty 

line income is not selected for inclusion as the model fitted to the data has an intercept. Because of the intercept 

term, inclusion of all five indicator variables would lead to a design matrix of less than full rank and is bound to 

cause problems during the iterative procedure. An alternative approach would be to use all five indicator variables 

in a model without an intercept term. This can be achieved by deselecting the intercept term by unchecking the 

box next to Intercept.   

 



 

 
 

The Create Dummies for option available on the Select Response and Fixed dialog box can be used to create 

indicator variables for the categories of a categorical variable such as RPOVC99. In fact, the indicator variables 

RPOVC991 to RPOVC995 were created in precisely this way for inclusion in the present analysis, and simply 

renamed from their default names of DUMMY1 to DUMMY5 using the Define Variable option from the Data menu 

accessed from the main menu bar in LISREL. 

 

That said; proceed to the Random Variables dialog box by clicking the Next button. 

 

The Random Variables dialog box shown below displays the default settings associated with this dialog box. In 

the current model, only the intercept coefficients are allowed to vary randomly at the various levels of the 

hierarchy. As this corresponds to the default settings shown on the dialog box, click the Finish button to generate 

the syntax for the model. 

 



 

 
 

The syntax shown below corresponds to the information entered via the dialog boxes above. Run the model by 

clicking the Run Prelis icon on the main menu bar. 

 

 
 

  



 

Discussion of results – Multilevel model with sampling weights 

  

Portions of the output file meps2.out are shown below. 

 

 
 

In the first section of the output file a description of the hierarchical structure is provided in the Data Summary 

section. A total of 143 strata, 460 PSUs and information from 23,564 individual participants were included at 

levels 3, 2 and 1 of the multilevel model. This corresponds to the survey design described earlier. In addition, a 

summary of the number of PSUs and participants nested within each stratum is provided. For stratum number 1 

(ID3: 1), data are available from only 29 participants nested within 2 primary sampling units (N2: 2). By contrast, 

for stratum number 12 (ID3: 12), data are available from 408 participants (N1: 408) nested within 11 primary 

sampling units (N2: 11). 

 



 

 
 

The output describing the estimated fixed effects after convergence is shown next. The estimates are shown in 

the column with heading BETA-HAT and correspond to the coefficients 0 2 7, , ,    in the model specification. 

From the z-values and associated exceedance probabilities, we see that the coefficients associated with gender, 

ethnicity and insurance coverage type were all highly significant. Recall that a value of 1 for the ethnicity 

indicator variable RACE indicated that a participant was white, with a value of 0 assigned to participants from all 

other ethnic groups. The positive estimated coefficient for this variable indicates an increase of 0.94298 units in 

the logarithm of total health expenditure, holding all other predictors constant. Similarly, female participants 

(coded "1" on the gender indicator GENDER), are expected to have a total health expenditure 0.91057 higher than 

male participants if all other variables are held constant. In contrast, participants with public coverage or no 

coverage have a lower expected total expenditure, as indicated by the negative estimated coefficient -0.65109.  

 

Turning to the indicator variables associated with income relative to the poverty line income, it can be seen that 

only two of the indicator variables, RPOVC991 and RPOVC994, have estimated coefficients that are significantly 

different from zero at a 5% level of significance. In the case of families with a "high" income, the estimate of 

0.35750 for RPOVC991 indicates an expected increase in expenditure, while for "near poor" families, the estimate 

of -0.32939 indicates an expected decrease in expenditure, holding all other variables constant.  

 

  



 

Estimated outcomes for different groups 
 

To evaluate the expected effect of the measure of a family’s income to the corresponding poverty line income, 

suppose that the variables RACE, GENDER, and INSCOV are held at zero, as would be the case for a nonwhite 

male participant with private insurance coverage. If such a participant originates from a family with "high" 

income, the logarithm of total health expenditure is expected to be  
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which translates to a projected total expenditure of 4 74873 $115 437.e .= . In contrast, for a participant with similar 

demographic background and coverage from a "near poor" family, we obtain a projected total expenditure of 

 

0 7
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e
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=

 

 

The predicted total expenditure (as natural logarithm) for similar participants from "low", "middle" or "negative 

or poor" families are similarly obtained by calculating 0 5e
 + , 0 6e

 +  and 0e
  respectively.  

 

Table 2.1: Predicted total health expenditure for various subgroups 

 

Respondents with high  
family income  
(RPOVC991 = 1) 

Male (GENDER = 0) Female (GENDER = 1) 

Insurance coverage: Insurance coverage: 

Private 
(INSCOV=0) 

Public/none 

(INSCOV = 1) 

Private 

(INSCOV=0) 
Public/none 

(INSCOV = 1) 

Nonwhite (RACE = 0) $115 $60 $287 $150 

White (RACE = 1) $296 $155 $737 $384 

Respondents with near poor income (RPOVC994 = 1) 

Nonwhite (RACE = 0) $58 $30 $145 $75 

White (RACE = 1) $149 $78 $370 $193 

 

In Table 2.1, the predicted total health expenditure is given for respondents with high or near poor family income, 

for each of the subpopulations formed by gender, ethnicity and insurance coverage. For purposes of the 

comparison, results are expressed in U.S. dollars, rather than in the natural logarithmic units of the outcome 

variable TOTEXP99. Respondents from families with high income consistently outspend their near poor 

counterparts by approximately 100%, regardless of gender, ethnicity or level of insurance coverage. In families 

with high income, female respondents spent more in 1999 than their male counterparts, regardless of ethnicity. 

This is generally also true for near poor respondents. It is also apparent that the total health expenditure in 1999 

was higher for respondents with private insurance than for respondents with public or no coverage, and that white 

respondents spent more than respondents from other ethnic groups, regardless of gender or the level of family 

income. From exploratory analyses, we know that the outcome variable TOTEXP99 is highly skewed, with median 



 

1999 expenditure of $ 377.41. When this is taken in account, we can conclude that, generally speaking, white 

females spent more on health in 1999 than 50% of all respondents in the sample.  

 

 
 

The output for the random part of the model follows, and is shown in the image above. There is significant 

variation in the average estimated total health expenditure at all levels, with the most variation over the 

participants (level-1), and the least variation over strata (level-3). 

 

An estimate of the level-2 cluster effect, for example, is obtained as 

 

0.17706
100% 2.41%

0.07305 0.17706 7.00628
 =

+ +
 

 

indicating that only 2.41% of the total variance explained is at level-2 of the model. 

 

2.4.1.4 Multilevel analysis without sampling weights 

To evaluate the effect on the estimated coefficients if the sampling weights are ignored for data known to come 

from a disproportionally sampled survey, we fit the same model without a WEIGHT command.  

 

Setting up the analysis 

 

To fit the unweighted model, the syntax file from the previous analysis can be edited by simply deleting the 

WEIGHT1 command from the syntax file. Alternatively, the Level-1 Weight field on the Weight Variables dialog 

box can be cleared by clicking on this field and then clicking the Remove button next to this field.  

 

Clicking Next on this and the next two dialog boxes, followed by clicking the Finish button on the Random 

Variables dialog box will generate a revised syntax file. 

 

 



 

Discussion of results – Multilevel model without sampling weights 

 

After running the analysis by clicking the Run Prelis icon on the main menu bar, the following output is obtained 

for the fixed and random parts of the unweighted model. 

 

 
 

 
 

In Table 2.2, the predicted total health expenditure is given for respondents with high or near poor family income, 

for each of the subpopulations formed by gender, ethnicity and insurance coverage. When compared to Table 

2.1, where similar results were given for the weighted analysis, no difference in the overall pattern of expenditure 

is detected. Note, however, that the predicted expenditure for Nonwhite respondents (RACE = 0) are consistently 

higher in Table 2.2 than was the case in Table 2.1. For white respondents, the unweighted results shown in Table 

2.2 are consistently lower than the corresponding results in Table 2.1. If sample weights are not used in the 



 

analysis, it may lead to a consistent, although small, overestimation of the health expenditure of nonwhite 

respondents, and to an underestimation of the health expenditures of their white counterparts.  

 

Table 2.2: Predicted total health expenditure for various subgroups 

 

Respondents with high family 
income  
(RPOVC991 = 1) 

Male (GENDER = 0) Female (GENDER = 1) 

Insurance coverage: Insurance coverage: 

Private 
(INSCOV=0) 

Public/none 

(INSCOV = 1) 
Private 
(INSCOV=0) 

Public/none 

(INSCOV = 1) 

Nonwhite (RACE = 0) $141 $76 $359 $193 

White (RACE = 1) $280 $151 $710 $383 

Respondents with near poor income (RPOVC994 = 1) 

Nonwhite (RACE = 0) $61 $33 $154 $83 

White (RACE = 1) $120 $65 $304 $164 

 

Results for the two models (weighted and unweighted) are summarized in Table 2.3. While results for the models 

fitted in this case are not dramatically different, we observe that while some coefficients are larger for the 

unweighted model (for example, the estimates for intcept, GENDER, INSCOV, and most markedly for RPOVC991), 

coefficients for RPOVC992 and RACE are larger for the weighted model. The largest difference observed is in the 

case of ethnicity, where an estimated increase of 0.94 in expenditure is associated with a white respondent under 

the weighted model, compared to only 0.68 for a white respondent in the unweighted model (holding all other 

variables constant). As this translates to a difference of 0 26 1 296.e ,=  in total health expenditure for 1999, this 

difference is more important than it seems at first glance. In addition, the models are sufficiently different in that 

coefficients statistically significant in one model are no longer significant in the other, as illustrated by the 

estimated coefficients for the indicator variable RPOVC992. In the weighted model, low income respondents are 

not expected to have a significantly different expected total expenditure, while the estimated coefficient under 

the unweighted model indicates a statistically significant decrease of -0.15 units in the total expected expenditure.  

