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1. Introduction  

This example is the fifth of a set of examples extracted from a note by K.G. Jöreskog first posted 

on the SSI website in 2005 with the title “Structural Equation Modeling with Ordinal Variables 

using LISREL”. 

 

In the previous four examples I assumed that all observed variables were ordinal. Thus, in the 

second example, I described the analysis of ordinal variables in cross-sectional studies, in the 

third, I described the analysis of ordinal variables in longitudinal studies, and in the fourth, I 

described the analysis of ordinal variables observed in several groups. In this example I consider 

the case when one or more ordinal variables are observed jointly with a set of possibly explanatory 

variables, so called covariates. These covariates can be dummy-coded categorical variables or 

measured variables on an interval scale. They are assumed not to contain measurement error. With 

PRELIS one can estimate the effect of the covariates on the probability of response in various 

categories of the ordinal variables using either the probit or the logit model. PRELIS can also 

estimate the joint covariance matrix of the covariates and the variables underlying the ordinal 

variables. This can be used for further modeling in LISREL. 



 

Continuing my analysis of the Efficacy variables from the Political Action Survey, I illustrate the 

analysis of the six Efficacy variables using four covariates: Gender, Age, Education, and a Left-

Right Scale. For information about the Political Action Survey and the Efficacy variables, see the 

first example. As in the second and third examples, I will only use the data from the USA sample. 

Since probit and logit regression have not been well documented in the LISREL literature, I give 

a rather technical description in Sections 2-6. Readers who are merely interested in how to do it 

with LISREL can skip this and proceed to Section 7. 

 

2. Univariate Probit Regression 

Let y be a single ordinal variable with m categories and let ( )1qx  be a vector of covariates. The 

term univariate is used here in the sense of one variable at a time. One can very well have several 

ordinal variables but they are analyzed one at a time. Corresponding to y there is an underlying 

continuous variable 
*y . The connection between the ordinal variable y and the underlying variable 

*y  is 

 

*

1 , 1,2,..., , (17)a ay a y a m −=    =

   
where 0 1 2 1, ... , ,m m    −= −    = +  are threshold parameters. For variable y with m 

categories, there are m - 1 threshold parameters ( )1 2 1, ,..., .m   −=τ   

 

The specification (17) is the same as in the second example. In fact, the development there is a 

special case of the more general case described here, namely when q = 0. 

 

Consider the regression of 
*y  on x: 

 

* ' , (18)y z= + +γ x

  
where   is an intercept term, γ  is a vector of regression coefficients, and z is an error term. The 

underlying variable 
*y  is not observed; only the ordinal variables y and x are. 

 

The probit model assumes that z is normally distributed with mean 0 and variance 
2 , i.e., 

*y  is 

normal conditional on x: 

 

( )* ' 2, .y N  + γ x

  
It follows that the probability ( )c x  of a response in category c or lower, conditional on x, where 

c = 1, 2, …, m-1, is 

 

 

'

( ) , (19)c
c

 




 − −
=  

 

γ x
x

  

where   is the standard normal distribution function. 

 



 

Equation (19) can be viewed as a special case of a generalized linear model, see e.g., McCullagh   

& Nelder (1983). In this tradition there are no concepts of underlying variables and thresholds. 

Instead, (19) is written 

 

( )* '( ) , (20)c c =  −x γ x

  
where 

( )* 1 ,c c   −= −  

 

is interpreted as an intercept term and  

 

 

* 1 , −=γ γ

  
 

is a vector of regression coefficients. 

 

 

To explain the term probit regression, take the inverse of (20): 

 

 

 1 * '( ) ,c c − = −x γ x

  
where 

1−  is the inverse function of  .  The quantity 
1( )−  is called the probit of  .  If    

goes from 0 to 1,  
1( )−  goes from -  to + .  Equation (21) shows that the probit of ( )c x  is 

linear in x, hence the term probit regression. Note that the sign of γ  is negative in (20) but positive 

in (18). In (20), for example, if 1  is positive, the probability of a response in category c or lower  

decreases as 1x  increases. Which says the same thing as the probability of a response in a category 

higher than c increases with 1x .  In (18), however, 
*y  increases if 1x  increases which increases 

the probability of a higher response. Thus, the two models are equivalent.  

