Principal components: nine psychological variables
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1. Introduction

PCA is used in exploratory data analysis and for making predictive models. It is commonly used for dimensionality
reduction by projecting each data point onto only the first few principal components to obtain lower-dimensional data while
preserving as much of the data's variation as possible.

The principal components are eigenvectors of the data's covariance matrix. Thus, the principal components are often
computed by eigen decomposition of the data covariance matrix or singular value decomposition of the data matrix. PCA is
the simplest of the true eigenvector-based multivariate analyses and is closely related to factor analysis. Factor analysis
typically incorporates more domain specific assumptions about the underlying structure and solves eigenvectors of a slightly
different matrix. It should also be noted that factor analysis is a model which can be tested.

In this example, we use data on nine psychological variables for students from the Pasteur school data. Data are available
on nine selected tests. The nine tests are Visual Perception, Cubes, Paper Form Board, General Information, Sentence
Completion, Word Classification, Figure Recognition, Object-Number, and Number-Figure. Given the number of variables
of interest here, it is more convenient to use an LSF file if the data are available in this format. In this case, data are available
in the file Pasteur_npv.Isf.

1. PCA based on the covariance matrix

The PC command is used to request a principal component analysis, as shown in the syntax file below. Note that all files
used here can be found in the MVABOOK\Chapter5 folder. We use PRELIS syntax for this analysis.
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bY=pasteur_npv.lsf
PC
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Basic descriptive statistics for the nine tests are given first.

Univariate Summary Statistics for Continuous Variables

Variable Mean St. Dev. Skewness Kurtosis Minimum Freq. Maximum Freq.
VISPERC  29.647 7.110 -0.378 0.736 4.000 1 45.000 2
CUBES 23.936 4,921 0.695 0.255 14.000 1 37.000 3
LOZENGES  19.897 9.311 0.156 -1.074 2.000 1 36.000 5
PARCOMP 8.468 3.457 0.221 -0.052 0.000 1 18.000 1
SENCOMP  15.981 5.244 -0.132 -0.839 4.000 1 27.000 1
WORDMEAN  13.455 6.932 1.009 2.034 1.000 2 43.000 1
ADDITION 101.942 24.958 0.303 -0.395 47 .000 1 171.000 1
COUNTDOT 111.263 19.577 0.362 0.091 70.000 1 166.000 1
SCCAPS 195.038 35.708 0.226 0.194 100.000 1 310.000 1

Test of Univariate Normality for Continuous Variables

Skewness Kurtosis Skewness and Kurtosis

Variable Z-Score P-Value Z-Score P-Value Chi-Square P-Value

VISPERC -1.934 ©0.053 1.682 0.093 6.568 0.037
CUBES 3.360 0.001 0.782 0.434 11.900 ©.003
LOZENGES ©0.818 0.414 -5.966 0.000 36.257 0.000
PARCOMP  1.153 0.249 0.018 0.985 1.329 0.514
SENCOMP -0.691 0.489 -3.585 ©0.000 13.332 0.001
WORDMEAN  4.555  0.000 3.207 0.001 31.028 0.000
ADDITION 1.567 ©0.117 -1.131 0.258 3.736 0.154
COUNTDOT 1.856 0.064 0.398 0.691 3.601 0.165
SCCAPS 1.176 0.240 0.645 0.519 1.798 0.407

This is followed by the covariance matrix that forms the basis of the Principal Component Analysis. We note that the
variable SCCAPS has the largest variation at 1275, followed by ADDITION with a variance of 622.881. The smallest
variance is for the variable PARCOMP at 11.954.

