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1 Models for grouped- and discrete-time survival data 

1.1 Introduction 

 

Models for grouped-time survival data are useful for analysis of failure time data when subjects are measured 

repeatedly at fixed intervals in terms of the occurrence of some event, or when determination of the exact time 

of the event is only known within grouped intervals of time. Additionally, it is often the case that subjects are 

observed nested within clusters (i.e., schools, firms, clinics), or are repeatedly measured in terms of recurrent 

events. In this case, use of grouped-time models that assume independence of observations (Thompson, 1977; 

Allison, 1982; Prentice & Gloeckler, 1978) is problematic since observations from the same cluster or subject 

are usually correlated.  

 

For data that are clustered and/or repeated, models including random effects provide a convenient way of 

accounting for association in correlated survival data. In terms of continuous-time survival data, several 

authors have developed survival analysis models including random effects that are usually assumed to be 

distributed as a gamma distribution. These models are often termed frailty models or survival models 

including heterogeneity, and review articles describe many of these models (Pickles & Crouchley, 1995; 

Hougaard, 1995).  

 

Several authors have noted the relationship between ordinal regression models (using complementary log-log 

and logistic link functions) and survival analysis models for grouped and discrete time. Hedeker, Siddiqui, 

and Hu (2000) described a generalization of an ordinal random-effects regression model to handle correlated 

grouped-time survival data. This model accommodates multivariate normally-distributed random effects, and 

additionally, allows for a general form for model covariates.  

 

Assuming a proportional or partial proportional, hazards or odds model, a maximum marginal likelihood 

solution is implemented using multi-dimensional quadrature to numerically integrate over the distribution of 

random-effects.  

 

In this example, we explore various survival analysis models based on a study that was designed to test 

independent and combined effects of a school-based social-resistance curriculum and a television-based 

program in terms of tobacco use and cessation. 

 

The structure of this study indicates a three-level hierarchical structure. However, for illustration purposes in 

this chapter we will consider a two-level structure in which students are nested within schools.  

 

Two analysis approaches are considered for these data in the examples to follow. The first treats survival time 

as a set of dichotomous indicators of whether the event occurred for time periods up to the period of the event 

or censoring. This analysis, shown in Section 1.4, uses the data set mentioned above. The second approach 

treats survival time as an ordinal outcome, which is either right-censored or not. The same data, but in different 

format, is used for this second analysis (see Section 1.5).  
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1.2 Choosing between binary and ordinal outcome models 

1.2.1 The data for a binary approach 

An analysis of a data set where students are clustered within schools is used to illustrate features of random-

effects analysis of clustered grouped-time survival data. 

We focus on actual usage of tobacco products and on subsequent data collected from the respondents.  

 

Schools were randomized to one of four study conditions: (a) a social-resistance classroom curriculum (CC); 

(b) a media (television) intervention (TV); (c) a combination of curriculum and TV conditions; and (d) a no-

treatment control group. These conditions form a 2 x 2 factorial design of CC (yes or no) by TV (yes or no). 

 

The outcome variable of interest in this chapter is the response the question "Have you ever tried a cigarette?". 

Students were assessed at 4 occasions: 

 

o pre-intervention (January 1986, also referred to as Wave A) 

o post-intervention (April 1986, i.e. Wave B) 

o year follow-up (April 1987, i.e. Wave C) 

o year follow-up (April 1988, i.e. Wave D) 

 

As the intervention procedures were implemented following the pretest, we focus in the analyses to follow on 

the three post-intervention time points and include only those students who had not answered yes to this 

question at pretest. Of the original 1,600 respondents, 1,556 are included in the data considered here. Thus, 

our analysis examines the degree to which the intervention prevented or delayed students from initiating 

smoking experimentation. Because the intervention was also aimed at smoking cessation for individuals who 

had initiated smoking, here we are examining only a part of the intervention aims. 

 

The first few lines of the LISREL spreadsheet SMKBCD2.lsf used in this section are shown below. Note that 

there is a maximum of 3 observations associated with each student – not all students have data at all 3 

occasions. 
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The variables of interest are: 

 

o School indicates the school a student is from. 

o Class identifies the classroom to which a student belongs. 

o Student represents the student identification number.  

o Event indicates occurrence of the event (1 indicating "yes" and 0 "no.").  

o TimeC is an indicator variable indicating the first follow-up occasion after the post-intervention 

measurement occasion. It assumes a value of 1 if a measurement was made at the first follow-up 

occasion, and 0 otherwise. 

o TimeD is the indicator variable for the second follow-up occasion. It assumes a value of 1 if a 

measurement was made at the second follow-up occasion and 0 otherwise. 

o SexM is an indicator variable for gender, with "1" indicating male respondents, and "0" female 

respondents. 

o CC is a binary variable indicating whether a social-resistance classroom curriculum was introduced, 

with 0 indicating "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with a "1" indicating the use 

of media intervention, and "0" the absence thereof.  

 

The post-intervention measurement, which is the first of the three measurement occasions in this data set, 

serves as the reference cell. In terms of the indicator variables TimeC and TimeD it would be a measurement 

for which TimeC  = TimeD = 0. 

 

 

 

In addition to these variables, SMKBCD2.lsf includes a number of interaction terms: 

 

o CCTV was constructed by multiplying the variables TV and CC and represents the CC by TV interaction. 

o SexTC denotes the SexM by TimeC interaction. 

o SexTD denotes the SexM by TimeD interaction. 

o CCTC denotes the interaction between classroom curriculum intervention CC and TimeC. 

o CCTD denotes the interaction between CC and TimeD. 
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o TVTC denotes the interaction between media intervention TV and TimeC. 

o TVTD denotes the interaction between TV and TimeD. 

o CCTVTC represents the interaction between the CC by TV interaction at the TimeC. 

o CCTVTD represents the interaction between the CC by TV interaction at the TimeD. 