 

One can regard (21) as m - 1 parallel regression lines. Note that the intercepts vary with c but the 

regression coefficients are the same. For ordinal variables the intercepts must satisfy the order 

condition 

 

 

* * *

1 2 1... .m   −  

  
To illustrate the function ( )c x  in (19), consider the case of a single covariate x. Let   = 0,   = 

1 and denote 

 

( )( ) .x x  =  −

  
Fig. 7 shows four curves ( )x  for -10 < x < 10 using the parameter values 

 

 

 



 

Curve  1      = -0.5 and   = 1.0 

Curve 2    = 1.5 and   = 1.0 

Curve  3     = -0.5 and     = 0.4 

Curve 4    = 1.5 and   = 0.4. 

 

It is seen that the probability of a response in category c or lower, i.e., the probability that 
*y  , 

decreases with x. The larger is, the faster is the rate of decrease. As   increases or decreases, the 

curves are just shifted vertically. 

 
Figure 7: Four Cumulative Response Functions 

 

I now return to the development of equation (19). There are two fundamental indeterminacies in 

(19): 

 

• One can add a constant to all  's and to  . 

• One can multiply all  's,  , and   by a constant and multiply   by the same constant. 

 

Neither of these changes has any effect on the right-hand side of (19). This is a reflection of the 

fact that since only ordinal information is available about y, 
*y  is only determined up to a linear 

transformation (Actually, 
*y  is only determined up to a monotonic transformation, but under 

normality the transformation must be linear.) 

 

PRELIS has two ways of resolving these indeterminacies: 

 

Standard Parameterization:   = 0 and   = 1  

Alternative Parameterization: 1  = 0 and 2  = 1  

 



 

These parameterizations fix the origin and unit of measurement of 
*y  in two different ways. The 

Standard Parameterization is the same as used in Generalized Linear Models. The Alternative 

Parameterization requires that 3m  . If m = 2 under this parameterization, PRELIS will set 1  = 

0 and   = 1. 

 

For 3m  , the parameters of the two parameterizations are given in the following table.  

 

 

Parameterization Intercept Error Var. Thresholds Regr. Coeff. 

Standard 0 1 
1   2   3   … 

1m −   1   2   ... 
q   

Alternative   2  0 1 *

3   … *

1m −
  

*

1   
*

2   … *

q   

 

where 

 

( ) ( )

( ) ( )

( )

1 2 1 2 1

*

1 2 1

*

2 1

/ , 1/ ,

/ , 3,4,..., 1,

/ , 1,2,..., .

i i

i i

i m

i q

      

    

   

= − − = −

= − − = −

= − =
  

 

It should be emphasized that the two parameterizations are equivalent in the sense that there is a 

one-to-one correspondence between the two sets of parameters.  

 

For estimation, the probability of a response in category a is needed, where 1,2,..., .a m=  This 

is 

 

 
' '

1Pr | ( ) (22)a a
ay a

   


 
−

   − − − −
= = =  −   

   

γ x γ x
x x

  

 

It is convenient to refer to (22) as the category probability function and to (19) as the 

cumulative probability function. 

 

For a single x, the category probability functions in (22) are shown in Fig. 8 for = 0,   = 1, 

1  = -0.5, 2  = 1.5 and   =1 (Curve 1) and   = 0.4 (Curve 2). As x increases the category 

probability increases up to a maximum 

 

 

( ) 1 2
2 2

1
2 1 at ,

2 2
x

 
 



+ 
 − − = 
    

 



 

and then decreases. The rate of increase and decrease is larger for larger than for smaller  . 

Note that the maximum is independent of  . 

 

Suppose we have a random sample of N independent observations of y and x: 

 

( ), , 1,2,..., .i iy i N=x

  
Let iak  = 1, if ,iy a=  and iak  = 0, otherwise. Then 

 

( ) ( )
' '

*1| , (23)a i a i
ia i ia iE k

   


 
−

   − − − −
=  − =   

   

γ x γ x
x x

  

say. The likelihood of the sample is 

 

 

( ) ( )*

1 1

, (24)ia

N m
k

ia i i

i a

L p
= =

  =    
  x x

  

where ( )p x  is the density function of x. The latter is unspecified and assumed to have no 

parameters of interest. The parameter vector is 

 

( ), , , . =θ τ γ

  
This can be estimated by maximizing the likelihood L of either of the two parameterizations.  
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Figure 8: Two Category Response Functions (probit) 

 

  



 

3. Univariate Logit Regression 

One can obtain logit regression, sometimes called logistic regression, in the same way simply 

by replacing the normal distribution function ( )x  by the logistic distribution function 

( ) .
1

u

u

e
u

e
 =

+
 

 

The inverse function of  is 

( )1 ln .
1






− =
−

 

The quantity ln
1



−
 is called the logit of  . If   goes from 0 to 1, ( )logit   goes from −  

to + . 