 

Table 2.3: Results of weighted and unweighted level-3 models for the MEPS data 

 

Coefficient  
Estimate 
(weighted) 

Estimate 
(unweighted) 

intcept 4.39123 4.45841 

RACE 0.94298 0.68364 

GENDER 0.91057 0.93063 

INSCOV -0.65109 -0.61785 

RPOVC991 0.35750 0.49302 

RPOVC992 -0.13832* -0.15390 

RPOVC993 0.07036* 0.10053* 

RPOVC994 -0.32929 -0.34592 

Level-1 variance 7.00628 7.46282 

Level-2 variance 0.17706 0.17442 

Level-3 variance 0.07305 0.14587 

 * Not significant at a 5% level of significance. 

 

 
 
 
 



 

Comparison with SurveyGLIM model 
 

A similar model was fitted to the data using the SurveyGLIM module (see Section 2.1 of the Generalized Linear 

Modeling Guide) and a Normal-Identity model. Results are summarized in Table 2.4. In general, results obtained 

for the two models are similar. 

 

Table 2.4: Results of weighted multilevel and SurveyGLIM models for the MEPS data 

 

Coefficient  Multilevel model SurveyGLIM model 

intcept 4.39123 4.2771 
RACE 0.94298 0.9393 
GENDER 0.91057 0.9204 
INSCOV -0.65109 -0.6952 
RPOVC991 0.35750 0.4319 
RPOVC992 -0.13832* -0.1415* 
RPOVC993 0.07036* 0.1186* 
RPOVC994 -0.32929 -0.3433 

 * Not significant at a 5% level of significance. 

 

We conclude that, where weight variables are available for survey data, these should be included in the model as 

neglecting to do so can have a definite impact on the estimated coefficients. In the current example, results for 

the two models were not dramatically different, but comparison of predicted expenditure indicated the risk of 

consistently over- or underestimating the total health expenditure for groups with different levels of family 

poverty. From the results it seems reasonable to assume that it included a component to adjust for the 

over/undersampling of ethnic and gender groups, a procedure commonly used in survey design to ensure 

representativeness. This is in agreement with the fact that, according to the MEPS HC-054: 1999 report, Hispanic 

and black households were oversampled at rates of approximately 2 and 1.5 times the rate of remaining 

households. 

 

2.4.2 Three-level analysis of simulated data 

Unlike real data sets, simulated data sets have the advantage that the true population parameters are known. 

Consequently, it is possible to evaluate how closely a particular model approaches these values.  

 

2.4.2.1 The data 

A linear growth curve model with two dummy-coded covariates (Lang1 and Lang2) is fitted to a simulated dataset 

surveyhlm.lsf in the Multilevel Examples folder. It is assumed that the level-3 units are institutions. Within each 

of 100 institutions, 10 patients are selected on the basis of their initial achievement in a test of short term memory 

(Score1) and measurements were repeated over six time intervals for five patients from each institution and over 

4 time intervals for the remaining 5. In the table below, (Weight3) shows the level-3 weight calculations based on 

standardized initial scores. See Section 2.5.3 for additional information on the weight calculations. 

 

  

  



 

Interval  Lower      Upper    % Expected  % Selected   Weight3 

 -------------------------------------------------------------- 

  1       -Inf        -1.00      15.87       10.00       1.587 

  2       -1.00       -0.70       8.33       10.00       0.833 

  3       -0.70       -0.20      17.88       10.00       1.788 

  4       -0.20        0.00       7.93       10.00       0.793 

  5        0.00        0.30      11.79       10.00       1.179 

  6        0.30        1.00      22.34       10.00       2.234 

  7        1.00        1.30       6.19       10.00       0.619 

  8        1.30        1.80       6.09       10.00       0.609 

  9        1.80        2.30       2.52       10.00       0.252 

 10        2.30        Inf        1.07       10.00       0.107 

 

 Ten patients were selected from each institution as follows: 

o Four from ethnic group 1 with Weight2 = 7.0/4.0 

o Three from ethnic group 2 with Weight2 = 2.0/3.0 

o Three from ethnic group 3 with Weight2 = 1.0/3.0  

 

The first 10 records of the dataset in surveyhlm.lsf are shown below. 

 

 
 

Note that the data were simulated in such a way that odd-numbered patients have six score measurements at time 

points 0, 1, 2, 3, 4, 5. The even-numbered patients have only four score measurements.  

 

2.4.2.2 The model 

The three-level model used here is similar to that described in the previous section. Within that hierarchical 

framework, 500 data sets, surveyhlm.lsf being the first, were simulated (see Section 2.5.3) according to the 

following hypothetical model 
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where i denotes institution i, (i = 1, 2, …, 100),  ij patient j (j =1, 2, …, 10) in institution i and ijk the k-th 

measurement (k = 1, 2, …, 6) on patient j in institution i. The outcome variable Score denotes a patient’s 

measurement on some test of interest, Time the time of measurement, and Lang1 and Lang2 are indicator variables 

indicating a patient’s first or home language as being English or another language. 



 

 

In this model, 0  denotes the average expected score, while 
1  indicates the estimated coefficients associated 

with the time of measurement as represented by the fixed effect Time. The fixed part of the model also includes 

the predictor variables Lang1 and Lang2. The random part of the model is represented by 0iv , 0iju  and ijke , which 

denote the variation in score over institutions, between patients (or, in other words, over patients nested within 

institutions) and between measurements at the lowest level of the hierarchy.  

The data were simulated under the assumption that 
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and  
2 1 0ijkVar( e ) . . = =

 

 

2.4.2.3 Fitting the model 

The first step is to open the LSF shown above, which is accomplished as follows: 

 

o Use the File, Open option to activate the display of an Open dialog box.  

o Set the Files of type drop-down list box to LISREL System Data (*.lsf) and browse for the file surveyhlm.lsf.  

o Select the file and click the Open button to return to the main LISREL window, where the contents of the 

LSF are displayed. 

 

The next step is to describe the model to be fitted using the multilevel module in LISREL. To fit a growth model 

to the data, we proceed as follows. From the main menu bar, select Multilevel, Linear Model, Title and Options. 

Type in a title, and change the number of iterations to 20 and the convergence criterion to 0.0001 as shown 

below.  

 



 

 
 

Click the Next button to activate the Identification Variables dialog box. Add the level-3 and level-2 identification 

variables (Institut and Patient). Use the Weight Variables dialog box to select the variables WT3 and WT2 as the 

level-3 and level-2 weights respectively. To continue to the Response and Fixed variables dialog box click Next. 

 

  
 



 

Select Score as the dependent (response) variable and Time, Lang1 and Lang2 as the fixed variables (predictors). 

Note that an intercept term is automatically included unless the Intercept check box is unchecked. For illustrative 

purposes, Time was added to the Create Dummies for: text box. 

 

  
 

Click Next to go to the Random Variables dialog box and add Time as level-2 and level-3 random components 

(the variances are denoted by 
( )1 2 ,22

( )ijVar u =  and 
( )1 3 ,22

( )iVar v =  respectively. Note that by default, intercept 

terms are included at the different levels of the hierarchy. The level-1, level-2 and level-3 variance components 

for the intercept are denoted by
2

e , 
( )2 ,11
  and 

( )3 ,11
  respectively. 

 



 

  
 

When done, click the Finish button to obtain the PRELIS syntax file surveyhlm.prl. Click the Run PRELIS icon 

button to invoke the multilevel module.  

 

 
 

  



 

2.4.2.4 Discussion of results 

The output for the fixed part of the model is given first, as shown below.  

 

 
 

Recall that the "true" values of the intcept, Time, Lang1 and Lang2 parameters were 1.0, 0.5, 0.5, and -1.0 

respectively. To obtain 95% confidence intervals for these estimates, we calculate 

 
1.96( . )Estimate std error  

 

and find that the confidence intervals for the estimated intcept, Time, Lang1 and Lang2 parameters are (0.7009; 

1.1565), (0.4220; 0.6062), (0.1937; 0.5931) and (-1.2818; -0.7868) respectively. In all four cases, the confidence 

intervals include the "true" values of the corresponding parameter. Note that a 2  scale factor of 0.45957 is 

reported. This value is used to obtain a corrected 2 -statistic for testing one model against another model, as 

will be shown in the next example. 

 

The output for the random part of the model is given next. Note that the parameter estimates reported in the 

output are generally close to the population values which were used to simulate the data. The "true" values for 

both the level-3 and level-2 variance-covariance components are 1.0, 0.3, and 0.2 respectively. The standard 

error estimates shown have been corrected as described in the theoretical section (see Section 2.6).  

 

 



 

  
 

For the level-3 variance components, 95% confidence intervals can be obtained as shown previously. The 

confidence intervals corresponding to intcept/intcept, Time/intcept, and Time/Time are (0.6002; 1.2633), (0.1367; 

0.3747) and (0.1083; 0.2419) respectively. Again, the "true" values fall within these intervals. This conclusion 

also holds for confidence intervals for the level-1 and level-2 variance-covariance components, which are 

calculated in the same way. 

 

Note that the spreadsheet presentation of surveyhlm.lsf will only show the variables Institut, Patient, …, WT2, 

although dummy variables corresponding to the six measurement occasions were written to the actual LSF file. 

To see these dummy variables, close the LSF file (without saving it) and then use File, Open to display the 

modified LSF file.  

