
 

Methods of estimation 

Contents 
1. Introduction ............................................................................................................................................................. 1 

2. Instrumental variables (IV) and two-stage least squares (TSLS) ................................................................................ 2 

3. Unweighted least squares (ULS) ............................................................................................................................... 3 

4. Generalized least squares (GLS) ............................................................................................................................... 3 

5. Maximum likelihood (ML) ....................................................................................................................................... 4 

6. Generally weighted least-squares (WLS) .................................................................................................................. 4 

7. Diagonally weighted least-squares (DWLS) ............................................................................................................. 6 

8. The ridge option ....................................................................................................................................................... 6 

9. The Information matrix ............................................................................................................................................ 6 

10. Admissibility of the estimates ............................................................................................................................... 6 

11. References............................................................................................................................................................ 7 

 

 
1. Introduction 

For problems that do not include a structure on the means, LISREL can perform any of seven methods of estimation: 

• Instrumental Variables (IV) 

• Two-Stage Least Squares (TSLS) 

• Unweighted Least Squares (ULS) 

• Generalized Least Squares (GLS) 

• Maximum Likelihood (ML) 

• Generally Weighted Least Squares (WLS) 

• Diagonally Weighted Least Squares (DWLS) 

The purpose of these methods is to estimate the free and constrained parameters of the model from the sample covariance 

matrix S. 

 

  



2. Instrumental variables (IV) and two-stage least squares (TSLS) 

The ULS, GLS, ML, WLS and DWLS methods of estimation are iterative and require approximations to the parameters in 

order to begin the computations. These starting values of the parameters are computed in LISREL by the IV and TSLS 

methods. Although the resulting estimates are not efficient in the sense of having minimum large-sample variance, they are 

consistent  and have the advantage of being very easy to compute. IV and TSLS do not provide standard errors of the 

estimated parameters. 

When the model fits the data well, the starting values produced by the program are often so close to the iterated solution 

that only a few iterations are required to compute these solutions. For some models, the estimated starting values are 

identical to ML and other estimates. To emphasize the fact that the starting values are estimates in their own right, we call 

them initial estimates instead of starting values. One can choose to obtain only these initial estimates and not to compute 

ML or other estimates. In particular, this may be used with large models to save computer time, especially when the model 

is only tentative. In such a situation the initial estimates themselves or other information in the output may suggest ways to 

improve the model. 

In most cases, one need only specify the non-zero fixed values in each column of xΛ  and 
yΛ  necessary to fix the scales 

for η  and ξ , and leave it to the program to compute estimates of all the free parameters. However, one can specify starting 

values for any number of free parameters. These are sometimes necessary in non-standard models to give the program some 

help in starting the iterations. 

A key concept in the computation of initial estimates (IV and TSLS) is that of a reference variable. A reference variable for 

a latent variable is an observed variable that represents the latent variable in the sense of being a valid and reliable measure 

of it. There can be only one reference variable for each latent variable. Although the selection of reference variables is done 

automatically by the program, there is a connection between the selection of reference variables and the assignment of scales 

to the latent variables. If one assigns scales to the latent variables by fixing a non-zero value in each column of  xΛ  and 

yΛ , then the variables for which these non-zero values have been fixed will be reference variables. In this way, users can 

specify the reference variables explicitly.  

The initial estimates are computed in four steps as follows: 

1. Reference variables are determined as follows. If the scales for η  and ξ  have been fixed by assigning a non-zero 

fixed value in each column of 
yΛ  and xΛ , LISREL will determine non-singular submatrices of 

yΛ  and xΛ  of m 

and n rows, respectively, if this is possible. The rows of these submatrices determine the reference variables. In this 

way m n+  reference variables can be determined, provided 
yΛ  and xΛ  contain m and n linearly independent 

rows, respectively. Note that this requires that m p  and .n q   

 

Remember that all parameters are zero by default. This means that, when this process is applied, all elements of 

yΛ  and xΛ  are zero except those that have been assigned non-zero values by the user. If no non-zero values have 

been assigned, both 
yΛ  and xΛ  are zero so that this procedure fails. 

 

If the scales of ξ  have been fixed by standardizing Φ , the program will automatically assign fixed values in the 

columns of xΛ , relax the fixed diagonal elements of Φ  and use the same procedure as above to determine the 

reference variables. When the initial estimates for xΛ  have been determined in Step 2, the program will rescale the 

ξ -variables so that ( ) .diag =Φ I   



2. For each row of Λ  (
yΛ  or xΛ ), the free parameters, if any, are estimated from the linear relation between each 

observed variable and the reference variables using all other observed variables as instrumental variables. 

3. For given 
yΛ  and xΛ , the joint covariance matrix of η , ξ , ε , and δ  is estimated by unweighted least squares 

(ULS) applied to .−S Σ  For given 
yΛ  and xΛ  this leads to a quadratic function which can be minimized easily. 