 

The logit model is 

 

* '*( )
ln . (25)

1 ( )

c
c

c





= −

−

x
γ x

x
   

This is also a special case of a Generalized Linear Model, see McCullagh & Nelder (1983) . 

The logit model seems to be more often used in practice than the probit model. This is 

probably because 
1−  has an explicit form.  However, with computers it is almost as easy to 

compute 
1− as it is to compute 

1− . 

 

PRELIS estimates the logit model in the form 

 

 

'

( ) , (26)c
c

 




 − −
=  

 

γ x
x Ψ

  

 

using either the Standard Parameterization or the Alternative Parameterization as defined in 

the previous Section. 

 

The probability of a response in category a is 

 

 
' '

1
1Pr | ( ) ( ) , (27)a a

a ay a
   

 
 

−
−

   − − − −
= = − =  −   

   

γ x γ x
x x x  

 

This probability as a function of a single x is shown in Fig. 9 for the same parameters as in 

Fig. 8. It is seen that the logit model gives less probability to the category corresponding to 
*

1 2y    and more probability to the other categories than the probit model. In general, the 

logit model gives less probability to the middle categories and more probability to the outer 

categories than the probit model. 

 



 

The logistic and the normal distribution are similar, but the variance of the logistic distribution 

( )u  is not 1 as is the case of the normal distribution ( )u . Lord & Novick (1968, p. 299) 

noted that 

 

( ) (1.7 ) 0.001, . (28)u u x −  

  
Because of this closeness, results obtained under the Standard Parameterization with the logit 

model are likely to be close to those obtained with the probit model except for a scale factor. 

As will be demonstrated, the Alternative Parameterization eliminates this scale factor and 

makes the regression equations directly comparable and similar.  

 

 
-10          10 

 

Figure 9: Two Category Response Functions (logit) 

 

4. Testing the Model 

The univariate probit and logit models make strong assumptions about the cumulative 

response functions in the form of (19) and (26), respectively. Can these assumptions be tested? 

The typical way of doing this is to compute a deviance, i.e., the difference between 2ln L


−  

for the model and the same quantity for another more general model, where L


is the maximum 

value of (24). This kind of deviance has not been implemented in PRELIS because it is not 

obvious what the more general model should be.  However, PRELIS prints the value of 2ln L


−  

so one can compare this for different models. We have also implemented a test of the 

hypothesis that γ  = 0, i.e., that all regression coefficients are zero. This can also be regarded 

as a measure of how much better the model fits than the model with no covariates. This will 

be illustrated in Section 11. 

 

 

 



 

5. Bivariate Probit Regression 

The normal distribution generalizes naturally to the bivariate and multivariate case. The 

logistic distribution function, however, does not have any convenient generalization to the 

bivariate and multivariate case. For this reason I consider only the case of underlying bivariate 

and multivariate normality in what follows. 

 

Consider two ordinal variables 
gy  and hy  with underlying continuous variables 

*

gy  and 
*

hy , 

respectively. The equations to be estimated are 

 

* '

* '

, (29)

, (30)

g g g g

h h h h

y z

y z





= + +

= + +

γ x

γ x   

 

where g  and 
h are intercept terms, gγ  and 

hγ  are vectors of regression coefficients, and 

gz  and hz  are error terms. It is assumed that 
gz  and hz  have a bivariate normal distribution 

with means zero and covariance matrix 

 

 

2

2
.

g

gh h



 

 
  
    

In the Standard Parameterization this is a correlation matrix with correlation 
gh . Variable 

gy  has thresholds 

 

 
( ),1 ,2 , 1, ,..., ,

gg g g g m   −=τ

  
 

and variable hy  has thresholds 

 
( ),1 ,2 , 1, ,..., .

hh h h m   −

  
The probability that an individual i with covariates ix  responds in category a on 

gy and in 

category b on hy  is 

 