 

 
 

2.4.3 Three-level saturated model for simulated data  

Using the same simulated data described in Section 2.4.2, a "saturated model" using the dummy variables created 

previously is now fitted to the data. This model illustrates the use of the NFREE and DEVIANCE keywords to 

obtain a chi-square statistic for testing two nested models. A model of particular interest is the so-called saturated 

model, which is obtained by estimating the population means and the covariance matrices for both level-3 and 

level-2 at the six measurement occasions. The dummy variables created in the previous section, each 

corresponding to a specific measurement occasion, are used for this purpose. 



 

 

2.4.3.1 Fitting the model 

The model is fitted using the same sequence of dialog boxes shown in the previous Section. In order to compare 

the fit of the saturated model with the fit of the model described in Section 2.4.2, the deviance statistic and 

number of estimated parameters from the first model are used. In the previous model, 11 parameters (4 fixed and 

7 random) were estimated and a deviance statistic (-2 logL) of 23121.934 was obtained. Enter these values in the 

Nfree and Deviance fields of the Title and Options dialog box. Click Next to display the Identification Variables 

dialog box. 

 

  
 

As no changes to the hierarchical structure or weight specification entered previously on the Identification 

Variables dialog box, click Next to load the Response and Fixed Variables dialog box.  

 

Note that one cannot add an intercept term to the fixed part of the model when dummy1 to dummy6 are selected 

as predictors. If the intercept term is not unchecked, then the fixed parameter coefficients cannot be estimated, 

since the fixed-effect design matrix containing intcept, dummy1, …, dummy6 will not be of full rank. Click Next 

to proceed to the Random Variables dialog box. 

 



 

  
 

On the Random Variables dialog box, the intercept terms for the random effects are unchecked and dummy 

variables one to six are only added at levels 2 and 3. 

 

  
 

Click the Finish button to produce the PRELIS syntax file (which was subsequently saved as surveyhlm2.prl). 

 



 

 
 

2.4.3.2 Discussion of results 

The portions of the output below summarize the estimated parameter values for the fixed part of the model and 

the goodness of fit 2  statistic. The 


 values are estimates of the population mean scores at each of the six 

measurement occasions, after controlling for the within institution and within patient variation. Note that the 

difference in the -2 log(L) values is 2832.814. The 2  value of 1312.7329 was obtained by multiplying 2832.814 

with the scale factor (0.46) obtained when design weights are included. 

 

 
 

Results for the variance components (random part of the model) are shown below. The 


 values are estimates 

of the population variances/covariances at level-3 (institutions) and level-2 (patients). An inspection of the output 

shows that, in general, there is greater variation in scores at each time point within patients than is the case within 

institutions. 

 



 

 
 

 

 
 

 

2.4.4 Four-level model for assessment data  

2.4.4.1 The data 

The data set used here consists of four levels of nesting. Information is available on repeated measurements made 

on 1,192 participants at three occasions. In the case of some of the participants, measurements were made on 

only one or two occasions. Data for the first 10 participants on most of the variables used in this section are 

shown below in the form of a LISREL spreadsheet file, named therapist_L4.lsf. 



 

 

 

 

The variables of interest are: 

 

o site is the level-4 identification variable (49 units in total). 

o therapis is the level-3 identification variable (187 units in total). 

o particip is the level-2 identification variable (1192 units in total). 

o assesmt is a score assigned by a therapist to a particular participant on occasion 0, 1 or 2.  

o gender is a gender indicator, with a value of 0 indicating a male participant and 1 a female participant. 

o occasion is a predictor variable coded 0, 1 and 2. 

o thera1 - thera4 are dummy coded variables indicating four types of therapy. 

 

2.4.4.2 The model 

In this example, the identification variable site is used as the level-4 identifier, therapis is used as the level-3 

identifier, and particip serves to identify level-2 units. 

 

 A general four-level model for a response variable y  depending on a set of r  predictors 1 2 rx , x , ,x  can be 

written in the form 

 

4 3 2 1

' ' ' ' '

ijkl ( f )ijkl ( )ijkl i ( )ijkl ij ( )ijkl ijk ( )ijkl ijkly = + + + +x β x v x v x u x e  

 

 

where 1 2i , , , N=  denotes the level-4 units, 1 2 ij , , , n=  the level-3 units, 1 2 ijk , , , n=  the level-3 units, 

and 1 2 ijkl , , , n=  the level-1 units. In this context, ijkly  represents the response of individual l , nested within 

level-2 unit k , level-3 unit j  and level-4 unit i . The model shown here consists of a fixed and a random part. 

The fixed part of the model is represented by the vector product '

( f )ijklx β , where '

( f )ijklx  is a typical row of the 

design matrix of the fixed part of the model with, as elements, a subset of the r  predictors. The vector β  contains 

the fixed, but unknown parameters to be estimated. The vector products 4

'

( )ijkl ix v , 3

'

( )ijkl ijx v , 2

'

( )ijkl ijkx u , and 

1

'

( )ijkl ijklx e  denote the random part of the model at levels 4, 3, 2, and 1 respectively. For example, 3

'

( )ijklx  represents 

a typical row of the design matrix of the random part at level-3, and ijv  the vector of random level-3 coefficients 

to be estimated. The products 2

'

( )ijkl ijkx u and 1

'

( )ijkl ijklx e  serve the same purpose at levels 2 and 1 respectively. It is 

assumed that 1 2 N, , ,v v v  are independently and identically distributed (i.i.d.) with mean vector 0  and 

covariance matrix (4)  and that 1 2 ii i in, , ,v v v  are independently and identically distributed (i.i.d.) with mean 



 

vector 0  and covariance matrix (3) . Similarly, 
1 2 ijij ij ijn, , ,u u u  are assumed i.i.d., with mean vector 0  and 

covariance matrix (2) , and 
1 2 ijkijk ijk ijkn, , ,e e e  are assumed i.i.d., with mean vector 0  and covariance matrix 

(1) . 

 

Within this hierarchical framework, the model fitted to the data uses the participant's gender and type of therapy 

treatment to predict the assessment scores on three occasions.  

 

1 2 3

4 5 6

0 0 0 1

assessment gender occasion thera1

thera2 thera3 thera4

occasion

ijkl ijkl ijkl ijkl

ijkl ijkl ijkl

i ij ijk ijk ijkl ijklv v u u e

  

  
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+ + + +  +
 

 

where 1 2 6, , ,    indicate the estimated coefficients associated with the fixed part of the model that contains 

the predictor variables gender, occasion, and the four indicator variables. The random part of the model is 

represented by 0iv , 0ijv , 0ijku , 1ijku  and ijkle , which denote the variation in average assessment across sites, 

therapists, participants and measurement occasions. 

 

2.4.4.3 Setting up the analysis 

The model is fitted to the data in therapist_L4.lsf by using the sequence of five dialog boxes accessed via the 

Multilevel, Linear Model option from the main menu bar in LISREL. Note that options such as Multilevel and 

SurveyGLIM are only available on the main menu bar when a *.lsf file is open. 

 

The first step is to open the LSF shown above, which is accomplished as follows: 

 

o Use the File, Open option to activate the display of an Open dialog box.  

o Set the Files of type drop-down list box to LISREL System Data (*.lsf) and browse for the file 

therapist_L4.lsf.  

o Select the file and click the Open button to return to the main LISREL window, where the contents of the 

LSF are displayed. 

 

The next step is to describe the model to be fitted using the multilevel module in LISREL. From the main menu 

bar, select the Multilevel option. Here we limit our discussion to linear models, and thus the Linear Model option 

will be used throughout. 

 

 
 

The first of the five options on the pop-up menu provide access to the Title and Options dialog box. Start by 

providing a title for the analysis in the Title field. In this example, we set the maximum number of iterations to 



 

15 and the convergence criterion to 0.0001. Default settings for all other options associated with this dialog box 

are used. Click the Next button to go to the Identification Variables dialog box.  

 

 

 

On the Identification Variables dialog box, enter the variables defining the hierarchical structure as ID variables. 

 

 

 

The next dialog box is used to provide information on weight variables, if any. In our case, weights are not 

available. Therefore, click the Next button to proceed to the Select Response and Fixed Variables dialog box. 

 



 

The Select Response and Fixed Variables dialog box is used to identify the outcome variable and predictor 

variables, if any. Select and add the outcome variable assesmt to the Response Variables field. Next, select the 

variables starting from gender to thera4 by dragging the mouse over them and click the Add button next to the 

Fixed Variables field to include these variables as predictors in the model. Note that the Intercept box should be 

unchecked. This completes the specification of the response and fixed variables. Click the Next button to proceed 

to the Random Variables dialog box. 

 

 

 

The Random Variables dialog box shown below displays the default settings associated with this dialog box. In 

the current model, only intercept coefficients are allowed to vary randomly at the various levels of the hierarchy, 

except at level-2 where we add the predictor occasion as a random effect. Once this is done, click the Finish 

button to generate the syntax for the model. 

 



 

 

 

The syntax shown below corresponds to the information entered via the dialog boxes above. Run the model by 

clicking the Run Prelis icon on the main menu bar. 

 

2.4.4.4 Discussion of results 

 

 

Only selected parts of the output are shown. The output describing the estimated fixed effects after convergence 

is shown next. The estimates are shown in the column with heading BETA-HAT and correspond to the coefficients 

0 2 6, , ,    in the model specification. From the z-values and associated exceedance probabilities, we see that 

except for the coefficient associated with gender, the remaining coefficients were all highly significant. 

