
 

 

A growth curve for the Vonesh hemodialyzer data 
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1. Introduction 

 

Vonesh and Carter (1992) describe data measured on high-flux hemodialyzers to assess their in vivo ultrafiltration 

characteristics. The ultrafiltration rates (in mL/hr) of 20 high-flux dialyzers were measured at seven different transmembrane 

pressures (in dmHg). The in vitro evaluation of the dialyzers used bovine blood at flow rates of either 200~dl/min or 

300~dl/min. The data are also analyzed in Littell, Milliken, Stroup, and Wolfinger (1996). The first 20 records of this data 

are shown below. 

 

 

 

 

The data set contains the following variables: 



 

• device: Dialyzer identifier 

• occasion: Measurement occasion identification 

• supply: weight in grams 

• pressure: Transmembrane pressure 

• Rate: Blood flow rate 

• sup_pres: Interaction between supply and pressure 

 

 

A scatter plot of the observed blood flow rate at different levels of transmembrane pressuse is shown below. From the graph, 

we can see that a suitable model would be nonlinear.  

 

 

 

1. Quadratic model with interaction term 
 

As a first step, we fit a quadratic model to the data. We include a possible interaction between Supply and Pressure as a 

fixed effect and allow both pressure and the quadratic pressure to vary randomly between dialyzers. Within a dialyzer, we 

allow pressure to vary randomly.  

 



 

 

For this model, we obtain the following results. All fixed effects are highly significant. While both the intercept and the 

pressure slope vary significantly over the dialyzers, there is no evidence of random variation on the squared pressure at this 

level. 

 

 

Under this model the expected rate can be calculated as: 
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When the expected and observed values are plotted again pressure, we note that the expected values do not follow the same 

trend as the observed. The fitted model does a better job when Supply = 1 than when Supply = 0 as illustrated by the graphs 

below, but consistently underestimates the rate at higher pressures. 

 
 

 

 
 

Similar graphs for a few individual devices are shown below. Arguably the only place where the model does an 

adequate job of describing the data is at the lower end of the pressure range (below 100). 



 
 

 

 
The plot of residuals shown below indicates a trend towards more negative residuals with increased pressure.  



 
 

 

 

 

2. Logistic model 

 

As an alternative, we fit a logistic model to the data. The model fitted is 
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The syntax for this model is shown below. 

 



 

 

For this model, we obtain the following output: 

 

 

 

When we make a graphical display of the expected rates of transfer under this model and the observed measurements for 

the two Supply groups, we see that this model does a much better job describing the data. 



 
 

 

 
 

A plot of the residuals is given below.  

 

 
The model describes the data for individual machines reasonably well, as can be seen from the two graphs below, 

especially when compared to the graphs for the same two devices using the results from the previous model. For 

this model, the squared sum of residuals is 30.393. 



 
 

 

 
 

3. Monomolecular 

 

In this section, we fit a monomolecular model to these data. The monomolecular model was originally derived from physical 

chemistry, where it describes the progress of first‐order chemical reactions. The monomolecular model has no inflection 

point; and unlike other asymptotic forms it is always concave‐down.  

 

The model fitted to the data is: 
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Note that in this model, the traditional “s” term in the monomolecular model is set to -1. Syntax for this model is shown 

below.  



 

 

The output file contains three estimates of beta, and three of gamma, as shown below. 

 

 

From the graphs of the observed rate against transmembrane pressure and expected rate against the same as shown below, 

we conclude that the fitted model describes the data reasonably well. 



 
 

 

 
The expected values are plotted against pressure for the two groups of Supply. A clear supply effect is noted.  

 



 
 

Residuals for the two groups of devices are shown below.  

 
 

 

 
 



Residuals are reasonably evenly distributed around zero, and no marked change is observed with increased 

pressure. This is a contrast to the residual plot obtained under the quadratic model, where there was a clear trend 

towards larger negative residuals with increased pressure. The squared sum of residuals for this model is 

calculated as 28.93686, this model compared to 30.393 for the logistic model.  

 

Revisiting the two dialyzers we produced individual graphs for previously, it is clear that the expected outcome 

under the current model is much closer to the observed data. We conclude that the monomolecular model fits the 

data best in terms of the three models considered here. 

 

 
 

 

 
 

 

 