  ( )
* *

, ,

* *
, 1 , 1

(2)

, Pr , | , , , (31)

ig a ih b

ig a ih b

igh ab ig ih i ghy a y b u v dudv

 

 

  

− −

= = = =  x

  

where 

 

*

,

,
(32)ig a

g gig a i

g


 



− −
=

γ x

  



 

and 
(2) ( , , )u v   is the density function of the standardized bivariate normal distribution with 

correlation  . The parameter vector is 

 

( ), , ,g h gh=θ θ θ

  
where 

 

( )
( )

, , , ,

, , , .

g g g g g

h h h h h

 

 

=

=

θ τ γ

θ τ γ   

The likelihood function is ( ),

,

1 1 1

, (33)
g h

igh ab

m mN
k

igh ab i

i a b

L p
= = =

 
=   

 
  x  

where 
,igh ab

k = 1 if case i responds in category a on 
gy  and in category b on hy , and 

,igh ab
k = 

0, otherwise. 

 

PRELIS estimates 
gθ  and hθ  from the univariate marginal distribution of 

gy  and hy , 

respectively, as described in The first example in this set. Given these estimates, PRELIS 

estimates 
gh  by maximizing the bivariate likelihood L in (33). Under the Alternative 

Parameterization, the conditional covariance between 
*

gy   and 
*

hy   is estimated as 

 

.gh g h gh   
   

=

 
 

6. Multivariate Probit Regression 

Let ( 1)py  be a vector of ordinal variables with underlying variables 
*

y . It is assumed that 

 

( )* | , .N +y x α Γx Ψ

  
The rows of α  and Γ  and the diagonal elements of Ψ  are estimated from the univariate 

margins as described in Section 1, and the off-diagonal elements of Ψ are estimated from the 

bivariate margins as described in Section 5. 

 

Denoting these estimates as  


α  , 


Γ  , and 


Ψ  , we have the following: 

 

• The estimated conditional covariance matrix of 
*

y for given x is 


Ψ .  In the Standard 

Parameterization this is a correlation matrix. 

• The estimated unconditional covariance matrix of 
*

y  is 

 

'

,xx

  

+ΓS Γ Ψ

  
 where xxS  is the sample covariance matrix of x. 

 



 

• The estimated joint unconditional covariance matrix of 
*

y  and x is 

 

 

'^ ^ ^
^

^
. (34)xx

xx xx

 
+ =

 
 
 

ΓS Γ Ψ
Σ

S Γ S   

 

The relationship between the Standard and Alternative Parameterizations can be expressed in 

matrix form as follows. Let D be the diagonal matrix of order p p   

1,2 1,1 2,2 2,1 ,2 ,1

1 1 1
, ,..., , (35)

p p

diag
     

 
=   − − − 

D  

 

and let 
*

Sy  and 
*

Ay  denote the vector of underlying variables in the Standard and Alternative 

Parameterizations, respectively.  Then 

 

 

, (37)

. (38)

A S

A S

 

 

=

=

Γ DΓ

Ψ DΨ D   

 

Using the same notation for the matrix 
^

Σ  in (34), we have 

 
1 1, (39)A S

 

=Σ D Σ D

  
where 1D  is the diagonal matrix of order p q p q+  +  

 
1

1,2 1,1 2,2 2,1 ,2 ,1

1 1 1
, ,..., ,1,1,...,1 . (40)

p p

diag
     

 
=   − − − 

D

  

PRELIS can also estimate the asymptotic covariance matrix of 
^

Σ . 

 

There is no latent variable model (LISREL model) imposed on the 
^

Σ  in (34). It is an 

unconstrained covariance matrix just as a sample covariance matrix S for continuous 

variables. It can therefore be used for modeling in LISREL just as if y* and x were directly 

observed. This is illustrated in Section 14. 

 

 

 



 

7. PRELIS Implementation 

I illustrate the case of 3 ordinal variables and 4 covariates. Let Y1 Y2 Y3 be the names of the 

ordinal variables and let X1 X2 X3 X4 be the names of the covariates. 