 



 

 
 

 

 

 

A study of the random part of the model shows that all the intercept effects are highly significant, except for the 

level-3 (therapists) intercept. From this, we conclude that intercept estimates vary significantly over sites, but 

not over therapists. Finally, we note that there is no significant occasion effect at level-2. This fact can be further 

substantiated by fitting an intercepts only model to the data. In this case, we obtain the following results: 

 

DEVIANCE= -2*LOG(LIKELIHOOD)= 19795.9780720184 

NUMBER OF FREE PARAMETERS= 10 

    

Since the difference between the deviance statistics equals 0.58, this leads to the conclusion (at 12 – 10 = 2 

degrees of freedom) that the level-2 random occasion effect is not significant. 

 



 

2.5 Evaluation 

2.5.1       Introduction 

A feature of many sampling surveys is that the probability of selection is unequal. This can be the result of 

stratified sampling, cluster sampling, subpopulation oversampling, designed unequal probability sampling, etc. 

If the unequal probability of selection is not incorporated in the analysis a substantial bias in the parameter 

estimates may arise. This bias is commonly known as the selection bias. If the probability of selection is known 

and incorporated in the analysis the selection bias can be eliminated. 

 

In the next section we compare the performance of the methods implemented in the four statistical software 

packages LISREL, HLM, Mplus, and MLWiN. In all the tables to follow, the abbreviation MLevel is used to denote 

the multilevel module in LISREL. 

 

2.5.2       Comparison of results using two-level simulated data 

Asparouhov (2004) selected a linear growth model for continuous outcomes as the basis for a simulation study. 

This model can be estimated by all the different statistical packages for hierarchical linear modeling. An 

unbalanced design, consisting of 500 univariate observations that are clustered within 100 level two units, was 

used. Half of the level-2 units have four observations and the other half have six observations. The times of the 

observations are equally spaced starting at 0 and ending with 3 for the clusters with 4 observations and ending 

with 5 for the clusters with 6 observations. The linear growth model has random intercept and slope coefficients. 

 

The observed variable ijY  for level-2 unit i  at time j  is given by 

 

0 1ij i i ijY b b = + +  

 

where ij  is a zero-mean, normally distributed residual with variance 2 . The random effects 0ib  and 1ib  have 

means 0  and 1 , variances 11  and 22  respectively, and covariance 21 . 

 

The selection model is defined by the initial status in the growth model 0iY , namely 0 0( 1) 1/(1 exp{ })i iP b Y= = + −

, i.e., level-2 units with higher initial status have been oversampled. The analysis was replicated 500 times. An 

example of a few records for the first of the 500 data sets, in the form of a LSF, is shown below. 

 

 
 



 

Table 2.5 shows the bias in the parameter estimates as well as the coverage rates for the 95% confidence intervals 

computed by LISREL, HLM 6, Mplus 3 and MLWiN 2. Note that this table contains updated HLM results when 

compared to Asparouhov (2004), where the previous version of HLM was used. In addition, results obtained with 

LISREL have been added. 

 

Table 2.5: Bias and Coverage in LISREL, HLM, MLWiN and HLM 

 

Parameter 
                 

True  
Value  

Bias Coverage 

LISREL HLM MLWiN Mplus LISREL HLM MLWiN Mplus 

0           0.5 0.019 0.016 0.017 0.017 0.906 0.908 0.782 0.908 

1           0.1 0.001 0.03 0.002 0.002 0.948 0.938 0.888 0.942 

11
         1 -0.029 -0.012 -0.024 -0.024 0.840 - 0.758 0.848 

22
         0.2 -0.006 -0.001 -0.006 -0.006 0.878 - 0.848 0.902 

21
          0.3 -0.005 -0.008 -0.005 -0.006 0.938 - 0.846 0.940 

2           1 -0.005 -0.012 -0.008 -0.008 0.946 - 0.878 0.910 

 

The bias shown in subsequent tables is the difference between the mean of the estimated parameters over the 500 

simulated data sets and the true value for that parameter as used in the actual simulation. For example, the first 

value for LISREL in the body of Table 2.5, i.e. 0.019, indicates that the average of the estimates of 0  with this 

program was 0.5 + 0.019 = 0.519. 

 

The coverage reported was calculated by determining the lower and upper bounds of a 95% confidence interval 

for each of the parameters for each of the simulated data sets. If the true value for the parameter fell within the 

confidence interval, an indicator variable was assigned a value of 1; if not, the indicator variable was coded 0. 

The mean value of the indicator variable over all 500 data sets, expressed as a percentage, is the coverage as 

reported in the tables to follow and indicates the percentage of data sets where the confidence interval based on 

the estimates obtained included the simulated or “true” value. The SAS code for calculation of coverage for the 

intercept is given below. 

 

title 'coverage of intercept'; 

*Upper and lower limits of interval; 

upper=intcept+1.96*serror; 

lower=intcept-1.96*serror; 

*Determine inclusion of true value; 

if lower<=0.5<=upper then include=1; 

else include=0; 

proc means; 

var include; 

 

The biases produced by LISREL, HLM, Mplus and MLWiN are virtually identical. While the difference in the point 

estimation between the three methods is very small, the difference in the variance estimation (where available) 

is not. 

 

Table 2.6 shows the effect of ignoring the design weight, as computed with LISREL. There is large bias present 

in the estimation of the intercept coefficient ( 0 ) and the variance of the level-2 intercept error term ( 11 ) when 

weights are omitted. This conclusion is substantiated by the low coverage for these parameters. 

 



 

Table 2.6:  Bias and Coverage in LISREL without inclusion of a weight variable 

 

Parameter True Value 
Without weights With weights 

Bias Coverage Bias Coverage 

0           0.5 -0.482 0.60 0.019 0.906 

1           0.1 0.031 0.906 0.001 0.948 

11
         -1.0 -0.312 0.592 -0.029 0.840 

22
         0.2 -0.002 0.932 -0.006 0.878 

21
          0.3 -0.020 0.922 -0.005 0.938 

2           1 -0.005 0.936 -0.005 0.946 

2.5.3 Comparison of results using three-level simulated data 

In this section we discuss the results of a simulation study for the evaluation of a 3-level model with level-2 and 

level-3 weights. Five hundred datasets were simulated according to the following hypothetical model 

 

0 1 1 2

0 1 0 1
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i i ij ij ijk
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where i denotes institution i, (i = 1, 2, …, 100),  ij patient j (j =1, 2, …, 10) in institution i and ijk the k-th 

measurement (k = 1, 2, …, 6) on patient j in institution i. The outcome variable Score denotes a patient’s 

measurement on some test of interest, TIME the time of measurement, and Lang1 and Lang2 are indicator variables 

indicating a patient’s first or home language. The data were simulated under the assumption that 
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and  

 
2 1 0ijkVar( e ) . . = =

 
 

Note that the data were simulated in such a way that odd-numbered patients have six score measurements at time 

points 0, 1, 2, 3, 4, 5. The even-numbered patients have only four score measurements.  

 

 

 



 

Level-3 weights 

To incorporate design weights, the simulated initial scores were standardized to a normal (0,1) distribution and 

an equal number of "institutions" were subsequently drawn from each of the 10 score intervals ( ( , 1)− − , 

( 1, 0.7)− − , …, (2.3, ) ) as shown in the table below. It can easily be verified that for a standardized normal 

variable z , (0.30 1.00) 22.34%P z  = . In the simulation study, patients (cases) were selected from 10 

institutions if their standardized scores fell within the interval (0.30, 1.00). To correct for this undersampling, a 

weight of 22.34/10.0 = 2.234 was assigned to each of those institutions. In a similar fashion, 10 institutions were 

selected according to the remaining nine score intervals as shown below. 

 

 Interval  Lower      Upper    % Expected  % Selected   Weight3 

 -------------------------------------------------------------- 

  1       -Inf        -1.00      15.87       10.00       1.587 

  2       -1.00       -0.70       8.33       10.00       0.833 

  3       -0.70       -0.20      17.88       10.00       1.788 

  4       -0.20        0.00       7.93       10.00       0.793 

  5        0.00        0.30      11.79       10.00       1.179 

  6        0.30        1.00      22.34       10.00       2.234 

  7        1.00        1.30       6.19       10.00       0.619 

  8        1.30        1.80       6.09       10.00       0.609 

  9        1.80        2.30       2.52       10.00       0.252 

 10        2.30        Inf        1.07       10.00       0.107 

 

Level-2 weights 

In order to incorporate level-2 weights, it was further assumed that the actual percentages of patients in each of 

three ethnic groups are 70%, 20% and 10%. However, in each institution four patients were drawn from the first 

ethnic groups, and three from each of the second and third ethnic groups. To compensate for this unequal 

probability of selection, level-2 ("patient") weights were assigned as follows: 

 

o Four from ethnic group 1 with Weight2 = 7.0/4.0 

o Three from ethnic group 2 with Weight2 = 2.0/3.0 

o Three from ethnic group 3 with Weight2 = 1.0/3.0  

 

  



 

The first 10 records of the dataset in surveyhlm.lsf are shown below. 

 

 
 

The model was fitted to 500 simulated data sets using HLM 6.08 (Bryk & Raudenbush, 2004) and LISREL. Table 

2.7 shows the bias and coverage for estimates obtained with weighted analyses using LISREL and HLM. Results 

are very similar. HLM 6.8 does not provide estimates of the variance-covariance components in the case of 

weighted models. Due to this, coverage for the HLM results could not be calculated. 