Covariance Matrix

VISPERC CUBES LOZENGES PARCOMP SENCOMP  WORDMEAN
VISPERC 50.552
CUBES 9.713 24.215
LOZENGES 29.957 15.355 86.686
PARCOMP 10.289 1.069 3.977 11.954
SENCOMP 11.400 2.296 2.140 13.041 27.503
WORDMEAN 21.032 5.468 12.518 15.960 26.318 48.056

ADDITION 6.412 -18.875 -4.574 22.330 15.825 35.504



COUNTDOT 19.951 3.101 24.414 8.876 12.199 28.976
SCCAPS 76.336 31.693 96.256 16.866 30.207 47.221

Covariance Matrix

ADDITION  COUNTDOT SCCAPS

ADDITION 622.881
COUNTDOT 197.267 383.253
SCCAPS 239.357 255.383  1275.082

The first principal components account for only 57.6% of the total variance. Even when the first three components are
looked at together, they only account for 91% of the total variance. These results are not particularly informative, especially
if we note that the first component is essentially equal to the variable with the largest variance (SCCAPS) and the last with
the variable with the smallest variance (PARCOMP). The rest of the components follow in this pattern.

Eigenvalues and Eigenvectors

PC_1 PC_2 PC_3 PC_4 PC_5 PC_6
Eigenvalue  1457.41 587.13 259.49 102.66 63.99 26.54
StandError 165.02 66.48 29.38 11.62 7.25 3.01
% Variance 57.60 23.21 10.26 4.06 2.53 1.05
Cum. % Var 57.60 80.81 91.06 95.12 97.65 98.70
VISPERC 0.057 -0.038 0.035 0.487 -0.119 0.850
CUBES 0.018 -0.052 0.031 0.173 0.048 0.023
LOZENGES 0.069 -0.072 0.068 0.679 0.621 -0.333
PARCOMP 0.019 0.026 -0.008 0.175 -0.239 -0.042
SENCOMP 0.027 0.010 0.008 0.225 -0.471 -0.256
WORDMEAN 0.046 0.036 0.033 0.411 -0.559 -0.313
ADDITION 0.326 0.853 -0.395 0.047 0.073 0.018
COUNTDOT 0.278 0.317 0.902 -0.089 0.007 0.010
SCCAPS 0.897 -0.401 -0.145 -0.107 -0.022 -0.014
Eigenvalues and Eigenvectors
PC_7 PC_8 PC_9
Eigenvalue 19.50 9.55 3.91
StandError 2.21 1.08 0.44
% Variance 0.77 0.38 0.15
Cum. % Var 99.47 99.85 100.00
VISPERC -0.102 0.006 -0.096
CUBES 0.979 0.069 0.024
LOZENGES -0.154 0.058 -0.013
PARCOMP -0.062 0.322 0.895
SENCOMP -0.048 0.687 -0.433
WORDMEAN 0.008 -0.645 -0.013
ADDITION 0.039 0.008 -0.024
COUNTDOT -0.003 0.016 0.007
SCCAPS -0.012 -0.008 0.008

In this case, it would be better to use the correlation matrix as input instead.



2. PCA based on the correlation matrix

The syntax for the principal components analysis based on the correlation matrix remains almost the same, except that the
keyword MA = KM on the DA command replaces the previously used MA = CM.

penpv2.pr E=R[EER =
bYZpasteur_npv .1sft
BC
OU MA=FM

The output for this analysis is as follows:

Eigenvalues and Eigenvectors

PC_1 PC_2 PC_3 PC_4 PC_5 PC_6

Eigenvalue 3.10 1.55 1.45 0.72 0.61 0.56
StandError 0.35 0.18 0.16 0.08 0.07 0.06
% Variance 34.40 17.25 16.15 7.99 6.79 6.25
Cum. % Var 34.40 51.65 67.80 75.79 82.58 88.83
VISPERC 0.380 0.301 -0.114 -0.428 0.004 -0.062
CUBES 0.168 0.511 -0.175 0.711 -0.233 0.317
LOZENGES 0.238 0.546 0.018 -0.433 -0.262 0.010
PARCOMP 0.448 -0.280 -0.200 -0.085 -0.046 0.135
SENCOMP 0.429 -0.302 -0.265 0.185 0.176 -0.121
WORDMEAN 0.470 -0.183 -0.179 0.086 -0.081 -0.098
ADDITION 0.197 -0.289 0.549 -0.090 -0.286 0.659
COUNTDOT 0.229 -0.006 0.576 0.239 -0.341 -0.642
SCCAPS 0.272 0.252 0.425 0.100 0.800 0.082