 

Probit regression of Y1 is obtained by the PRELIS command 

 
PR Y1 on X1 X2 X3 X4 

 

Similarly, logit regression of Y1 is obtained by the PRELIS command 

 

LR Y1 on X1 X2 X3 X4 

 

One can select any subset of y variables and any subset of x variables to be included in the 

equation. Thus, one can obtain the univariate probit or logit regression for all the ordinal 

variables simultaneously. For example, 

 

PR Y1 Y2 Y3 on X1 X2 X3 X4 

 

will give three univariate probit regressions. Note the word on (or ON) separating the ordinal 

variables from the covariates. 

 

One can have several PR and/or LR commands in the same input file. All x-variables used as 

covariates must be declared continuous before the first PR or LR command, or else they must 

have at least 16 different values. 

 

The Standard Parameterization is used by default. To obtain the Alternative Parameterization 

put AP on the Output line. The PR or LR command produces only univariate probit or logit 

regressions. Thus an MA value specified on the Output line has no meaning. To obtain the 

matrix 
^

Σ  in (34), use an FI command and put MA = CM on the Output line. No other value of 

MA is meaningful since 
^

Σ  is a covariance matrix even in the Standard Parameterization. There 

are two reasons why the covariance matrix 
^

Σ  in (34) is not computable with PR or LR 

commands: 

• Since one can have several PR or LR commands in the same PRELIS command file, 

there is no way PRELIS will know which covariance matrix to compute. 

• Since the logistic distribution does not generalize to the multivariate case, the covariance 

matrix can only be estimated under multivariate normality. It would be odd to estimate 

the univariate parameters and under the logistic distribution and then estimate the 

covariance of the error terms under multivariate normality. 

 

The various alternatives are illustrated in the sections that follow.  

 



 

8. A Small Example 

Before proceeding to analyze the Efficacy variables, I illustrate the various alternatives by 

means of a small example based on generated data. File ORDATA.RAW contains data in free 

format on one ordinal variable y and two covariates x1 and x2. To estimate the probit 

regression in the Standard Parameterization, use the following PRELIS command file (file 

ORDATA.PRL): 

 
Data Ninputvars = 3 

Labels 

Y X1 X2 

Rawdata = ORDATA.RAW 

Continuous X1 X2 

LR Y on X1 X2 

Output  

 

The probit regression is estimated as 

 
Thresholds: -2.034 -1.087 0.537 1.925 

 

Y  =  1.006*X1  +  2.028*X2  +  Error,  R2  =  0.838 (0.0860) (0.119) 

11.696 16.997 

 

To estimate the same regression in the Alternative Parameterization, just put AP on the Output 

line. This gives the following results: 

 
Thresholds:  0.0 1.0 2.773 4.251 

 

Y  =  2.147  +  1.061*X1  +  2.141*X2  +  Error,  R2  =  0.838 (0.0907)

 (0.126) 

11.696 16.997 

 

Note that 

 

• The regression coefficients in the Standard and Alternative Parameterizations are 

different but the t-values are the same. 

• 
2R  is the same. 

• Although different, the regression coefficients are rather close. However, this is just a 

coincidence that occurs because 2 1 
 

−  is close to 1. 

 

To use logit regression, put LR instead of PR. Logit regression gives the following results in 

the Standard Parameterization: 

 
Thresholds: -3.639 -1.968 0.993 3.464 

 

      Y = 0.0 + 1.790*X1 + 3.631*X2 + Error, R² = 0.943 

 Standerr        (0.154)    (0.227)                        

 

Comparing the standard solutions for probit and logit regression, it is seen that the regression 

coefficients are quite different. However, a closer look shows that the regression coefficients 

of the logit equation are approximately 1.79 times those of the probit regression. This confirms 



 

the statement made earlier that the regression coefficients will be roughly proportional. The 

scale factor 1.79 may require some further explanation. The factor 1.7 in (28) should be 

regarded as an approximate population quantity, whereas the scale factor 1.79 is estimated 

from a random sample of 400 observations. 

 

That the results of the probit and logit regressions are close can be seen much better if one 

uses the Alternative Parameterization. The result of logit regression in the Alternative 

Parameterization is: 

 
Thresholds: 0.0 1.0 2.773   4.251 

   

        Y = 2.178 + 1.071*X1 + 2.173*X2 + Error, R² = 0.943 

 Standerr          (0.0924)   (0.136)                        

 

As can be seen, this is quite similar to the corresponding regression equation for the probit 

model. 