 

Table 2.8 shows the effect of ignoring the design weight, as computed with LISREL. For the unweighted analyses 

it was found that the estimates of the fixed parameters ( 0 , 1 , 1  and 2 ) were strongly biased as is also 

reflected by the low coverage (0.042 in the case of the intercept coefficient). As was the case for the similar 

comparison shown in Table 2.6, both bias and coverage for the weighted model yield closer approximations to 

the theoretical expected values for bias and coverage (0 and 0.95). 

 

Table 2.7: Bias and Coverage for simulated three-level data (weighted analyses) 

 

Parameter True Value 
LISREL HLM 

Bias Coverage Bias Coverage 

0           1.0 -0.002 0.986 -0.002 0.986 

1           0.5 0.001 0.948 -0.004 0.948 

1           0.5 -0.004 0.950 0.001 0.950 

2           -1.0 -0.004 0.936 -0.004 0.936 

2  1.0 0.001 1.000 0.010 - 

(2)11
         1.0 -0.072 0.856 -0.075 - 

(2)22
         0.2 -0.003 0.970 -0.000 - 

(2)21
          0.3 -0.011 0.906 -0.013 - 

(3)11
         1.0 -0.049 0.930 0.049 - 

(3)22
         0.2 -0.002 0.922 -0.003 - 

(3)21
          0.3 0.008 0.922 0.008 - 

 
  



 

Table 2.8: Bias and Coverage for simulated three-level data (unweighted analyses) 

 

Parameter True Value Bias Coverage 

0           1.0 0.418 0.042 

1           0.5 0.090 0.548 

1           0.5 -0.115 0.756 

2           -1.0 -0.122 0.764 

2  1.0 0.004 0.920 

(2)11
         1.0 0.064 0.908 

(2)22
         0.2 0.000 0.966 

(2)21
          0.3 0.006 0.958 

(3)11
         1.0 0.256 0.850 

(3)22
         0.2 0.017 0.954 

(3)21
          0.3 0.070 0.914 

 

2.5.4 Comparison of results using a 3-level model for the MEPS data 

The model fitted in Section 2.2.1 using the multilevel module (MLevel) of LISREL was also fitted using HLM 6, 

MLWiN 2 and the SurveyGLIM (GLIM) module of LISREL. Table 2.9 below contains estimates obtained with these 

four procedures for both weighted and unweighted models. Standard error estimates, where available, are given 

below the estimates in parentheses. Simplified two-level models using the same data and a wider array of 

statistical software are given in the next section.  

 

Results of the GLIM analyses are not directly comparable to those obtained using the multilevel analysis programs 

HLM, MLevel and MLWiN, but are presented here to demonstrate the effect of the different modeling assumptions. 

The standard errors reported for the SurveyGLIM module were obtained under the assumption of stratification and 

clustering, using a Taylor linearization approach to the asymptotic covariance matrix (see Section 6 of the 

Generalized Linear Modeling Guide). In the multilevel programs, the stratum and cluster variables define the 

hierarchical structure by serving as level-3 and level-2 identifiers, and it is assumed that the intercept coefficients 

vary randomly across the level-3 and level-2 units. 

 

Table 2.9:  Comparison of results from 4 procedures for model fitted to MEPS data 

 

Coefficient 
Weighted Unweighted 
HLM MLevel MLWiN GLIM HLM MLevel MLWiN GLIM 

intercept 
4.360 

(0.122) 
4.391 

(0.114) 
4.336 

(0.108) 
4.277 

(0.125) 
4.458 

(0.115) 
4.458 

(0.084) 
4.459 

(0.084) 
4.282 

(0.025) 

race 
0.944 

(0.088) 
0.943 

(0.086) 
0.939 

(0.082) 
0.880 

(0.100) 
0.684 

(0.096) 
0.684 

(0.050) 
0.684 

(0.050) 
0.623 

(0.017) 

GENDER 
0.904 

(0.038) 
0.911 

(0.036) 
0.920 

(0.039) 
0.932 

(0.041) 
0.931 

(0.037) 
0.931 

(0.036) 
0.931 

(0.036) 
0.945 

(0.013) 

inscov 
-0.616 
(0.081) 

-0.651 
(0.076) 

-0.695 
(0.074) 

-0.630 
(0.086) 

-0.618 
(0.084) 

-0.618 
(0.046) 

-0.618 
(0.046) 

-0.733 
(0.016) 

rpovc991 
0.363 

(0.118) 
0.358 

(0.114) 
0.432 

(0.103) 
0.439 

(0.109) 
0.493 

(0.095) 
0.493 

(0.065) 
0.493 

(0.065) 
0.668 

(0.023) 

rpovc992 
-0.122 
(0.110) 

-0.138 
(0.104) 

-0.142 
(0.106) 

-0.114 
(0.107) 

-0.154 
(0.097) 

-0.154 
(0.067) 

-0.154 
(0.067) 

-0.128 
(0.024) 



 

rpovc993 
0.088 

(0.111) 
0.070 

(0.117) 
0.119 

(0.097) 
0.130 

(0.116) 
0.101 

(0.096) 
0.101 

(0.062) 
0.101 

(0.062) 
0.205 

(0.022) 

rpovc994 
-0.318 
(0.152) 

-0.329 
(0.140) 

-0.343 
(0.150) 

-0.263 
(0.141) 

-0.346 
(0.109) 

-0.346 
(0.090) 

-0.346 
(0.090) 

-0.336 
(0.032) 

variance 
(level-1) 

6.682 
7.006 

(0.196) 
7.233 

(0.166) 
N/A 

7.463 
(0.069) 

7.463 
(0.069) 

7.463 
(0.069) 

N/A 

variance 
(level-2) 

0.190 
0.177 

(0.037) 
0.200 

(0.046) 
N/A 

0.175 
(0.028) 

0.174 
(0.028) 

0.174 
(0.028) 

N/A 

variance 
(level-3) 

0.079 
0.073 

(0.029) 
0.101 

(0.048) 
N/A 

0.145 
(0.037) 

0.146 
(0.0365) 

0.146 
(0.036) 

N/A 

deviance 112067 118256 114698  114663 114663 114663  
parameters 11 11 11  11 11 11  

 

 

Parameter estimates for the unweighted analyses with HLM, MLevel and MLWiN are identical. The HLM standard 

error estimates for the fixed effects are generally larger than those reported for MLevel and MLWiN. The reason 

for this is that the robust standard error estimates produced by HLM were reported. By including the commands 

 

WEIGHT2 = intcept; 
WEIGHT3 = intcept;  

 

in the MLevel syntax file, results similar to those produced by HLM can be obtained with the MLevel module (see 

Section 2.6.4 for a further discussion of this topic). The parameter and standard error estimates for the HLM, 

MLevel and MLWiN procedures are very similar. Note that HLM 6 does not produce standard errors for the variance 

components.  

 

Turning to the GLIM results, we note relatively large differences in parameter and standard error estimates for 

both the weighted and unweighted models. More research may be required to provide users with guidelines if a 

choice has to be made between fitting a multilevel or a generalized linear model to complex survey data. 

 

2.5.5 Comparison of results using a 2-level model for the MEPS data 

In order to expand the comparison of results for weighted models using all the software packages at our disposal, 

we fitted a series of two-level models to the MEPS data. While this implies ignoring the survey sample design to 

some extent, doing so was necessary in order to obtain results for SAS PROC MIXED and Mplus. In the case of 

PROC MIXED, fitting 3-level models is computationally intensive and thus not an option when a large number of 

models is to be fitted, while Mplus cannot presently accommodate level-3 models.  

 

In the first set of models, it was assumed that respondents were nested within the 143 strata only, and no 

distinction was made in terms of the PSU they were drawn from. Three models were introduced, each using a 

different subset of the predictors used in Section 2.4.1. For each of the models, results for both weighted and 

unweighted analyses are given in Tables 2.10, 2.11 and 2.12. 

 

An inspection of Tables 2.10 to 2.12 shows that the GLIM estimates and standard errors differ from those obtained 

using the multilevel procedures. This result is to be expected, since the multilevel approach allows for all or a 

subset of the regression coefficients to vary randomly over the different levels of the hierarchical structure, while 

the GLIM approach assumes fixed regression coefficients and uses stratification and clustering variables to 

produce appropriate standard errors. 

 

  



 

Table 2.10:  Comparison of results for first model fitted to MEPS data 

 

Model 1: Results for unweighted analyses 
Coefficients MLevel HLM SAS MLWiN GLIM Mplus 
intercept 4.652 

(0.066) 

4.652 

(0.092) 

4.652 

(0.066) 

4.652 

(0.066) 

4.571 

(0.078) 

4.654 

(0.093) 
race 0.715 

(0.048) 

0.715 

(0.097) 

0.715 

(0.048) 

0.725 

(0.048) 

0.685 

(0.117) 

0.713 

(0.097) 
GENDER 

 
0.919 

(0.036) 

0.919 

(0.036) 

0.919 

(0.036) 

0.929 

(0.036) 

0.924 

(0.039) 

0.920 

(0.036) 
inscov -0.838 

(0.040) 

-0.838 

(0.081) 

-0.838 

(0.040) 

-0.838 

(0.040) 

-1.015 

(0.124) 

-0.840 

(0.081) 
variance (level-1) 7.632 

(0.071) 

7.633 7.632 7.632 

(0.071) 

N/A 7.634 

(0.181) 
variance (level-2) 0.221 

(0.036) 

0.224 0.222 0.333 

(0.036) 

N/A 0.223 

(0.036) 

 
Model 1: Results for weighted analyses 
Coefficients MLevel HLM SAS MLWiN GLIM Mplus 
intercept 4.527 

(0.092) 

4.528 

(0.093) 

4.514 

(0.062) 