Eigenvalues and Eigenvectors

PC 7 PC_8 PC 9

Eigenvalue 0.48 0.31 0.21
StandError 0.05 0.04 0.02
% Variance 5.33 3.47 2.37
Cum. % Var 94.16 97.63 100.00
VISPERC 0.722 0.104 0.181
CUBES 0.127 -0.061 0.009
LOZENGES -0.614 -0.076 0.080
PARCOMP 0.022 -0.662 -0.463
SENCOMP -0.214 -0.077 0.724
WORDMEAN -0.154 0.706 -0.410
ADDITION 0.042 0.123 0.191
COUNTDOT 0.084 -0.149 -0.004

SCCAPS -0.084 -0.013 -0.132



When we compare the correlations between variables and principal components over the two analyses, we note that we
again have no single component contributing the most to the total variance. The question now becomes how many of these
components we should retain, and what to base that decision on.

3. Number of components

When we plot the eigenvalues associated with each component in order of size, the following graph is obtained. We hope
to use this as a visual aid to retain only those principal components which are statistically different. In other words,
components for which the largest eigenvalues are statistically different.
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The graph shows no “elbow’ in the plot that might suggest a good cutting off point for the number of components. We thus
opt for another approach: retaining only components for which the eigenvalues of the correlation matrix are larger than one.
The rationale here is that principal components with a variance smaller than 1 will explain less variance than any variable,
as all variables have a variance of 1 in a correlation matrix.

Revisiting the results obtained in the previous section, we note that according to this rule, only the first three principal
components qualify for selection.

We amend our syntax file to request the estimation of only three principal components by adding the keyword NC = 3 on
the PC line:

pcnpﬂ.r?».prl | = ” =] ||i3-|

SY=pasteur npv.lsf
BC NC=3
oU MA=EM

For this analysis, the following output is obtained:



Eigenvalues and Eigenvectors

PC 1 PC_2 PC 3

Eigenvalue 3.10 1.55 1.45
StandError 0.35 0.18 0.16
% Variance 34.40 17.25 16.15
Cum. % Var 34.40 51.65 67.80
VISPERC 0.380 0.301 -0.114
CUBES 0.168 0.511 -0.175
LOZENGES 0.238 0.546 0.018
PARCOMP 0.448 -0.280 -0.200
SENCOMP 0.429 -0.302 -0.265
WORDMEAN 0.470 -0.183 -0.179
ADDITION 0.197 -0.289 0.549
COUNTDOT 0.229 -0.006 0.576
SCCAPS 0.272 0.252 0.425

PC_1 PC_2 PC_3
VISPERC 0.668 09.375 -0.137
CUBES 9.296 0.637 -0.212
LOZENGES 0.419 0.681 0.021
PARCOMP 0.788 -0.348 -0.241
SENCOMP 0.755 -0.376 -0.319
WORDMEAN 0.827 -0.228 -0.216
ADDITION 0.347 -0.360 9.661
COUNTDOT 0.404 -0.007 0.695
SCCAPS 0.479 9.314 9.513

Variance Contributions

PC_1 PC_2 PC_3

VISPERC 0.446 0.140 0.019
CUBES 0.088 0.406 0.045
LOZENGES 0.176 0.464 0.000
PARCOMP 0.621 0.121 0.058
SENCOMP 0.569 0.142 0.102
WORDMEAN 0.684 0.052 0.047
ADDITION 0.120 0.129 0.437
COUNTDOT 0.163 0.000 0.482
SCCAPS 0.229 0.099 0.263