 

9. Data Screening 

I now return to the analysis of the Efficacy variables in the Political Action Survey described 

in the first example in this set. The data file for this illustration is USA.RAW. This contains 

10 variables in free format. The first six are the six Efficacy variables; the other four variables 

are (the original variable names are given in parenthesis):  

 

• YOB Year of birth with Don't Know coded as 1998 and No Answer coded as 1999 

(V0146).  Recall that the interviews were done in 1974. 

• GENDER Gender coded as 1 for Male, 2 for Female, and 9 for No Answer (V0283). 

• LEFTRIGH A left-right scale from 1 to 10 with Don't Know coded as 98 and No Answer 

coded as 99 (V0020). 

• EDUCAT Education coded as 1 for Compulsory level only, 2 for Middle level, 3 for 

Higher or Academic level, and 9 for No Answer (V0214) 

 

As always, it is a good idea to begin with a data screening. This can be done by running the 

following PRELIS command file (file ORD51.PRL) 

 
Screening the Data in USA.RAW 

Data Ninputvars = 10 

Labels 

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST YOB GENDER LEFTRIGH EDUCAT 

Rawdata = USA.RAW 

Clabels NOSAY - INTEREST 1=AS 2=A 3=D 4=DS 8=DK 9=NA 

Clabels GENDER 1=MALE 2=FEMA 9=NA 

Clabels LEFTRIGH 98=DK 99=NA 

Clabels EDUCAT 1=COMP 2=MIDD 3=HIGH 9=NA 

Output 

 

The output reveals that 

 

• There are 1719 cases in the USA sample, 736 males and 983 females.  



 

• The marginal distributions of the six efficacy variables are those reported in the first 

example in this set. 

• There are more than 15 different birthyears in the sample. The oldest person was born 

in 1882. Only one person did not report his/her birthyear and nobody reported not 

knowing his/her year of birth. 

• As many as 547 persons or 31.8% did not place themselves on the left-right scale. 

• Only 8 persons did not answer the education question. 

 

Before one can proceed one must decide how to treat the Don't Know and No Answer 

responses. In The first example in this set, I discussed various alternative ways of dealing with 

missing values. I do not want to repeat that discussion here.  The major difficulty is to decide 

how to treat the 547 people who did not answer the LEFTRIGH variable. Does this mean that 

these people are in the middle of the scale, or that the concept of left-right has no meaning for 

them, or what? I do not know.  So I will treat them as having provided no information.  

 

File ORD51A.PRL eliminates all cases with Don't Know and No Answer responses (listwise 

deletion) and saves the data on all complete cases in a PRELIS system file called USA.PSF. 

In addition, AGE is computed as 1974 - YOB. This is a proxy for age. The output file shows 

that the resulting listwise sample size is 1076. Thus, 643 cases were lost. 

 

10. Probit Regression of NOSAY 

The following PRELIS command file (file ORD52.PRL) estimates the probit regression of 

NOSAY (as a y-variable) on GENDER, LEFTRIGH, EDUCAT, and AGE (as x-variables - 

covariates) using the Alternative Parameterization. 

 
Probit Regression of NOSAY 

SY=USA.LSF 

Continuous GENDER - AGE 

PR NOSAY on GENDER - AGE 

Output AP 

 

The output gives the following information about the probit regression:  

 
Univariate Probit Regression for    NOSAY 

 Alternative Parameterization 

 

 Thresholds: 0.0 1.0 2.825 

   

    NOSAY = 0.173 + 0.00927*GENDER + 0.0437*LEFTRIGH + 0.371*EDUCAT 

 Standerr          (0.0696)         (0.0189)          (0.0534)       

 Z-values           0.133            2.308             6.946        

 P-values           0.894            0.021             0.000        

  

             + 0.00467*AGE + Error, R² = 0.059 

              (0.00213)                         

               2.187                           

               0.029                           

 



 

Because the t-values for LEFTRIGH, EDUCAT, and AGE are all positive and larger than 2, 

this means that people on the right of the left-right scale, people with higher education and 

older people have a tendency to respond higher on the ordinal scale for NOSAY, that is, they 

are likely to disagree or disagree strongly to NOSAY. This seems quite plausible. 