4.541 

(0.091) 

4.470 

(0.091) 

4.527 

(0.093) 
race 0.970 

(0.082) 

0.970 

(0.082) 

0.966 

(0.048) 

0.920 

(0.084) 

0.985 

(0.086) 

0.970 

(0.082) 
GENDER 0.902 

(0.036) 

0.902 

(0.036) 

0.902 

(0.035) 

0.906 

(0.040) 

0.901 

(0.037) 

0.902 

(0.036) 
inscov -0.822 

(0.078) 

-0.822 

(0.078) 

-0.825 

(0.041) 

-0.832 

(0.095) 

-0.899 

(0.099) 

-0.824 

(0.078) 
variance (level-1) 7.157 

(0.243) 

6.337 7.158 7.357 

(0.190) 

N/A 7.161 

(0.168) 
variance (level-2) 0.139 

(0.019) 

0.148 0.161 0.172 

(0.027) 

N/A 0.138 

(0.020 

 

Table 2.11:  Comparison of results for second model fitted to MEPS data 

 

Model 2: Results for unweighted analyses 
Coefficients MLevel HLM SAS MLWiN GLIM Mplus 

intercept 
4.335 

(0.067) 

4.335 

(0.085) 

4.335 

(0.067) 

4.335 

(0.067) 

4.160 

(0.089) 

4.338 

(0.086) 

race 
0.821 

(0.048) 

0.821 

(0.101) 

0.821 

(0.048) 

0.821 

(0.048) 

0.810 

(0.122) 

0.819 

(0.101) 

GENDER 
0.904 

(0.036) 

0.904 

(0.035) 

0.904 

(0.036) 

0.904 

(0.036) 

0.906 

(0.038) 

0.905 

(0.035) 

variance (level-1) 
7.765 

(0.072) 
7.765 7.765 

7.765 

(0.072) 
N/A 

7.768 

(0.197) 

variance (level-2) 
0.275 

(0.042) 
0.224 0.274 

0.275 

(0.042) 
N/A 

0.276 

(0.048) 

 

  



 

Model 2: Results for weighted analyses 
Coefficients MLevel HLM SAS MLWiN GLIM Mplus 

intercept 
4.210 

(0.085) 

4.211 

(0.085) 

4.184 

(0.062) 

4.220 

(0.082) 

4.119 

(0.091) 

4.209 

(0.085) 

race 
1.108 

(0.080) 

1.108 

(0.080) 

1.105 

(0.048) 

1.044 

(0.086) 

1.134 

(0.084) 

1.108 

(0.081) 

GENDER 
0.894 

(0.037) 

0.894 

(0.037) 

0.894 

(0.035) 

0.896 

(0.040) 

0.892 

(0.037) 

0.894 

(0.037) 

variance (level-1) 
7.275 

(0.240) 
6.442 7.276 

7.482 

(0.207) 
N/A 

7.279 

(0.177) 

variance (level-2) 
0.161 

(0.023) 
0.148 0.191 

0.205 

(0.034) 
N/A 

0.160 

(0.024) 

Table 2.12:  Comparison of results for third model fitted to MEPS data 

 

Model 3: Results for unweighted analyses 
Coefficients MLevel HLM SAS MLWiN GLIM Mplus 

intercept 
5.143 

(0.064) 

5.144 

(0.095) 

5.144 

(0.064) 

5.144 

(0.063) 

5.066 

(0.078) 

5.148 

(0.096) 

race 
0.692 

(0.049) 

0.692 

(0.095) 

0.692 

(0.049) 

0.692 

(0.049) 

0.660 

(0.116) 

0.689 

(0.095) 

inscov 
-0.817 

(0.041) 

-0.817 

(0.082) 

-0.817 

(0.041) 

-0.817 

(0.041) 

-0.995 

(0.124) 

-0.819 

(0.081) 

variance  (level-
1) 

7.843 

(0.073) 
7.844 7.843 

7.843 

(0.072) 
N/A 

7.843 

(0.184) 

variance (level-
2) 

0.221 

(0.036) 
0.223 0.221 

0.221 

(0.036) 
N/A 

0.221 

(0.036) 

 

Model 3: Results for weighted analyses 

Coefficients MLevel HLM SAS MLWiN GLIM Mplus 

intercept 
5.000 

(0.089) 

5.001 

(0.090) 

4.987 

(0.060) 

5.012 

(0.090) 

4.945 

(0.088) 

4.999 

(0.090) 

race 
0.952 

(0.081) 

0.952 

(0.081) 

0.948 

(0.048) 

0.905 

(0.083) 

0.967 

(0.086) 

0.952 

(0.081) 

inscov 
-0.810 

(0.079) 

-0.810 

(0.079) 

-0.813 

(0.042) 

-0.818 

(0.096) 

-0.887 

(0.100) 

-0.812 

(0.079) 

variance (level-
1) 

7.361 

(0.249) 
6.517 7.361 

7.562 

(0.192) 
N/A 

7.365 

(0.169) 

variance (level-
2) 

0.137 

(0.019) 
0.146 0.160 

0.172 

(0.027) 
N/A 

0.136 

(0.020) 

 

For all the weighted analyses, a comparison of the multilevel (MLevel) and Mplus results show that the estimated 

parameters and standard errors (given in parentheses) are almost identical, with the exception of the standard 

error estimate for the level-1 variance component. 

 

  



 

2.5.6 Comparison of results for simulated 4-level data        

Table 2.13: Bias and Coverage for simulated four-level data (weighted analysis) 
 

Parameter 
True 
Value 

0% missing 10% missing 20% missing 

Bias Coverage(%
) 

Bias Coverage(%
) 

Bias Coverage(%
) 

1  
150 0.837 85.92 0.874 87.84 1.069 89.42 

2  
1.5 0.233 93.27 0.209 92.27 0.229 94.99 

3  
-0.5 0.018 93.27 -0.038 95.00 0.003 94.85 

2  400 1.821 93.37 2.330 94.43 3.273 93.45 

( )2 11


 
970 8.454 94.82 8.146 95.57 10.81

0 
96.24 

( )2 21


 
270 11.36

9 
92.13 12.10

8 
93.52 11.17

4 
94.01 

( )2 22


 
850 12.47

9 
92.75 15.24

2 
94.89 12.97

6 
94.85 

( )2 31


 
200 2.446 94.93 2.533 95.80 1.291 94.43 

( )2 32


 
300 6.244 93.79 7.023 94.32 6.672 94.99 

( )2 33


 
910 20.41

4 
88.82 17.74

1 
90.80 21.16

6 
92.20 

( )3 11


 
50 0.169 94.82 -0.197 95.11 0.973 97.63 

( )3 21


 
-10 0.351 94.51 0.157 94.20 1.040 94.99 

( )3 22


 
35 0.399 95.03 0.778 97.50 2.931 98.61 

( )3 31


 
9 -0.257 94.41 0.266 94.89 -0.213 95.82 

( )3 32


 
25 0.596 95.96 1.013 95.45 1.507 96.80 

( )3 33


 
40 0.054 95.45 0.993 94.09 0.795 96.94 

( )4 11


 
15 -0.309 94.51 0.448 98.98 2.008 100.00 

( )4 21


 
8 -0.467 95.55 0.211 95.80 0.882 97.49 

( )4 22


 
19 -1.069 91.51 -1.201 91.48 0.001 96.80 

( )4 31


 
6 -0.117 96.27 0.305 96.82 1.163 96.10 

( )4 32


 
12 -0.626 90.99 -0.249 93.86 0.374 95.96 

( )4 33


 
24 -1.032 91.30 -0.582 91.02 -0.496 93.45 

 

A comparison of the results for the unweighted analyses reveals differences in standard error estimates. In this 

case, the MLevel, SAS, and MLWiN standard error estimates are in close agreement, while those produced by HLM 

and Mplus are the same. In Section 2.6.4 it is shown that robust standard error estimates can be obtained in the 

unweighted case if the command WEIGHT1 = intcept is included in the syntax file. In doing so, the LISREL MLevel 

method yields the standard errors reported in the Mplus column.  

 

  



 

Table 2.14: Bias and Coverage for simulated four-level data (unweighted analysis) 
 

Parameter 
True 
Value 

0% missing 10% missing 20% missing 

Bias Coverage(%
) 

Bias Coverage(%
) 

Bias Coverage(%
) 

1  
150 1.185 76.95 1.246 79.86 1.444 82.27 

2  
1.5 0.025 93.98 -0.008 93.63 0.023 95.57 

3  
-0.5 0.047 93.25 -0.009 94.99 0.037 94.60 

2  400 8.625 63.24 8.910 76.45 9.629 80.89 

( )2 11


 
970 19.48

4 
92.11 20.08

1 
93.63 22.78

2 
95.01 

( )2 21


 
270 6.363 94.08 6.987 94.65 6.292 93.91 

( )2 22


 
850 17.22

8 
91.38 20.53

2 
93.40 18.98

9 
93.49 

( )2 31


 
200 2.938 95.12 3.210 95.79 2.152 94.46 

( )2 32


 
300 5.539 94.29 6.153 94.31 5.917 94.88 

( )2 33


 
910 20.56

2 
88.68 18.05

8 
90.67 21.45

4 
91.97 

( )3 11


 
50 0.428 94.81 -0.035 94.88 1.221 97.23 

( )3 21


 
-10 0.155 94.70 -0.047 94.08 1.050 94.74 

( )3 22


 
35 0.591 95.33 0.793 97.16 2.836 98.75 

( )3 31


 
9 -0.283 94.60 0.163 95.22 -0.225 96.26 

( )3 32


 
25 0.586 96.16 0.973 95.45 1.553 96.68 

( )3 33


 
40 0.014 95.43 1.031 94.08 0.828 96.81 

( )4 11


 
15 -0.209 94.60 0.516 98.75 2.099 100.00 

( )4 21


 
8 -0.493 95.53 0.203 95.79 0.773 97.51 

( )4 22


 
19 -1.022 91.80 -1.111 91.47 0.057 97.37 

( )4 31


 
6 -0.131 96.16 0.337 96.81 1.105 96.12 

( )4 32


 
12 -0.608 91.07 -0.204 93.74 0.303 96.12 

( )4 33


 
24 -1.025 91.38 -0.518 91.24 -0.613 93.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