 

In all, there were 1556 students included in the analysis of smoking initiation. Of these students, 

approximately 40% ( n  = 634) answered yes to the smoking question at one of the three post-intervention time 

points, while the other 60% ( n  = 922) either answered no at the last time point or were censored prior to the 

last time point.  

 

Consider a level-2 model, with schools as the level-2 units. In general, for 1, ,i N=  N level-2 units, 

containing 1, , ij n=  level-1 units (subjects or multiple failure times) the concept of a censoring or event 

indicator can be expressed as follows. First, we assume that the assessment time takes on discrete positive 

values 1,2, ,t m=  representing time points or intervals and that each ij unit is observed until time 
ijt . The 

censor/event indicator 
ij  is coded depending on what happens at time

ijt : 

 

o an event occurs ( )1ij ijt t and = =  

o the observation is censored ( )0ij ijt t and = =  

 

The term censoring is used when a unit is observed at
ijt , but not at 1ijt + (and we know that the event has not 

occurred up to time 
ijt ). 

As mentioned previously, the dichotomous variable EVENT indicated the occurrence of an event. Occurrence 

of an event was recorded at three time points (WaveB, WaveC, and WaveD), though some subjects dropped out 

of the study and were not measured at all three time points. To model the time until the event as the outcome 

variable in a binary analysis of the data, person-time indicators are created (Singer & Willett, 1993). For this, 

the number of records for each person depends on the timing of the event or censoring for that person. For 

example, if there were two follow-up points, the two person-time indicators T1 and T2 would be coded as 

follows: 

 

o T1 = 1: event occurred at T1 (or in interval between T0 and T1) 

o T1 = 0: event did not occur at T1 (or in interval between T0 and T1) and T1 was the subject's last 

measured time point 

o T1 = 0 and T2 = 1: event did not occur at T1 but did occur at T2 (or in the interval between T1 and T2) 

o T1 = 0 and T2 = 0: individual was censored at T2 (the subject did not experience the event at either T1 

or T2) 

 

Note that for the first two scenarios above, subjects would contribute a single record in the data set (for the 

T1 indicator), whereas they would contribute two records (one for each person-time indicator T1 and T2) for 
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the latter two scenarios. These indicators would represent the dependent variable in the analysis, akin to the 

variable named EVENT in our TVSFP data.   

 

For this data, there were three follow-up occasions, and thus three person-time indicators are necessary to 

describe the occurrence of event/censoring. The three person-time indicators form the EVENT variable in the 

data set, and the timing of the event/censoring is represented by the two variables TimeC and TimeD in the data 

set. The coding of the person-time indicators (T1, T2, T3) that form the EVENT variable are given in Table 1.1.  

 

Note that each person would contribute from one to three records in the data set depending on their outcome. 

For example, for the current data, the EVENT records and their corresponding time indicators are coded as 

shown in Table 1.2. 

 

Table 1.1: Three time points with censoring 

 

Outcome Up to 3 records per person 

Censor at T1 T1 = 0 

Event at T1 T1 = 1 

Censor at T2 T1 = 0; T2 = 0 

Event at T2 T1 = 0; T2 = 1 

Censor at T3 T1 = 0; T2 = 0; T3 = 0 

Event at T3 T1 = 0; T2 = 0; T3 = 1 

 

Table 1.2: Coding of time and event indicators for binary TVSFP analysis 

 

EVENT records 
Time indicators Outcome description 

TimeC TimeD  

T1 =0 0 0 Censor at T1 

T1 = 0  

T2 = 0 

0 

1 

0 

0 

No event at T1 

Censor at T2 

T1 = 0  

T2 = 0  

T3 = 0 

0 

1 

0 

0 

0 

1 

No event at T1 

No event at T2 

Censor at T3 

T1 =1 0 0 Event at T1 

T1 = 0 

T2 = 1 

0 

1 

0 

0 

No event at T1 

Event at T2 

T1 = 0 

T2 = 0 

T3 = 1 

0 

1 

0 

0 

0 

1 

No event at T1 

No event at T2 

Event at T3 
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The breakdown of cigarette onset for gender and condition subgroups is presented in Table 1.3. Percentages 

given in the table are calculated relative to the totals for that subgroup at the time of response.  

 

At Wave B (post-intervention time point; TimeC = 0 and TimeD = 0), 130 females (SexM = 0) and 156 males 

(SexM = 1) reported an event (Event = 1), while 105 females and 83 males were censored  (Event = 0). These 

censored subjects did not experience the event at Wave B and were not measured at subsequent waves. The 

total numbers of females and males that provided data at Wave B were 814 and 742 respectively. The totals 

at Wave C (TimeC =1) are only 579 and 503 females and males, respectively because the numbers of Wave B 

event and censored subjects are removed from the Wave C totals. For example, the total number of females 

at Wave C equals 814 (the number at Wave B) – 130 (females experiencing the event at Wave B) – 105 

(censored females at Wave B) = 579. The male total of 503 is obtained in the same way. Of the 579 females, 

117 experienced the event at Wave C and 154 were censored at Wave C. Similar calculations for Wave D 

(TimeD =1) yield the total of 308 females ( = 579 – 117 – 154), where 79 females experienced the event and 

229 did not and were censored at this last time point. Regarding the differences between males and females, 

it can be seen that the proportion of males who experienced the event is relatively similar across the three 

waves. Alternatively, females were initially lower than males (16% versus 21% at Wave B) but increasingly 

experienced the event across the waves. At the end, the total proportion of males who experienced the event 

is 41.5% (156 + 89 + 63 of 742), and similarly it is 40.0% for females (130 + 117 + 79 of 814). Thus, the 

initial gender difference is largely gone by the end of the study.         

