
 

 

Producing weight matrices and fit functions 
 

As one of its options, PRELIS produces the asymptotic covariance matrix of estimated covariances and correlations. We 

explain here what this matrix is and how it can be used to produce weight matrices for certain fit functions in LISREL.  
 

A general family of fit functions for analysis-of-covariance structures may be written (see, for example, Browne, 1984) 
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where 
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is the vector of the elements in the lower half, including the diagonal, of the covariance matrix S of order k k  used to fit 

the model to the data; 
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is a vector of corresponding elements of ( ) θ  reproduced from the model parameters θ ; and 
,gh ijw  is a typical element of 

a positive-definite matrix 
1−

W  of order p p , where ( 1) / 2p k k= + . In most cases, the elements of  
1−

W  are obtained 

by inverting a matrix W  whose typical element is denoted 
,gh ijw . The usual way of choosing W  in weighted least squares 

is to let 
,gh ijw  be a consistent estimate of the asymptotic covariance between 

ghs  and 
ijs  but, in principle, any positive-

definite matrix W  may be used. To estimate the model parameters θ , the fit function is minimized with respect to θ . 

 

Under very general assumptions, if the model holds in the population and if the sample variances and covariances in S  

converge in probability to the corresponding elements in the population covariance matrix Σ  as the sample size increases, 

any such fit function will give a consistent estimator of θ . In practice, numerical results obtained by one fit function are 

often close enough to the results that would be obtained by another fit function, to allow the same substantive interpretation.    

 

Further assumptions must be made, however, if one needs an asymptotically correct chi-square test of goodness of fit and 
asymptotically correct standard errors of parameter estimates. 

 

“Classical” theory for covariance structures (see, for example, Browne, 1974 or Jöreskog, 1981) assumes that the asymptotic 
variances and covariances of the elements of S are of the form 
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where N is the total sample size. This holds, in particular, if the observed variables have a multivariate normal distribution, 

or if S has a Wishart distribution. The GLS and ML methods available in LISREL and their chi-square values and standard 

errors are based on these assumptions. The GLS method corresponds to using a matrix W in (1) whose general element is 

 
, (1/ )( )gh ij gi hj gj hiw N s s s s= +   (3) 

The fit function for ML is not of the form (1) but may be shown to be equivalent to using a W of the form (3), with s replaced 

with an estimate of σ  that is updated in each iteration. 

In fundamental work by Browne (1982, 1984), this classical theory for covariance structures has been generalized to any 

multivariate distribution for continuous variables satisfying very mild assumptions. This approach uses a W matrix with 

typical element 
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are the fourth-order central moments. Using such a W in (1) gives what Browne calls “asymptotically distribution free best 

GLS estimators” for which correct asymptotic chi-squares and standard errors may be obtained. As shown by Browne, this 

W matrix also may be used to compute correct asymptotic chi-squares and standard errors for estimates that have been 
obtained by the classical ML and GLS methods. When W is defined by (4), we call the fit function WLS (weighted least 

squares) to distinguish it from GLS where W is defined by (3). WLS and GLS are different forms of weighted least squares; 

WLS is asymptotically distribution free, while GLS is based on normal theory.  
 

While WLS is attractive in theory, it presents several difficulties in practical applications. First, the matrix W is of order 

p p  and has ( 1) / 2p p +  distinct elements. This increases rapidly with k, demanding large amounts of computer memory 

when k is large. Second, to estimate moments of fourth order with reasonable precision requires very large samples. Third, 

when there are missing observations in the data, different moments involved in (4) may be based on different numbers of 

cases unless listwise deletion is used. When pairwise deletion is used, it is not clear how to deal with this problem.  
 

Finally, Browne’s (1984) development is a theory for sample covariance matrices for continuous variables. In practice, 

however, correlation matrices are often analyzed; that is, covariance matrices scaled by stochastic standard deviations. The 

elements of such a correlation matrix do not have asymptotic variances and covariances of the form (2), even if S has a 
Wishart distribution. In PRELIS, an estimate of the asymptotic covariance matrix of the estimated correlations can also be 

obtained under the same general assumptions of non-normality. This approach can be used when some or all of the variables 

are ordinal or censored, after the raw scores are replaced by normal scores. PRELIS can also compute estimates of the 
asymptotic variances and covariances of estimated polychoric and polyserial correlations. This approach is similar to that 

of Muthén (1984), but the PRELIS estimates are much simpler and faster to compute. 

 

A correlation matrix estimated in PRELIS with the KM or PM option has ( 1) / 2q k k= −  estimated correlations and, as a 

consequence, the asymptotic covariance matrix of these correlation is of order q q . To obtain the weight matrix to be 

used in LISREL, this covariance matrix must be inverted. The inversion is not performed by PRELIS but is part of LISREL. 
The asymptotic covariance matrix of estimated coefficients obtained by PRELIS may be saved in a file that can be read 

directly by LISREL.    

 

To sum up: whenever possible in PRELIS, an estimate of the asymptotic covariance matrix of the elements of the estimated 
moment matrix is provided. Currently, such asymptotic covariance matrices are available for sample covariance, moment, 

and augmented moment matrices and matrices of product-moment (Pearson), polychoric, and/or polyserial correlations. 

Asymptotic covariance matrices are not yet available for OM, RM, and TM matrices.  
 



Computation of asymptotic covariance matrices of estimated coefficients is very time-consuming and demands large 
amounts of memory when the number of carriable is large. An alternative approach, which may be used even when the 

number of variables is large, is to compute only the asymptotic variances of the estimated coefficients. Let 
ghw  be an 

estimate of the asymptotic variance of 
ghs  . These estimates may be used with a fit function of the form: 
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This corresponds to using a diagonal weight matrix 
1−

W  in (1). In LISREL, this is called DWLS (diagonally weighted least 

squares). This does not lead to asymptotically efficient estimates of model parameters but is offered as a compromise 

between unweighted least squares (ULS) and fully weighted least squares (WLS). The DWLS method can also be used when 

correlation matrices (KM or PM) are analyzed. 
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