 

The corresponding logit regression is obtained by replacing PR with LR. The resulting 

regression equation is 

 
Univariate Logit Regression for    NOSAY 

 Alternative Parameterization 

 

 Thresholds: 0.0 1.0 2.771 

   

    NOSAY = 0.114 - 0.00285*GENDER + 0.0492*LEFTRIGH + 0.379*EDUCAT 

 Standerr          (0.0693)         (0.0188)          (0.0538)       

 Z-values          -0.0411           2.616             7.043        

 P-values           0.967            0.009             0.000        

  

             + 0.00456*AGE + Error, R² = 0.171 

              (0.00212)                         

               2.147                           

               0.032                           

 

The logit regression is very similar to the probit regression, but note that 
2R  is larger for the 

logit model than for the probit model. I will discuss the issue of the fit of the probit vs logit 

model in the next Section. 

 

In addition to the ordinary output file ORD52.OUT, the run of ORD52.PRL gives information 

about the fit of the probit and logit regressions. For the initial probit regression of NOSAY, 

the result looks like this: 

 

 
 -2lnL for Full Model                                       2344.591 

 -2lnL for Intercept-Only Model                             2398.103 

 Chi-Square for Testing Intercept-Only Model                  53.512 

 Degrees of Freedom                                                4 

  

This does not give much information; only that the four covariates fit much better than no 

covariate at all. However, consider entering the covariates stepwise one at a time using the 

following input file (ORD52A.PRL): 

 
Probit Regression of NOSAY 

SY=USA.LSF 

Continuous GENDER - AGE 

PR NOSAY on GENDER 

PR NOSAY on GENDER AGE 

PR NOSAY on GENDER AGE LEFTRIGH  

PR NOSAY on GENDER AGE LEFTRIGH EDUCAT 

Output AP 

 

 

The output file now provides similar information for each regression 

 



 

 

-2lnL for Full Model                                       2398.100 

 PR NOSAY on GENDER: 

 

-2lnL for Intercept-Only Model                             2398.103 

 Chi-Square for Testing Intercept-Only Model                   0.004 

 Degrees of Freedom                                                1 

 

PR NOSAY on GENDER AGE: 

 

-2lnL for Full Model                                       2395.940 

 -2lnL for Intercept-Only Model                             2398.103 

 Chi-Square for Testing Intercept-Only Model                   2.163 

 Degrees of Freedom                                                2 

 

PR NOSAY on GENDER AGE LEFTRIGH: 

 

-2lnL for Full Model                                       2393.094 

 -2lnL for Intercept-Only Model                             2398.103 

 Chi-Square for Testing Intercept-Only Model                   5.009 

 Degrees of Freedom                                                3 

 

PR NOSAY on GENDER AGE LEFTRIGH EDUCAT: 

 

-2lnL for Full Model                                       2344.591 

 -2lnL for Intercept-Only Model                             2398.103 

 Chi-Square for Testing Intercept-Only Model                  53.512 

 Degrees of Freedom                                                4 

 

 

This can be interpreted as follows. GENDER is no better than no covariate at all, i.e., GENDER 

alone cannot be used to predict NOSAY. If AGE is used together with GENDER there is no 

significant improvement in fit. GENDER and AGE alone does not predict NOSAY. If 

LEFTRIGH is added to the equation, there is still no significant improvement in fit because 

5.009 - 2.163 = 2.846 is not significant as a chi-square with one degree of freedom. If EDUCAT 

is added to the equation, there is a highly significant improvement in fit. This suggest that 

EDUCAT is the best predictor of NOSAY. These findings are confirmed in the output file 

ORD52A.OUT. 

 

How come that LEFTRIGH and AGE are significant in the last equation whereas they are not 

significant in any equation that does not include EDUCAT? The reason is that EDUCAT is 

correlated with LEFTRIGH and AGE thereby generating interactive effects of LEFTRIGH and 

AGE. This can be seen by entering the covariates one at a time in the opposite order, see file 

ORD52B.PRL. The output from this run is 

 
PR NOSAY on EDUCAT: 

 

-2lnL for Full Model                                       2357.968 

 -2lnL for Intercept-Only Model                             2398.103 

 Chi-Square for Testing Intercept-Only Model                  40.136 

 Degrees of Freedom                                                1 

 

 PR NOSAY on EDUCAT LEFTRIGH: 

 

-2lnL for Full Model                                       2349.465 

 -2lnL for Intercept-Only Model                             2398.103 



 

 Chi-Square for Testing Intercept-Only Model                  48.638 

 Degrees of Freedom                                                2 

 