 

In terms of the invention groups, the differences do not appear to be very large. If anything, there is some 

suggestion that control subjects have lower rates of the event, but this difference is not striking.   

 

Table 1:3: Onset of cigarette experimentation across three time points 

 

 TimeB TimeC TimeD 

with event censored total with event censored total with event censored total 

Males 156 

(21.0) 

83 

(11.2) 

742 89 

(17.7) 

134 

(26.6) 

503 63 

(22.5) 

217 

(77.5) 

280 

Females 130 

(16.0) 

105 

(12.9) 

814 117 

(20.2) 

154 

(26.6) 

579 79 

(25.6) 

229 

(74.4) 

308 

Control 66 

(16.5) 

60 

(15.0) 

401 53 

(19.3) 

69 

(25.1) 

275 34 

(22.2) 

119 

(77.8) 

153 

CC only 75 

(19.1) 

27 

(6.9) 

392 53 

(18.3) 

61 

(21.0) 

290 49 

(27.8) 

127 

(72.2) 

176 

TV only 71 

(17.3) 

54 

(13.2) 

410 60 

(21.1) 

79 

(27.7) 

285 38 

(26.0) 

108 

(74.0) 

146 

CC & TV 74 

(21.0) 

47 

(13.3) 

353 40 

(17.2) 

79 

(34.1) 

232 21 

(18.6) 

92 

(81.4) 

113 

 

In terms of clustering, these 1556 students were from 28 schools with between 13 and 151 students per school 

( n  = 56, S.D. = 38) Thus, the data are highly unbalanced with large variation in the number of clustered 

observations. 
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1.2.2 The data for an ordinal approach 

The ordinal analysis illustrated in this chapter is again based on the TVSFP data. As shown in the previous 

section, one can also fit grouped-time survival models using dichotomous indicators of event/censoring across 

the study time points. To do so, requires additional data manipulation. The data set used for the ordinal 

approach differs from that previously discussed and is represented by the LISREL spreadsheet file 

SMKCCLC.lsf. The first 10 records of this data set are shown below. 

 

 

 

The variables of interest are: 

 

o School indicates the school a student is from. 

o Class identifies the classroom to which a student belongs. 

o Student represents the student identification number.  

o SmkOnset indicates the time at which an event occurred. It assumes a value of 1 for a WaveA 

measurement (i.e., the event occurred at Wave A), 2 for a WaveB measurement, 3 for a WaveC 

measurement, and 4 for a WaveD measurement. 

o Event is an indicator variable indicating whether the subject experienced the event or was censored. A 

value of 1 indicates that the student did experience the event (i.e., onset of cigarette experimentation) 

at one of the time points, while a value of 0 indicates that the subject was censored and never 

experienced the event (i.e., no onset of cigarette experimentation) at any time point that they were 

assessed at.   

o SexM is an indicator variable for gender, with "1" indicating male respondents, and "0" female 

respondents. 

o CC is a binary variable indicating whether a social-resistance classroom curriculum was introduced, 

with 0 indicating "no" and 1 "yes." 

o TV is an indicator variable for the use of media (television) intervention, with a "1" indicating the use 

of media intervention, and "0" the absence thereof.  

o CC*TV was constructed by multiplying the variables TV and CC and represents the CC by TV interaction. 
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Survival data as ordinal outcomes 

Assume 4 time points with no intermittent censoring and let y  denote the ordinal outcome variable. Let us 

first consider subjects who initiated smoking at some point in the study. For these subjects, the variable Event 

will be coded as 1 and the coding of the SmkOnset variable will be as follows. 

 

SmkOnset: 

o 1:ijy =  Student first started to smoke at t = 1. 

o 2:ijy =  Student did not smoke at t = 1, but first smoked at t = 2. 

o 3:ijy =  Student did not smoke at t = 1 or 2, but first smoked at t = 3. 

o 4:ijy =  Student did not smoke at t = 1, 2, or 3, but first smoked at t = 4. 

 

Similarly, subjects who were censored would have the variable Event coded as 0, and the following codes for 

the SmkOnset variable. 

 

SmkOnset: 

o 1:ijy =  Student did not smoke at t = 1 and no data beyond t = 1. 

o 2:ijy =  Student did not smoke at t = 1 or 2, and no data beyond t = 2. 

o 3:ijy =  Student did not smoke at t = 1, 2, or 3, and no data beyond t = 3 (i.e., no data at t = 4). 

o 4:ijy =  Student did not smoke at t = 1, 2, 3, or 4. 

 

Here, the phrase "did not smoke" is more precisely "did not answer yes to the question have you ever smoked 

a cigarette." Table 1.4 shows how values are assigned to
ijy , and the relationship between the 

ijy  outcomes 

and the event indicator.  
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Table 1.4: Three time points with censoring 
 

Outcome Ordinal dep. Variable Event indicator 

Censor at 1T  1 0 

Event at 1T  1 1 

Censor at 2T  2 0 

Event at 2T  2 1 

Censor at 3T  3 0 

Event at 3T  3 1 

Censor at 4T  4 0 

Event at 4T  4 1 

 

1.3 The models 

1.3.1 Binary case: a 2-level model 

In the binary case, the survival time of individual i  at occasion j  is treated as a set of dichotomous 

observations indicating whether or not an individual failed in each time unit until a person either experiences 

the event or is censored. Thus, each survival time is represented as a 1ijt   vector of zeros for censored 

individuals, while for individuals experiencing the event the last element of this 1ijt   vector of zeros is 

changed to a one. These multiple person-time indicators are then treated as distinct observations in a 

dichotomous regression model. In the case of clustered data, a random-effects dichotomous regression model 

is used. This method has been called the pooling of repeated observations method by Cupples (1985). It is 

particularly useful for handling time-dependent covariates and fitting nonproportional hazards models because 

the covariate values can change across each individuals' 
ijt  time points. 

