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1. Introduction 

 
Some of the various types of moment matrices that the program can compute are defined in this extract and illustrated by 

means of a small data set. 

 

The basis of analysis in PRELIS is a data matrix Z with N rows and k columns: 
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The columns represent variables. The rows represent statistical units (individuals, companies, regions, occasions, etc.) on 
which the variables have been observed or measured. 

 

Here we shall refer to a row of the data matrix as a case on with the variables have been observed or measured. A case may 

be a single observation (as when the row characterizes an individual) or a multiple case (as when the row characterizes a 
whole group of individuals with identical responses to the variables). When a row of the data matrix represents a pattern of 

observations, the row carries a weight equal to the number of individuals having the same responses. 

 

Each element iz  is a numeric value. For continuous variables, these values represent observations or measurements on an 

interval scale or ratio scale. For ordinal variables, the values represent arbitrary score values, such as 1, 2, 3,4, a 5-category 

Likert scale. Still other values in the data matrix may represent missing observations. 

 
An example of such a data matrix is shown below. It consists of 15 cases on four variables. (The sample size 25 is far too 

small to be useful in any LISREL model. Nevertheless, this small data set will be used here for illustrative purposes, as it is 

possible to check most of the computations by hand.)  

 
 



 
 

Case Var 1 Var 2 Var 3 Var 4 

1 1 3 -0.7 -0.4 

2 2 4 2.3 1.6 

3 3 3 1.2 1.7 
4 1 -9 -0.4 -0.3 

5 3 2 -1.2 -0.7 

6 2 1 -9.0 1.2 
7 2 1 0.8 0.3 

8 3 3 1.6 1.5 

9 1 2 -0.9 -9.0 
10 1 4 -0.8 -0.8 

11 1 1 0.7 0.8 

12 1 2 1.1 1.3 

13 1 1 -9.0 0.8 
14 2 2 0.7 0.3 

15 3 3 1.8 1.7 

16 1 2 -0.9 -0.9 
17 2 4 -0.8 -0.7 

18 2 1 1.1 1.2 

19 3 1 1.2 1.7 
20 2 2 1.6 1.8 

21 2 4 2.3 1.6 

22 3 3 1.2 1.7 

23 3 2 -1.2 -0.7 
24 2 1 -9.0 1.2 

25 2 1 0.8 0.3 

 
Variables 1 and 2 are assumed to be ordinal variables. The three entries of “-9” are specified by the user to represent missing 

observations. PRELIS can handle missing data using pairwise or listwise deletion or by imputation. Pairwise and listwise 

deletion are discussed here. 

 

2. Pairwise deletion 

To begin with, we shall pretend that all four variables are continuous. Let 
ijn  be the number of cases having real observations 

on both variables i and j (the effective sample sizes under pairwise deletion). The 
ijn  form a symmetric matrix N  of order 

k k . For the data or our small illustrative example the matrix N  is: 
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Some of the moment matrices can now be defined. 

 

The moment matrix (MM) is defined as the symmetric matrix ( )ijm=M  with elements 

 (1/ )ij ij i jm n z z 
=    

where the summation is over all cases with real observations on both variables i and j. This definition applies when i = j as 

well. The elements of M  represent moments about zero or mean squares and products. For the small data set: 
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The covariance matrix (CM) is defined as the symmetric matrix ( )ijs=S  with elements 

 
_ _

[1/ ( 1)] ( )( )jij ij i ji
s n z z z z 
= − − −   

where 

 
_

(1/ )i ij iz n z
=   and 

_

(1/ ) .j ij jz n z
=    

Note that the means use all univariate non-missing data whereas the covariances are based on all cases with non-missing 

observations on both variables i and j. For our small data matrix: 
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Here, for example, 21s  = 0.097 is based on 24 cases, 11s  = 0.623 is based on 25 cases, and 22s  = 1.216 is based on 24 cases. 

The correlation matrix (KM) is the matrix ( )ijr=R  with elements 

 /ij ij i jr s d d=   

where 

 
_

2 2[1/ 1)] ( )ii ii id n z z
= − −   

and 

 
_

2 2[1/ 1)] ( )jj jj jd n z z
= − −  . 

In the standard deviations id  and 
jd , the sums are over all real observations on each variable i and j, respectively. With 

these definitions it can technically happen that 
2 1ijr  , although this is unlikely in large samples. For the small data set: 
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The three matrices M, S, and R were computed without distinguishing between ordinal and continuous variables. Data 

values on ordinal variables were treated as if they came from interval scales. However, by declaring the first two variables 

to be ordinal, other types of correlation matrices can be obtained. 

When some of the variables are declared ordinal, the arbitrary score values of these variables can be replaced with their 

corresponding normal scores before M, S, and R is computed. 

For variable 2 in our small data set, the computation of the normal scores is as follows: 

Category Marginal  

Frequency 

Upper 

Threshold 

Normal 

Score 

1 8 -0.431 -1.118 

2 7 0.319 -0.103 

3 5 0.967 0.532 

4 4 +   1.750 

 

The resulting moment matrices are: 
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Besides the correlation matrix KM described above, there are four other types of correlation matrices, OM, PM, RM and TM, 

which can be used when some or all of the variables are ordinal. These correlation matrices consist of three different types 

of correlations. For each pair of variables on of the following three alternatives will occur: 

1. When both variables are continuous (interval scaled). the product-moment correlation is computed from all 

complete pairs of observations. This correlation is the same in OM, PM, RM and TM.  