2.5.7 Comparison of results for simulated 5-level data 

Table 2.15: Bias and Coverage for simulated five-level data (weighted analysis) 
 

Parameter 
True 
Value 

0% missing 10% missing 20% missing 

Bias Coverage(%
) 

Bias Coverage(%
) 

Bias Coverage(%
) 

1  
150 -0.238 93.73 -0.077 94.69 -0.076 93.63 

2  
1.5 -0.001 93.33 0.007 94.80 -0.033 93.36 

3  
-0.5 0.025 94.74 0.037 92.78 -0.050 93.09 

2  400 1.720 90.60 2.493 91.93 3.166 93.89 

( )2 11


 
975 10.18

4 
93.02 12.76

7 
94.69 10.73

7 
93.89 

( )2 21


 
175 1.637 95.85 2.685 93.84 1.566 96.02 

( )2 22


 
850 1.437 95.45 3.241 94.27 3.980 94.42 

( )2 31


 
120 0.271 95.96 -1.103 94.90 -0.968 95.09 

( )2 32


 
100 0.924 94.94 1.087 95.01 1.060 94.02 

( )2 33


 
910 1.859 95.05 2.450 95.97 4.336 94.95 

( )3 11


 
50 -2.059 93.93 -2.135 95.12 1.223 96.81 

( )3 21


 
-10 -0.164 94.94 0.205 94.27 1.621 94.56 

( )3 22


 
35 0.332 96.66 -0.947 95.33 0.229 98.54 

( )3 31


 
9 -0.485 94.94 0.252 94.27 1.261 94.16 

( )3 32


 
15 -0.104 94.03 0.135 96.28 0.050 95.48 

( )3 33


 
40 -0.098 95.15 0.343 94.06 -0.100 95.88 

( )4 11


 
30 0.039 95.35 0.368 94.37 -1.686 93.49 

( )4 21


 
14 -0.016 94.74 -0.125 94.37 0.162 96.68 

( )4 22


 
15 -0.267 94.74 -0.331 95.65 1.321 98.67 

( )4 31


 
9 -0.200 94.34 0.143 95.44 -0.100 95.48 

( )4 32


 
16 -0.320 94.14 0.183 93.84 -0.536 94.29 

( )4 33


 
62 -0.167 93.83 0.026 94.90 -1.289 94.02 

( )5 11


 
15 -1.006 92.52 -0.230 94.90 0.338 99.20 

( )5 21


 
13 -0.676 91.71 0.114 93.63 0.194 95.75 

( )5 22


 
19 -0.692 90.39 -0.701 89.92 -1.135 90.44 

( )5 31


 
8 -0.282 94.64 0.335 95.44 -0.138 94.69 

( )5 32


 
8 -0.187 93.12 -0.157 92.57 -0.875 94.95 

( )5 33


 
24 -1.049 90.39 -1.813 89.49 -0.756 94.42 

 

 

 

 

 

 

 

 

 
  



 

Table 2.16: Bias and Coverage for simulated five-level data (unweighted analysis) 
 

Parameter 
True 
Value 

0% missing 10% missing 20% missing 

Bias Coverage(%
) 

Bias Coverage(%
) 

Bias Coverage(%
) 

1  
150 1.224 73.84 1.388 74.95 1.346 82.46 

2  
1.5 0.030 93.54 0.047 95.20 0.010 92.93 

3  
-0.5 0.017 95.05 0.042 92.75 -0.071 93.59 

2  400 9.139 23.74 9.818 41.58 10.26
0 

66.36 

( )2 11


 
975 37.39

6 
67.37 40.33

5 
75.80 36.98

2 
87.70 

( )2 21


 
175 5.385 94.14 6.391 92.22 5.496 95.68 

( )2 22


 
850 18.98

8 
82.83 20.83

2 
87.74 21.38

5 
90.31 

( )2 31


 
120 2.632 95.25 1.379 94.88 1.176 94.76 

( )2 32


 
100 3.028 94.24 3.153 94.99 3.086 94.24 

( )2 33


 
910 20.39

5 
77.58 20.91

2 
85.71 22.74

9 
87.70 

( )3 11


 
50 0.051 93.84 0.617 96.16 4.250 97.51 

( )3 21


 
-10 -0.453 95.45 0.042 94.24 1.323 94.50 

( )3 22


 
35 1.039 96.67 -0.365 96.27 0.630 98.17 

( )3 31


 
9 -0.282 95.15 0.599 94.67 1.615 94.76 

( )3 32


 
15 0.234 94.65 0.462 96.59 0.170 95.29 

( )3 33


 
40 0.807 95.45 1.180 94.88 0.548 96.07 

( )4 11


 
30 0.745 95.35 0.642 94.78 -1.193 94.50 

( )4 21


 
14 0.283 94.65 0.165 95.52 0.491 96.60 

( )4 22


 
15 0.067 94.75 0.079 96.48 1.637 98.69 

( )4 31


 
9 -0.015 94.65 0.171 95.20 0.202 96.07 

( )4 32


 
16 -0.011 94.55 0.507 93.82 -0.142 95.55 

( )4 33


 
62 1.049 94.85 1.245 95.84 0.165 93.59 

( )5 11


 
15 -0.688 92.93 0.226 95.42 0.589 99.61 

( )5 21


 
13 -0.438 92.12 0.385 94.03 0.303 95.94 

( )5 22


 
19 -0.304 91.21 -0.400 90.51 -0.836 91.75 

( )5 31


 
8 -0.121 94.75 0.561 95.52 -0.090 94.63 

( )5 32


 
8 -0.021 93.43 -0.026 93.18 -0.853 94.90 

( )5 33


 
24 -0.567 91.11 -1.300 91.04 -0.509 94.76 

 

 

 

  



 

2.6 Theory 

2.6.1       Introduction 

In Section 2.6.2, we outline a general procedure for the implementation of weights in level-2 and level-3 models. 

A more rigorous theoretical treatment of these results are presented in Section 2.6.3. In Section 2.6.4 we provide 

some results for standard error estimation and fit statistics. 

 

2.6.2       A general weighting procedure 

Under the assumption that the sampling weights at a specific level are independent of the random effects at that 

level, Pfeffermann et. al. (1997) adopted the following procedure. Consider the case of a 2 level model. Denote 

by iw  the weight attached to the i-th level-2 unit and by |j iw  the weight attached to the j-th level-1 unit within 

the i-th level-2 unit such that 

 

| ,j i i i

j i

w n w I= = 
 

 

where I is the total number of level-2 units and i

i

N n=  the total number of level-1 units. That is, the lower 

level weights within each immediate higher level unit are scaled to have a mean of unity, and likewise for higher 

levels. For each level-1 unit we now form the final, or composite, weight 

 

| | |ji j i i j i i j i i i i

j i i

w Nw w w w Nw w n w= = 
. 

 

Denote by uz  and ez  respectively the sets of explanatory variables defining the level-2 and level-1 random 

coefficients and form 

 

 

 

* 0.5

* 0.5

,

, .

u i u i i

e ji e ji ji

Diag w

Diag w

−

−

= =

= =

z Wz W

z W z W
 

 

We now carry out a standard estimation but using 
*

uz  and 
*

ez  as the random coefficient explanatory variables. 

For a 3 level model, with an obvious extension to notation, we have the following 

 

| |

| | | | | |

, , , ,

, .

j ik ik i k k k ik k

j i k i k k

jik j ik i k k j ik i k k ik i k k i k k

j i k i k

w n w I w K N n I I

w Nw w w w w w w Iw w w w

= = = = =

= =

    

 
 

 

Goldstein (1995) also pointed out that in survey work analysts often have access only to the final level-1 weights 

jiw . In this case, say for a 2-level model, we can obtain the iw  by computing ' ,i i i i ji i

i j

w W I W W w n
 

= =  
 

  . 

For a 3-level model the procedure is carried out for each level-3 unit and the resulting 
'

ikw  are transformed 

analogously. 



 

 

2.6.3        Weights in multilevel models 

 

Let  

 

( ) (2) (1)

1

, 1, 2,...,
in

i f i i i ij ij

j

i I
=

= + + =y X β X u Z e

 

 

with : ( 1)i in y , ( ) :f i n pX , (2) :i in qX , and (1) :ij in rZ . It is further assumed that 
1 2, ,..., Iu u u are 

independently and identically distributed (i.i.d.) with (2)( ) , ( )i iE Cov= =u 0 u Φ . Also, 
111 1 21, ..., , ,...,

In Ine e e e  are 

i.i.d. with (1)( ) , ( ) .ij ijE Cov= =e 0 e Φ  Note further that 

 
'

'

'

(1)

(1) '

'

.
ij

ijZ

 
 
 
 

=  
 
 
 
  

0

0

x

0

0
 

Example (r = 1): 

Suppose that '

(1) 1, 1,2,..., , 1,2,..., .ij ii I j n= = =x  In this case, 2

(1)

1

i

i

n

ij ij n

j

Cov 
=

 
= 

 
Z e I , where 2

(1) =  , a scalar. 