 

For this approach, define 
ijtp  to be the probability of failure in time interval t, conditional on survival prior to 

t: 

Pr |ijt ij ijp t t t t = =    

Similarly, 1 ijtp−  is the probability of survival beyond time interval t, conditional on survival prior to t. The 

proportional hazards model is then written as  

( ) '

0log log 1 ijt t ijt ij ip   − − = + +
 

x β z v  

and the corresponding proportional odds model is 

( ) '

0log 1ijt ijt t ijt ij ip p   − = + +
 

x β z v  
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where now the covariates x can vary across time and so are denoted as .ijtx  Augmenting the model intercept, 

which we will denote 01 , the remaining intercept terms 0t ( )2, ,t m=  are obtained by including as 

regressors 1m −  time indicators representing deviations from the first time point. Because the covariate vector 

x now varies with t, this approach automatically allows for time-dependent covariates, and relaxing the 

proportional hazards assumption only involves including interactions of covariates with the 1m −  time point 

dummy codes. It is further assumed that the random effects vector has a ( )(2),0 ΦN  distribution. 

 

In the examples to follow, two random intercept models are fitted to the data described in Section 1.2.2. The 

type of intervention (CC and/or TV), the gender of the student and the interactions between gender and time 

(SexTC and SexTD) are included as fixed effects, along with indicators of the time of assessment (TimeC and 

TimeD). 

 

1.3.2 Ordinal case: 2-level model 

Let 
ijy  denote an ordinal outcome variable that takes on discrete positive values 1,2, ,t m= . In previous 

examples we assumed that 
ijy  has C  categories or distinct values, however here to be consistent with the 

survival analysis notation we will use m to represent the number of ordinal categories. The subscript ( , )i j  

denotes subject j , 1,2, , ij n=  nested within level-2 unit i , 1,2, ,i N= . In the present context the level-1 

units j  indicates students and the level-2 unit i  indicates schools. Note, that as another example of this type 

of model, one could have multiple failure times nested within individuals. 

 

Let 
ij  denote the censor/event indicator, then 1ij =  if the event occurs and 0ij =  if an observation is 

censored. In survival analysis each ij  is observed until time 
ijt  and if an event occurs 

ijt t=  and 1ij = . If the 

observation is censored at 
ijt t= , then 0ij = .  

 

In the case of censoring it is assumed that a unit is observed at 
ijt  but not at 

1ijt +
. As described in Hedeker, 

Siddiqui & Hu (2000), if events occur within continuous time intervals (i.e., grouped-time), for example, a 

student initiates smoking experimentation in the past year, use of the complementary log-log link for an 

ordinal outcome is equivalent to a proportional hazards model in continuous time. Therefore, the grouped-

time proportional hazards mixed model can be written as: 

( ) ' 'log log 1  − − = + +
 ijt t ij ij iP x β z v  

where 
ijx  is a vector of explanatory variables and 

ijz  a vector of random effects. Typically, the elements of 

ijz  are a subset of 
ijx . For example, the elements of 

ijz  might correspond to the intercept and age, whereas 

ijx  would include these two terms plus any additional model covariates. It is assumed that the random effects 

iv  are from a normal distribution with mean zero and covariance matrix 
(2)Φ . 
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ijtP  denotes the probability that an event takes place up to and including the interval designated at time 
ijt .  

Thus, 
ijtP  represents a cumulative probability of failure, whereas 

ijtp  is the interval-specific failure 

probability. Also, t  represent threshold values, and in the present context these reflect the baseline hazard 

(i.e., the hazard when all covariates equal 0). These threshold parameters are akin to the intercept parameters 

0t  in the dichotomous version of the model. The plus sign following t  means that a positive regression 

coefficient for a covariate indicates an increased hazard (i.e., the event occurs sooner) as values of the 

covariate increase. 

 

1.4 Example: A proportional hazards model- Binary case 

1.4.1 Introduction 

The first model fitted to the data will use the binary case and is of the form 

( ) 01 02 03 1 2

3 0

log log 1 ( ) ( ) ( ) ( )

( ) .

    



 − − = + + + +
 

+ +

ijt ij ij ij j

j i

p TimeC TimeD SexM CC

TV v
 

In the current model specification, the baseline hazard is a function of the model intercept and the coefficients 

for the time indicators. Specifically, the baseline hazard estimate at the first time point equals the estimated 

model intercept, the baseline hazard estimate at the second time point is the sum of the model intercept and 

the estimated coefficient for the TimeC indicator, the baseline hazard at the third time point is the sum of the 

model intercept and the estimated coefficient for the TimeD indicator. Thus, two of these baseline hazard 

estimates involve sums of the estimated parameters.  

1.4.2 Setting up the analysis 

Start by opening the file SMKBCD2.LSF from the Multilevel Generalized Linear Model Examples folder 

selecting the Multilevel, Generalized Linear option from the main menu bar as shown below.   

 

 

 

Enter (optional) a Title in the Title and Options… dialog.  
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Change the number of quadrature points to 25, then click the Next button to obtain the ID and Weight… dialog.  
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The variable School, which defines the units within which students are nested, is selected as the Level-2 ID 

from the Level-2 IDs drop-down list box.  