2. When both variables are ordinal, a contingency table is obtained from which the correlation is computed. Under 

OM, this correlation is the product-moment correlation of optimal scores or the canonical correlation (See Kendal 

& Stuart, 1961, pp. 568 – 573). Under PM, this correlation is the maximum-likelihood estimate of the polychoric 

correlation, where an underlying bivariate normal distribution is assumed. Under RM, this is Spearman’s rank 

correlation and under TM, this is Kendall’s tau-c correlation.  



3. When one variable is ordinal and the other is continuous, the program obtains the mean and variance of the 

continuous variable for each category of the ordinal variable and uses these summary statistics to compute the 

polyserial correlation (assuming again an underlying bivariate normal distribution). Under OM, RM and TM, a 

simple consistent estimator will be used, but under PM, a maximum-likelihood estimator will be used (see Jöreskog, 

1986). 

The end product of this procedure is a correlation matrix for all of the variables, where each correlation has been 

estimated separately. Although it is rare in practice, experience indicates that such a correlation matrix sometimes fails 

to be positive-definite. When a correlation matrix that is not positive-definite is to be used to estimate a LISREL model, 

the ML or GLS method cannot be used. The ULS, WLS or DWLS method must be used instead. Furthermore, even if the 

matrix of correlations is positive-definite, these correlations are unlikely to behave like ordinary sample moments, not 

even asymptotically. So, if one uses the ML or GLS methods for fitting the model, one should not rely on the normal 

theory standard errors and chi-square goodness-of-fit measures supplied by LISREL. Correct large sample standard 

errors and chi-square values can be obtained with WLS in LISREL. 

When both variables are ordinal, information provided in the data may be represented as a contingency table. For the 

illustrative data, the contingency table for variables 1 and 2 is: 

VAR 2 

VAR 1 1 2 3 4 Marginal 

1 2 3 1 1 7 

2 5 2 0 3 10 

3 1 2 4 0 7 

Marginal 8 7 5 4 24 

Let x and y be two ordinal variables with p and q categories, respectively. Let ( 1,2,..., , 1,2,..., )ijn i p j q= =  be the 

corresponding frequencies in the contingency table. 

Optimal scores for x and y are defined as two sets of ordered score values that maximize the product-moment correlations, 

subject to the constraints that the means are 0 and the variances are 1 (see Kendall & Stuart, 1961, pp. 568 – 573). The 

product-moment correlation of these optimal scores, sometimes called canonical correlation, is obtained as the second 

largest eigenvalue of a symmetric matrix formed from the elements of the contingency table. 

The polychoric correlation  is not a correlation between a pair of score values. Rather it is an estimate of the correlation 

between two latent variables   and   underlying y and x, where   and   are assumed to have a bivariate normal 

distribution. For our illustrative data, the polychoric correlation between variables 1 and 2 is estimated as 0.098. 

This latent correlation can be estimated by the maximum-likelihood method based on the multinomial distribution of the 

cell frequencies in the contingency table. The estimation procedure follows Olsson (1979), but the computational algorithm 

has been considerably improved. 

Next, consider the third case, when one variable is ordinal and one variable is continuous. In our small data set, there will 

be four such pairs of variables: (3,1), (3,2), (4,1), and (4,2). In the illustration below, we use the pair (3,1). Let x be an 

ordinal variable with p categories, and let y be a continuous variable. As before, let in  be the number of cases in category i 

of x. Corresponding to these cases, there will be in  values on y denoted: 
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is  be the mean and unbiased variance of these values. (If 1in = . the variance is zero and this category cannot 

be used in the computations. However, the required correlation can still be computed, provided there are at least two 

categories with 1in  .) For the pair (3,1), these summary statistics are: 

Category Number of  

observations  

Mean Standard  

Deviation 

1 7 -0.271 0.826 

2 8 1.100 1.006 

3 7 0.657 1.290 

   

The polyserial correlation is the correlation between the observed variable y and a latent variable  , where y and   are 

assumed to have a bivariate normal distribution. This can be estimated by the maximum-likelihood method as described by 

Jöreskog (1986). Under OM, Jöreskog’s Method 1 is used, under PM, Jöreskog’s Method 5 is used.  

For our illustrative data, the correlation matrices obtained under the options OM and PM are: 
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3. Listwise deletion 

So far, we have dealt with pairwise deletion. With listwise deletion, all cases with missing observations are deleted first so 

that the data matrix reduces effectively to a matrix without missing observations. All the definitions above still apply. The 

main difference is that under listwise deletion, all computations are based on the same cases. This will guarantee that all the 

matrices obtained under MM, CM, and KM are non-negative-definite. Correlation matrices obtained under OM and PM still 

cannot be guaranteed to be non-negative-definite, as they may consist of different types of correlations. 
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