From the distributional assumptions given above, it follows that 

 
'

( )( ) , ( , )i f i i i iE Cov= =y X β y y Σ
 

 

where 

' '

(2) (2) (2) (1) (1) (1)

1

.
in

i i i ij ij

j=

= +Σ X Φ X Z Φ Z

 
 

Consider the case where r = 1, then 2

(1) e =  and ' 2

(1) (1) (1)

1

.
in

ij ij i

j


=

=Z Φ Z D  

 

If (1)(1)

0

0

,

0

0

ijij
x

 
 
 
 
 

=  
 
 
 
 
 

Z  



 

 then ' 2

(1) (1) (1)

0

0

ij ij ijx

 
 
 
 =
 
 
  

Z Z ,  

 

and hence  

2 ' 2 2 2 2

(1) (1) (1) 1 (1)

1

( , , )
i

i

n

ij ij i in i

j

diag x x  
=

= =Z Z D

. 

 

Let iV  be a provisional estimate of iΣ , then  

 
1

' 1 ' 1

( ) ( ) ( )

1 1

| ,
I I

i f i i f i f i i i

i i

−

− −

= =

   
=    
   
 β V X V X X V y

 
 

where  

' 2

(2) (2) (2)

(2)2 '

(2) (2)2

ˆ ˆ

ˆ
ˆ .

ˆ

i i i i

i i i






= +

 
= + 

 
 

V X Φ X D

Φ
X X D

 
 

Using a well-known result for matrix inversion, 

 
1 1

' 1 1 1 ' 1 ' 1,
− −

− − − − −   + = − +   BΩB Λ Λ Λ B Ω BΛ B BΛ
 

 

it follows that 

 

( ) ( ) 
1 1

1 2 1 1 2 1 ' 1 ' 1

(2) (2) (2) (2) (2)
ˆ ˆ .i i i i i i i i i 

− −
− − − − − −= − +V D D X Φ X D X X D

 
 

Hence 

 

( )  
11

' 1 2 2 1 '

( ) ( ) 1 2 (2) 3 2
ˆˆ ˆ ,f i i f i i i i i 

−−
− − = − +
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X V X T T Φ T T

 
 

where 

' 1 ' 2

1 ( ) ( ) ( ) ( ) (1)

1

/
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i f i i f i f ij f ij ij

j

x−

=

= =T X D X x x

 

' 2
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1

ˆ /
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w x
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=T x x
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1 1

ˆ / .
inI

i j i f ij f ij ij

i j

w w x
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= T x x

 



 

 

Since |ij i j iw w w=  , it follows that 

 

' *2

( ) ( ) (1)

1 1

ˆ /
inI

i f ij f ij ij

i j

x
= =

=T x x
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where * 1/ 2

(1) (1)ij ij ijx w x−= . 
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/
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where * 1/ 2

(2) (2)ij i ijw−=x x . 
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1

2 1

(2) (2) 3
ˆ ˆ ˆˆ

i i
−

− = +
 

C Φ T
 

 

then 
'

2 (2) 2

1

I

i i i

i=

T C T  is estimated by 
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Since |i j i ijw w w= , it follows that 
'

2 (2) 2

1

I

i i i

i=

T C T is estimated by 
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Similarly 
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It can then be shown that 
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2.6.4 Standard errors and fit statistics 

The method used in LISREL to calculate standard error estimates for multilevel models depends on whether design 

weights are included in the analysis or not. We first consider the case where design weights are used. 

 

Let 


γ  denote the vector of estimated parameters. In Section 8 of the Complex Survey Sampling Guide it was 

shown that an approximate expression for the asymptotic covariance matrix of 


γ  is given by 

 

 

( ) ( )1 1( ) n nCov
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− −γ I γ GI γ
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As an estimate of G  we use 

 

 

'

1

1
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where ig  denotes the i -th contribution to the gradient vector 
ln L

=


g
γ

. 

 

Standard error estimates of the unknown parameters are obtained by taking the square roots of the diagonal 

elements of Cov
 

 
 
γ . 

 

If no weighting variable is specified, it is assumed that Cov
 

 
 
γ  equals the inverse of the information matrix, 

that is 1

nCov


− 
= 

 
γ I . In the case where no weight is specified, so-called robust standard error estimates of the 

estimated parameters may be obtained by using the asymptotic covariance matrix for the weighted case. This is 

accomplished by adding the command WEIGHT1 = intcept; to the multilevel syntax file. 

 

Likelihood ratio tests 

 

Test of a null hypothesis against a restricted alternative hypothesis can be constructed, provided that two 

conditions are met. Firstly, the models under 0H  and 1H  should be estimable and secondly, the parameter space 

0  for 0H  must be a subset of the parameter space   for 1H . 

 

  



 

Use is made of the likelihood ratio test statistic 

 

0 0

1 1

L

L







 
 
 =
 
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 

γ

γ  

 

where 0L  and 1L  denote the likelihood functions under 0H  and 1H  respectively. For a large N  (see, for example, 

Anderson, 1984), ( )0 12ln 2ln 2lnL L− = − − −  has an approximate 2

( )v  distribution where the number of degrees 

of freedom v  is the difference in the number of parameters estimated under 0H  and the number of parameters 

estimated under 1H . The statistic 2ln L−  is called the deviance. 

 
Contrasts 

 

Consider a clinical trial in which two types of drugs are administered to 400 obese adults. Adults are randomly 

assigned to four groups: 

 

o Group 1, Drug A, low dosage (10 mg/day) 

o Group 2, Drug A, high dosage (50 mg/day) 

o Group 3, Drug B, low dosage (10 mg/day) 

o Group 4, Drug B, high dosage (50 mg/day) 

 

Let 
ijy  denote weight loss of subject i on occasion 

jt , i = 1, 2, …, 400 and j = 1, 2, …, in , and let 

 

 

1 2 3 4 5 6

7 8 1 2

ij

i i ij

y AL AH BL BH TIJ AGE

GENDER INITW u TIJ u e

     

 

= + + + + +

+ + + +  +
   

 

where AL, AH, BL and BH are dummy variables, coded as follows 

 

 AL AH BL BH 

Drug A, low dosage 1 0 0 0 

Drug A, high dosage 0 1 0 0 

Drug B, low dosage 0 0 1 0 

Drug B, high dosage 0 0 0 1 

 

In the above model 1 2 3, , ,    and 4  represent the average group loss (or gain) in weight over the study period 

if we control for a subject’s age (AGE), gender (GENDER), weight at the onset of the trial (INITW), and time (TIJ) 

at which the weight loss (
ijy ) measurement was made.  

 

Visual inspection of the estimated  -coefficients may point to significant differences between the different 

treatments. The construction of contrasts or linear functions of the parameters is a useful statistical analysis tool 

and enables the researcher to perform hypothesis testing concerning the equality of subsets of parameters.  



 

 

In the example above, the fixed part of the model has 8 parameters 1 2 8, , ... ,   . We may want to test the 

following 3 hypotheses: 

 

01 1 2

02 1 3

03 1 4

:

:

: .

H

H

H

 

 

 

=

=

=  

 

Each of these hypotheses can alternatively be written as 

 

 

01 1 2 3 4 5 6 7 8

02 1 2 3 4 5 6 7 8

03 1 2 3 4 5 6 7 8

:1 1 0 0 0 0 0 0 0

:1 0 1 0 0 0 0 0 0

:1 0 0 1 0 0 0 0 0

H

H

H

       

       

       

− + + + + + + =

+ − + + + + + =

+ + − + + + + =  

 

or, in matrix notation,  

 
0 : ,H =Cβ 0

 
 

where 

 

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0 .

1 0 0 1 0 0 0 0

− 
 

= −
 
 − 

C

 

 

Suppose that an additional 100 subjects (the control group) are also assigned to the experiment, but each subject 

from this group receives a placebo. Suppose further that the 5 treatments are hypothesized to be related as 

described by the tree diagram 

 
 

  



 

Here we can form the orthogonal contrasts: 

 

 Treatments 
Contrast 1 2 3 4 5 TIJ AGE GENDER INITW 

A 1/3 1/3 1/3 -1/2 -1/2 0 0 0 0 

B 1 -1/2 -1/2 0 0 0 0 0 0 

C 0 0 0 1 -1 0 0 0 0 

D 0 1 -1 0 0 0 0 0 0 

 

A complex hypothesis about several elements of the vector of fixed coefficients β  can be tested if use is made 

of a p m  contrast matrix C, with p the number of contrasts and m the number of fixed coefficients. The 

hypothesis is written in the form 

 

 

=Cβ k

 
where k is a known vector, usually k = 0.  

 

For large samples (see e.g. du Toit, 1993), 


Cβ  has an approximate ( )1 ',N −
Cβ CΓ C  distribution, where 

( )Cov


=Γ β . If the hypothesis 0 :H =Cβ k  is true, it follows (see, e.g. Anderson (2003)), that 

 

 

( ) ( )
1' 1 'U
−

− = − − Cβ k CΓ C Cβ k

    
 

follows an approximate 2 -distribution with p degrees of freedom.  

 

A set of 100 (1 )%−  simultaneous confidence intervals for the p elements of Cβ  is given by the p intervals 

 

 

0.5
' ' 1 2

,i i i m 


−   c β c Γ c

, 

 

where p m , '

ic  denotes the i-th row of C and 
2

,m   is the critical value of the 2  distribution with m degrees 

of freedom. 
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