 

Next proceed to the Distributions and Links dialog. Select Bernoulli as the Distribution type and Complementary 

log-log as the Link function as shown below.  

 

 

 

Click the Include intercept? Radio button and then click the Next button to obtain the Dependent and 

Independent Variables dialog. 
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Select the binary dependent (outcome) variable Event from the Variables in data list. Once done, TimeC, TimeD, 

SexM, CC, and TV are selected as the predictors (independent variables) of the fixed part of the model as shown 

below. 

 

Finally, the Random Variables dialog is selected and Intercept is selected as the only random variable. To 

produce a syntax file, click the Finish button on the Random Variables dialog. 
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Next, click the Run Prelis icon on the main menu bar to run the analysis as shown below. 
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1.4.3 Discussion of results 

Data summary 

The portion of the output file shown below indicates that there are 28 schools. Nested within these level-2 

units are 3226 measurements (note: this is not equal; to the number of students because of the creation of 

person-time indicators in this binary version of the survival analysis model). A summary of the number of 

level-1 observations per level-2 unit is also given. 

 

  

 

Descriptive statistics  

This is followed by descriptive statistics for all the variables. Except for the intercept term, the variables are 

all dichotomous. The proportions of subjects assigned a value of 0 or 1 are 0.80347 and 0.19653 respectively. 

In approximately 20% of the person-time indicators, an event occurred. 
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Fixed effects estimates 

Parameter estimates are given in the next part of the output. The effect of SexM is positive and indicates that 

boys have a slightly, but non-significant, increased hazard (i.e., a shorter time to the first occurrence), relative 

to girls. The coefficients associated with the TimeD indicator variable is significant at a 5% level. In contrast, 

the corresponding TimeC coefficient is not significant. These indicate that the baseline hazard does not 

significantly change between Waves B and C, however there is significant change between Waves B and D 

as relatively more students experiment with smoking at Wave D. Finally, the effects of the intervention 

variables CC and TV are not seen to be statistically significant, though the direction of their effects is positive 

(i.e., increased hazard relative to the control group).   

 

 

 

Intraclass correlation (ICC)  

The last part of the output contains an estimate of the intra-cluster correlation. This estimate indicates a very 

modest school effect, and we also note that the random effect variance term is not significant. From this, we 

conclude that the time until the occurrence of an event does not vary significantly across schools. However, 

from a design point of view, because schools were randomized to the intervention conditions in this study, 

one can argue that the clustering attributable to schools is an important part of the model regardless of its 

significance.   
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1.4.4 Interpreting the output 

Estimated unit-specific probabilities 

We now use the estimated coefficients from the fitted model 

01 02 03 1 2 3log log(1 ) ( ) ( ) ( ) ( ) ( )

1.6564 ( )0.0399 ( )0.3103 ( )0.0574

( )0.0449 ( )0.0213

ij ij ij j jijt

ij ij ij

j j

p TimeC TimeD SexM CC TV

TimeC TimeD SexM

CC TV

     
       

− − = + + + + +  

= − + + +

+ +

 

and the inverse cumulative log-log link function  

( ) 1 exp[ exp( )]P z z= − −  

to calculate the probability of Event = 1 at various time points and for different covariate values.   

 

At the first time point (Wave B), 0= =ij ijTimeC TimeD , and thus the relevant part of the fitted model (see 

above) is 

01 1 2 3log log(1 ) ( ) ( ) ( )

1.6564 ( )0.0574 ( )0.0449 ( )0.0213

ij j jijt

ij j j

p SexM CC TV

SexM CC TV

   
     

− − = + + +  

= − + + +

 

For female students (SexM = 0) from the control group (CC = TV = 0) the probability of smoking 

experimentation (Event = 1) at the point of post-intervention can be expressed as 
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 ( 1 , ) 1 exp exp( 1.6564)

0.1737.

= = − − −

=

P Event atWaveB female

 

For male students in the control group adding the intercept with the SexM estimate together yields z = –1.6564 

+ 0.0574 = –1.599, and so 

 

 ( 1 , ) 1 exp exp( 1.599)

.1830.

= = − − −

=

P Event atWaveB male

 

Results for all groups are summarized in Table 1.5. The probability of smoking experimentation at the time 

of post-intervention is larger for males than for females. The results also indicate an increased probability of 

failure with an increase of time. In the current model, it is assumed that the ratio of the estimated hazards over 

time will be constant for two individuals with the same values on the covariates. To check whether the effect 

of gender is dependent on time, and thus to check on the proportional hazards assumption, interactions with 

time indicators should be included in the model.  

 

Table 1.5: Unit-specific probabilities for groups 

 

Gender CC TV 

 
WaveB 

(TimeC = 0, 
TimeD = 0) 

 

WaveC 
(TimeC = 1, 
TimeD = 0) 

WaveD 
(TimeC = 0, 
TimeD = 1) 

Female 0 0 0.1737 0.1801 0.2291 

 1 0 0.1809 0.1876 0.2383 

 0 1 0.1771 0.1836 0.2335 

 1 1 0.1844 0.1912 0.2428 

Male 0 0 0.1830 0.1897 0.2409 

 1 0 0.1905 0.1975 0.2505 

 0 1 0.1865 0.1933 0.2454 

 1 1 0.1942 0.2012 0.2551 

 

Table 1.6 shows the differences between the estimated unit-specific probabilities and the observed proportions 

for each of the 24 subgroups formed by crossing all predictors currently in the model.  