Parameters in Φ , Θ  and Θ  that have non-zero values are held fixed during this minimization.    

4. When the joint covariance matrix of η  and ξ  has been estimated as in Step 3, the structural equation system can 

be estimated by instrumental variables methods. We estimate each equation separately using all the ξ -variables as 

instrumental variables. Again, non-zero parameters in B and Γ are held fixed. The estimates computed in this step 

are identical to the well-known instrumental variables or two-stage least-squares estimators; see, for example, 

Goldberger (1964). 

 

3. Unweighted least squares (ULS) 

The ULS estimator minimizes the function 

 ( )
21

2
F tr  = −

 
S Σ   (1) 

where ( )
2

tr  −
 

S Σ  represents the  sum of squares of the elements in the (symmetric) residual matrix, −S Σ , of order 

.p q+   

The ULS estimator is consistent and relatively quick to compute, but is not efficient – that is, does not attain minimum large-

sample variances. Standard errors for ULS are estimated under normal theory. Robust ULS standard errors based on Browne 

(1984) are computed when the RO LISREL command or the Robust Estimation SIMPLIS command is used.   

 

4. Generalized least squares (GLS) 

GLS minimizes 

 ( )
2

11

2
F tr − = −

  
I S Σ   (2) 

equivalent to minimizing the sum of squares of the residuals weighted by the inverse of the sample covariance matrix. The 

estimator is consistently efficient and has large-sample standard errors computed by LISREL under normal theory. Robust 

GLS standard errors based on Browne (1984) are computed when the RO LISREL command or the Robust Estimation 

SIMPLIS command is used.   

 

  



5. Maximum likelihood (ML) 

ML maximizes the likelihood of the parameters, given the data. In the present context, it is equivalent to minimizing  

 
1log ( ) log ( ).F tr p q−= + − − +Σ SΣ S   (3) 

ML has the same properties as GLS and is about equally time consuming to compute. Robust ML standard errors based on 

Browne (1984) are computed when the RO LISREL command or the Robust Estimation SIMPLIS command is used.   

 

6. Generally weighted least-squares (WLS) 

The ULS, GLS, and ML fit functions, are, in effect, special cases of the more general function for fitting covariance structures, 
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where 

 ( )'

11 21 22 31, , , ,..., ,kks s s s s=s   

is a vector of the elements in the lower half, including the diagonal, of the covariance matrix S of order k k  used to fit the 

model to the data; 

( )'

11 21 22 31, , , ,..., ,kk    =σ  

is the vector of corresponding elements of ( )Σ θ  reproduced from the model parameters θ ; 

 
,gh ijw   

is a typical element of a positive definite matrix 
1−

W  of order u u , where ( 1) / 2.u k k= +  In most cases, the elements 

of 
1−

W  are obtained by inverting a matrix W whose typical element is denoted 
,gh ijw . The usual way of choosing W in 

weighted least squares is to let 
,gh ijw  be a consistent estimate of the asymptotic covariance between 

ghs  and 
ijs . If this is 

the case, we say that 
1−

W  is the correct weight matrix. To estimate the model parameters θ , the fit function is minimized 

with respect to θ . 

To obtain consistent estimates, any positive definite matrix W may be used. Under very general assumptions, if the model 

holds in the population and if the sample variances and covariances in S converge in probability to the corresponding 

elements in the population covariance matrix Σ  as the sample size increases, any fit function with a positive definite W 

will be a consistent estimator of θ . In practice. numerical results obtained by one fit function are often close enough to the 

results that would be obtained by another fit function to give the same substantive interpretation of the results. 

Further assumptions must be made,  however, if one needs an asymptotically correct chi-square measure of goodness-of-fit 

and asymptotically correct standard errors of parameter estimates. 



“Classical” theory for covariance structures (see, for example, Browne, 1974, or Jöreskog, 1981) assumes that the 

asymptotic variances and covariances of the elements of S are of the form 

 ( )ACov , (1/ )( ),gh ij gh hj gj his s N    = +   (5) 

 where N is the total sample size. This holds, in particular, if the observed variables have a multivariate normal distribution, 

or if S has a Wishart distribution. The GLS and ML methods and their chi-square values and standard errors are based on 

(5). The GLS method corresponds to using in (4) a matrix 
1−

W , which has as a general element 

 
, (2 )(2 )( ),gh ij gi hj gj hi

gh ijw N s s s s = − − +   (6) 

where 
gh  and 

ij  are Kronecker deltas. The fit function (3) for ML is not of the form (4) but may be shown to be equivalent 

to using a 
1−

W  of the form (6), with s replaced by an estimate of  , which is then updated in each iteration.    