 

Looking at the direction of the differences, we note that for females all the estimated probabilities are larger 

in size than the observed ratios at WaveB, but consistently lower than the observed ratios at the next two time 

points, with the exception of the situation where TimeD = CC = TV = 1. It seems as if the model is overestimating 

the probabilities of failure at the first time point, but underestimating probabilities at the last time of 

measurement. However, the pattern for males is almost the opposite. At the first wave, only one estimated 

probability is larger than the observed proportion, at WaveC this is true for 2 of the four cells, and at WaveD 

for three of the four cells. 
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Table 1.6: Differences between unit-specific probabilities and observed proportions 

 

Gender CC TV 

Difference at 
WaveB 

(estimated – 
observed) 

Difference at 
WaveC 

(estimated – 
observed) 

Difference at 
WaveD 

(estimated – 
observed) 

Female 0 0 0.0227 –0.0419 –0.0179 

 1 0 0.0149 0.0016 –0.0117 

 0 1 0.0091 –0.0174 –0.0875 

 1 1 0.0204 –0.0058 0.0568 

Male 0 0 –0.0150 –0.0073 –0.0361 

 1 0 0.0165 –0.0025 0.0625 

 0 1 –0.0275 0.0303 0.0064 

 1 1 –0.0678 0.0613 0.0710 

 

This trend could be the result of a gender effect (which we know to be non-significant in the current model) 

or from an interaction between gender and time. While only TimeD had a significant estimated coefficient, 

this apparent trend leads us to conclude that testing of the assumption of proportional hazards is appropriate. 

Specifically, the interaction between gender and the time of measurement will be explored. 

 

1.5 Example: Survival analysis model for an ordinal outcome 

1.5.1 Introduction 

In this section, the re-formatted form of the data, as captured in smkcclc.ss3 is used to fit a model to the data 

with the ordinal variable SmkOnset as outcome.  

The model fitted to the data is of the form 

1 2 3 0log log(1 ) ( ) ( ) ( ) .    − − = + + + + ijt t ij j j iP SexM CC TV v  

 

1.5.2 Setting up the analysis 

Using the data in the LISREL spreadsheet SMKCCLC.lsf, we start by selecting the Multilevel, Generalized Linear 

Model from the main menu bar as shown below. 
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Start with the Titles and Options dialog and enter (optional) a title in the Title text box. Enter a value of -9 as 

the global missing value and a value of 1 as the dependent variable missing value.  

 

 

 

Specify the number of quadrature points as 8. When done, click the Next button to proceed to the ID and 

Weight Variables dialog shown below and select School as the level-2 ID variable. 
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Next is the Distributions and Links dialog shown below. Select Multinomial as the distribution type and Ordinal 

complementary log-log as the link function.  
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Choose Add for the model terms and then click the Next button to invoke the Dependent and Independent 

Variables dialog shown next. 

 

Select SmkOnset as the dependent (outcome variable) and SexM, CC, and TV are specified as the predictors 

(independent variables) of the fixed part of the model. Before proceeding to the Random Variables dialog, 

select Event as the Event Variable.  
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Click the Finish button (see above) to produce a syntax file and then click on the Run Prelis icon to run the 

analysis. 

 

1.5.3 Discussion of results 

Selected portions of the output file smkccd1.out are shown below. 

 

Data summary and descriptive statistics 

The portion of the output file shown below indicates that there are 28 schools, with 1556 students nested 

within these. This is followed by descriptive statistics for all the variables. Note that all three predictor 

variables are dichotomous in nature. 
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Fixed effects estimates 

This is followed by the results for the model specified, but without any random effects. In this format, none 

of the included predictors are significant. It will be interesting to compare these results with those obtained 

once the hierarchical structure of the data has been taken into account.  
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Parameter estimates are given in the next part of the output. Taking the hierarchical structure into account and 

allowing for the intercept to vary randomly over the schools had little effect on the significance level of the 3 

covariates: all are still non-significant. We note that the three thresholds, which represent the cumulative 

baseline hazard, are estimated as –1.6564, –0.9431, and –0.4313 respectively. An alternative parameterization 

is also given. Here, the first threshold has been set to zero and as a result, the intercept and second and third 

threshold estimates are calculated as –1.6564, 0.7133, and 1.2251 respectively. 

 

Random effects estimates and intraclass correlation (ICC) 

This part of the output shows the estimates of the random effects and an estimate of the intra-cluster 

correlation. There is no evidence of significant random variation in the intercept over the schools ( p = 

0.8120). The intra-cluster correlation coefficient shown is based on the use of the complementary log-log link 

function for these data, which results in a residual variance of  2 / 6  (see Agresti, 2002). 
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1.5.4 Interpreting the output 

Comparing binary and ordinal models 

When the number of measurement occasions is not too large, the binary outcome model utilizing dummy 

variables to represent the measurement occasions can be useful in fitting survival analysis models. 

Additionally, the binary model easily allows relaxation of the proportional hazards assumption for model 

covariates through inclusion of interaction terms with the time point indicators. Finally, though not illustrated 

here, the binary model can also handle time-dependent covariates in the same manner as the covariate by time 

interactions. When the number of occasions is very large, however, the number of time point indicators that 

must be created for the binary model, and the resulting size of the data set, can get very large and unwieldy. 

In this case, the ordinal outcome model such as the model discussed in this section is perhaps the better 

analysis option (though covariates must follow the proportional hazards assumptions and time-dependent 

covariates are not allowed). If the complementary log-log link function is selected (i.e., the model is specified 

as a proportional hazards model), the binary and ordinal outcome models yield identical estimates for 

parameters that do not depend on time (Laara & Matthews, 1985). This is shown in Table 1.12. The regression 

coefficients are exactly the same for Male, CC, and TV. This is also true of their standard errors and so the p

-values for both sets are identical. However, the intercept and threshold parameters, which do represent time-

related information, are not the same with the exception of the first intercept. The reason for this is that the 

intercepts in the binary model represent the interval-specific baseline hazard, whereas their corresponding 

threshold parameters in the ordinal model represent the cumulative baseline hazard across the time intervals. 