In fundamental work by Browne (1982, 1984), this classical theory for covariance structures has been generalized to any 

multivariate distribution for continuous variables satisfying very mild assumptions. This approach uses a W matrix with 

typical element 

 
, ,gh ij ghij gh ijw m s s= −   (7) 

where 
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are the fourth-order central moments. Using such a W in (4) gives what Browne calls “asymptotically distribution-free best 

GLS estimators” for which asymptotically correct chi-squares and standard errors may be obtained. As shown by Browne, 

this W matrix may also be used to compute asymptotically correct chi-squares and standard errors for estimates which have 

been obtained by the classical ML and GLS methods.  

When W is defined by (7), we call the fit function WLS (Weighted Least Squares) to distinguish it from GLS, where W is 

defined by (6). WLS and GLS are different forms of weighted le3ast squares: WLS is asymptotically distribution free, while 

GLS is based on normal theory. 

While WLS is attractive in theory it presents several difficulties in practical applications. First, the matrix W is of order 

u u  and has ( 1) / 2u u +  distinct elements. This increases rapidly with k, demanding large amounts of computer memory 

when k is at all large. For example, when k = 20, W has 22,155 distinct elements. Second, to estimate moments of fourth 

order with reasonable precision requires very large samples. Third, when there are missing observations in the data, different 

moments involved in (7) may be based on different numbers of cases unless listwise deletion is used. When pairwise deletion 

is used, it is not clear how to deal with this problem.  

Browne’s (1984) development is a theory for sample covariance matrices for continuous variables. In practice, correlation 

matrices are often analyzed, i.e., covariance matrices scaled by stochastic standard deviations. The elements of such a 

correlation matrix do not have asymptotic variances and covariances of the form (5), even if S has a Wishart distribution.  

In PRELIS, we have extended Browne’s (1984) work so that an estimate of the asymptotic covariance matrix of estimated 

correlations can also be obtained under the same general assumptions of non-normality. This approach can also be used 

when some or all of the variables are ordinal or censored, if the raw scores are replaced by normal scores. PRELIS can also 

compute estimates of the asymptotic variances and covariances of estimated polychoric and polyserial correlations.  



7. Diagonally weighted least-squares (DWLS) 

Computation of asymptotic covariance matrices of estimated coefficients is very time consuming and demands large 

amounts of memory when the number of variables is large. An alternative approach, which may be used even when the 

number of variables is large, is to compute only the asymptotic variances of the estimated coefficients. 

Let 
ghw  be an estimate of the asymptotic variance of 

ghs . These estimates may be used with a fit function of the form 

 ( )
2

1 1
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F w s 
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= −θ   (9) 

This corresponds to using a diagonal weight matrix 
1−

W  in (4). In LISREL we call this DWLS (Diagonally Weighted Least 

Squares). This does not lead to asymptotically efficient estimates of model parameters but is offered as compromise between 

unweighted least squares (ULS) and fully weighted least squares (WLS). Robust DWLS estimates, and standard errors based 

on Browne (1984) are computed when the RO LISREL command or the Robust Estimation SIMPLIS command is used.   

 

8. The ridge option 

The GLS, ML, and WLS methods of estimation require that the sample covariance matrix, S, be positive-definite. To provide 

for situations in which S is not quite positive-definite, as sometimes happens in econometric models containing identities 

and in regression problems with near-multicollinearity among predictors, LISREL includes a provision for so-called ridge 

estimation. 

In ridge estimation, a constant times the diagonal of S is added to S; the constant is determined by the program, but may 

also be set by the user (the RO option on the OU command). The ridge option may be used with ULS, GLS, ML, WLS and 

DWLS; it has no effect on IV and TSLS. 

 

9. The Information matrix 

Associated with each of the iterative estimation procedures, that minimize a fit function, is an information matrix for the 

parameters. The order of this matrix is equal; to the number of free parameters in the model. The elements of the matrix are 

the expected values of the second derivatives of the fit function at the solution point (i.e., the expected Hessian matrix). 

The inverse of the information matrix contains the sampling variances, or large-sample variances, of the parameters as its 

diagonal elements. The off-diagonal elements are the covariances between all of the possible pairs of parameter estimates. 

The standard errors of LISREL parameter estimates are the square roots of the diagonal elements of the inverse information 

matrix; the correlations between the estimates are the off-diagonal elements of the inverse information matrix divided by 

the corresponding pairs of standard errors. The information matrix must be positive-definite for the model to be identified.  

 

10. Admissibility of the estimates 

LISREL does not constrain the parameter estimates to be admissible (for example, diagonal elements of Φ , Ψ , Θ , or Θ  

can become negative if the data are unfavorable relative to the assumed model). The program has a built-in check on 



admissibility of the solution, however, and will stop if the solution becomes non-admissible, unless the check is turned off 

(AD = OFF). The admissibility  check is that 

1. 
yΛ  and xΛ  have full column ranks and no rows of only zeros, 

2. Φ , Ψ , Θ , or Θ are positive definite. 

It is often possible, though not always, to use various tricks to force the program to stay within the admissible parameter 

space (see Rindskopf, 1983, 1984, or for an example, see Jöreskog, 1981). 
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