These are only equivalent only for the first time interval and thereafter diverge in value and meaning. Finally, 

it should be mentioned that if one uses the logit link, in place of the complementary log-log link, the estimates 

(of the parameters not involving time) from the binary and ordinal models are not equivalent, though similar.  

 

Table 1.12: Comparison of results of binary and ordinal outcome models 

 

Term 
Binary outcome 

(EVENT) 

Ordinal outcome 
(SmkOnset) 

 

Wave B baseline hazard 

binary 01   or ordinal 1  
–1.6564 –1.6564 

Wave C baseline hazard 

binary 01 02 +  or ordinal 2  
–1.65654+0.0399 = –1.6165 –0.9431 

Wave D baseline hazard 

binary 01 03 +  or ordinal 3  
–1.6564 +0.3103 = –1.3461 –0.4313 

Male 1  0.0574 0.0574 

CC 2  0.0449 0.0449 

TV 3  0.0213 0.0213 

2ln L−  3187.38817 3187.38817 

AIC 3201.38817 3201.38817 

Schwarz 3243.94116 3238.83729 

No. of parameters 7 7 
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Notice also that the likelihood values for the two representations are identical, as are the AIC values. The 

Schwarz values are not the same because the numbers of observations in the two representations are different. 

That is, because the binary-case data set consists of multiple person-time indicators for each outcome, the 

numbers of observations in the binary-case data set is inflated, relative to the ordinal case. 

 

1.6 Two-level survival analysis models 

 

1.6.1 The data 

The data set for this example is taken from Schoenwald & Henggeler (2005). Children in the study were 

assigned to therapists and followed across time. At the child level, data were collected at baseline (pre-

treatment, 0T ), post-treatment ( 1T ), 6 months post-treatment ( 2T ), and 12 months post- treatment ( 3T ). The 

outcome of interest is whether a child was suspended in the current school year, assessed at 0T , 1T , 2T , or 3T . 

Specifically, here, we will focus on the time until the first school suspension as the "survival" outcome. As 

indicated in more detail later, this is indicated by a combination of the variables Event and Suspend: for 

example, if the student was suspended, the indicator Event is given the value 1 and Suspend will indicate the 

time period during which this occurred. However, there are also subjects who do not experience the event 

(i.e., were not suspended), and who drop out of the study before its end. Such subjects are considered to be 

right-censored in the survival analysis literature, and for these subjects the Event variable is coded 0 and the 

Suspend variable indicated the last time period prior to their dropout from the study. For subjects who never 

experience the event and who never drop out, they receive Event codes of 0 and Suspend codes equal to the 

final time point. In addition to these data concerning school suspension, the gender of each student was also 

recorded, as well as whether or not the student's family was receiving financial assistance. The first 10 cases 

of the data set suspend.lsf stored in the Multilevel Generalized Linear Model Example folder are shown below. 

 

 

 

The variables of interest are: 

 

o Therapst is the patient therapist ID (443 level-2 units). 

o YouthID is the child's ID (1914 level-1 units). 
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o Suspend is an ordinal outcome variable that assumes values 1, 2, 3 or 4, corresponding to the time 

points 0T , 1T , 2T , and 3T . 

o Event is the event indicator, where 1 indicates suspension took place and 0 that the observation was 

censored. 

o SexF indicates the child's gender (1 = female; 0 = male). 

o FinnAsst equals 1 if financial assistance is given to the student's family and 0 otherwise 

o SexFin equals SexF   FinnAsst and therefore assumes values of 0 and 1. 

 

1.6.2 The model 

Let ijy  denote an ordinal outcome variable that takes on discrete positive values 1,2, ,t m= . In previous 

examples we assumed that ijy  has C  categories. For example, 1 = not depressed , 2 = mildly depressed , 

3 = depressed  and 4 = extremely depressed . The subscript ( , )i j  denotes subject j , 1,2, ij n=  nested 

within level-2 unit i , 1,2, ,i N= . In the present context the level-1 units j  indicates children and the level-

2 unit i  indicates therapists. Note, that as another example of this type of model, one could have multiple 

failure times nested within individuals. 

 

Let ij  denote the censor/event indicator, then 1ij =  if the event occurs and 0ij =  if an observation is 

censored. In survival analysis each ij  is observed until time ijt  and if an event occurs ijt t=  and 1ij = . If the 

observation is censored at ijt t=  then 0ij = .  

 

In the case of censoring it is assumed that a unit is observed at ijt  but not at 1ijt + . Hedeker, Siddiqui & Hu 

(2000) showed that if events occur within continuous time intervals (i.e., grouped-time), for example, a student 

is suspended in the past year, use of the complementary log-log link for an ordinal outcome is equivalent to a 

proportional hazards model in continuous time. Therefore, the grouped-time proportional hazards mixed 

model can be written as: 

 

( )( )log log 1 ij t ij ij iP t    − − = + +
 

w α x β  

 

where ijw  is a vector of explanatory variables and ijx  a vector of fixed effects. Typically, the elements of ijx  

are a subset of ijw . For example, the elements of ijx  might correspond to the intercept and age, whereas ijw  

would include these two terms plus any additional model covariates. It is assumed that the random effects iβ  

are from a normal distribution with mean zero and covariance matrix Φ . 
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( )ijP t  denotes the probability that an event takes place in the interval designated at time ijt . t  represent 

threshold values, and in the present context these reflect the baseline hazard (i.e., the hazard when all 

covariates equal 0). The plus sign following t  means that a positive α  indicates an increased hazard (i.e., 

the event occurs sooner) as values of the covariate increase. 

 

1.6.3 Survival data as ordinal outcomes 

Assume 4 time points with no intermittent censoring and let y  denote the outcome variable. Let us first 

consider subjects who were suspended at some point in the study. For these subjects, the variable Event will 

be coded as 1 and the coding of the Suspend variable will be as follows. 

 

Suspend: 

 

1:ijy =  Student first suspended at 0T . 

2:ijy =  Student not suspended at 0T , but first suspended at 1T . 

3:ijy =  Student not suspended at 0T or 1T  , but first suspended at 2T  . 

4:ijy =  Student not suspended at 0T , 1T  or 2T  , but first suspended at 3T . 

 

Similarly, subjects who were never censored would have the variable Event coded as 0, and the following 

codes for the Suspend variable. 

 

Suspend: 

 

1:ijy =  Student not suspended at 0T  and no data beyond 0T . 

2:ijy =  Student not suspended at 0T or 1T  , and no data beyond 1T . 

3:ijy =  Student not suspended at 0T , 1T  , or  2T  , and no data beyond 2T (i.e., no data at 3T ). 

4:ijy =  Student not suspended at 0T , 1T  , 2T  , or  3T . 

 

Table 2.1 shows how values are assigned to ijy , and the relationship between the ijy  outcomes and the event 

indicator. It should be noted that one could also fit grouped-time survival models using  dichotomous 

indicators of event/censoring across the study time points. This approach, which is described in Singer and 

Willett (1993), can also be done in SuperMix, though additional data setup and manipulation is required. The 

advantage of representing the survival data as ordinal outcomes is that there is no need to include time 

indicators since the thresholds take care of this. The ordinal presentation is also more efficient in terms of data 

set size, especially when the number of time points is large. More information on these two different 

approaches can be found in Hedeker, Siddiqui & Hu (2000). 
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Table 2.1: Four time points with censoring 
 

Outcome Ordinal dep. Variable Event indicator 

Censor at 1T  1 0 

Event at 1T  1 1 

Censor at 2T  2 0 

Event at 2T  2 1 

Censor at 3T  3 0 

Event at 3T  3 1 

Censor at 4T  4 0 

Event at 4T  4 1 

 

1.6.4 Setting up the analysis 

The model is fitted to the data in suspend.lsf as follows. The first step is to create the lsf file shown above 

from the Excel file suspend.csv. This is accomplished by using the Import Data File option on the File menu 

to load the Open dialog box. Next, browse for and open the file suspend.csv. The file is now displayed as a 

LISREL spreadsheet window suspend.lsf. 

 

Using the data in the LISREL spreadsheet suspend.lsf, we start by selecting the Multilevel, Generalized Linear 

Model from the main menu bar as shown below. 

  

 

 

Start with the Titles and Options dialog and enter (optional) a title in the Title text box.  
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Specify the number of quadrature points as 25. When done, click the Next button to proceed to the ID and 

Weight Variables dialog shown below and select Therapst as the level-2 ID variable. 
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Next is the Distributions and Links dialog shown below. Select Multinomial as the distribution type and Ordinal 

complementary log-log as the link function. 

 

 

 

Choose Add for the model terms and then click the Next button to invoke the Dependent and Independent 

Variables dialog shown next. 

 

Select Suspend as the dependent (outcome variable) and SexF, FinnAsst and SexFin are specified as the 

predictors (independent variables) of the fixed part of the model. Before proceeding to the last dialog, select 

Event as the Event Variable.  
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Click the Finish button to produce a syntax file and then click on the Run Prelis icon to run the analysis. 
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1.6.5 Discussion of results  

  

 

The portion of the output file shown below indicates that there are 443 therapists. Nested within these level-

2 units are 1914 subjects. A summary of the number of level-1 observations per level-2 unit (only first two 

lines shown) is also given. 

 

This part of the output is followed by descriptive statistics for all the variables. The variable Suspend has four 

categories with values 1, 2, 3 and 4. Except for the intercept term, the remaining variables are all dichotomous.   

 

 

 

The proportions of subjects assigned a value of 1, 2, 3 or 4 are 0.432, 0.185, 0.110 and 0.273 respectively. A 

crosstabulation of Suspend by Event is given in Table 2.2. It follows that, for example, 773 students out of the 

1914 in the study were suspended prior to treatment ( 0T ). For 53 children, we only know that they were not 

suspended at 0T , thereafter they are missing and treated as right-censored. 
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Table 2.2: Crosstabulation of Suspend by Event 

 

0T  1T  2T  3T  

773 255 106 72 

53 100 105 450 

 

Parameter estimates are given in the next part of the output. We conclude that there is no gender-financial 

assistance interaction and that all the remaining parameter estimates are significant. The effect of SexF is 

negative indicating that girls have a significantly decreased hazard (i.e., a longer time to the first suspension), 

relative to boys. The FinnAsst estimate is positive indicating an increased hazard (shorter time to first 

suspension) for children from families receiving financial assistance, relative to children from families not 

receiving this assistance.   

 

 

 

The last part of the output contains an estimate of the intra-cluster correlation and the population average 

estimates. 

 

Although the intra-cluster correlation estimate indicates a modest therapist effect, the random effect variance 

term is highly significant. From this we conclude that the time until suspension does vary significantly across 

therapists. 
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