 PR NOSAY on EDUCAT LEFTRIGH AGE: 

 

-2lnL for Full Model                                       2344.609 

 -2lnL for Intercept-Only Model                             2398.103 

 Chi-Square for Testing Intercept-Only Model                  53.494 

 Degrees of Freedom                                                3 

 

 PR NOSAY on EDUCAT LEFTRIGH AGE GENDER: 

 

-2lnL for Full Model                                       2344.591 

 -2lnL for Intercept-Only Model                             2398.103 

 Chi-Square for Testing Intercept-Only Model                  53.512 

 Degrees of Freedom                                                4 

 

Recall that chi-square is a test of the hypothesis that none of the covariates has any effect. 

This hypothesis is rejected for any equation with EDUCAT included. Note that chi-square 

increases considerably when LEFTRIGH is added to EDUCAT and when AGE is added to 

EDUCAT and LEFTRIGH but not when GENDER is added. The chi-square difference 48.638 

- 40.136 = 8.502 with one degree of freedom is a test of the hypothesis that LEFTRIGH has 

no effect, given that EDUCAT is included. This hypothesis is rejected. Thus, LEFTRIGH 

should be included with EDUCAT. Similarly, the chi-square difference 53.494 - 48.638 = 

4.856 with one degree of freedom is a test of the hypothesis that AGE has no effect, given that 

EDUCAT and LEFTRIGH are included. This hypothesis is also rejected (at the 5% level). Thus, 

AGE should be included with EDUCAT and LEFTRIGH. But one cannot reject the hypothesis 

that GENDER has no effect, given that EDUCAT, LEFTRIGH, and AGE are included in the 

equation because 53.512 - 53.494 = 0.018 is not significant. 

 

Table 13: Estimated Category Probabilities (probit) 

 

Covariates Probabilities 

Gender LeftRight Education Age AS A D DS 

1 2 1 30 0.026 0.138 0.622 0.215 

1 2 1 60 0.018 0.114 0.611 0.257 

1 2 3 30 0.004 0.041 0.483 0.472 

1 2 3 60 0.003 0.031 0.440 0.527 

1 8 1 30 0.014 0.095 0.595 0.296 

1 8 1 60 0.010 0.076 0.570 0.345 

1 8 3 30 0.002 0.024 0.401 0.573 

1 8 3 60 0.001 0.017 0.356 0.626 

2 2 1 30 0.025 0.136 0.621 0.218 

2 2 1 60 0.018 0.112 0.610 0.260 

2 2 3 30 0.004 0.040 0.480 0.476 

2 2 3 60 0.002 0.030 0.437 0.530 

2 8 1 30 0.013 0.093 0.594 0.299 

2 8 1 60 0.009 0.074 0.568 0.348 

2 8 3 30 0.002 0.023 0.398 0.577 

2 8 3 60 0.001 0.017 0.353 0.629 

 



 

Using (22) and the estimated parameter values, one can compute estimated category 

probabilities for any specified set of covariate values. I illustrate this for the probit and logit 

regressions of NOSAY. Table 13 gives estimated probabilities for 16 different combinations 

of  the  four  covariates  for  the probit model and Table 14 gives the same probabilities 

estimated under the logit model. 

 

Table 13 shows that a young male with low education and "leftist" opinion is most likely to 

respond Disagree (P = 0.622) to the NOSAY statement. This may be contrasted with an old 

male with high education and "rightist" opinion whose most likely response is Disagree 

Strongly (P = 0.626).  It is also seen that any person is more likely to respond Disagree or 

Disagree Strongly than Agree or Agree Strongly no matter what his characteristics are. The 

probability of an Agree Strongly response is very small for all types of persons. Table 14 

shows very similar probabilities, but note that all probabilities for Agree Strongly are larger 

than the corresponding probabilities in Table 13 and most of the probabilities for Disagree 

Strongly are larger in Table 14 than in Table 13. This is in line with the remark made earlier 

that the logit model gives more probability to the outer categories than the probit model.  

 

11. Probit and Logit Regression of All Efficacy Variables 

To analyze all the six efficacy variables jointly with the four covariates, just replace the PR 

line in ORD52.PRL with (see ORD53.PRL where the Standard Parameterization is used): 

 
PR NOSAY on GENDER - AGE 

PR VOTING on GENDER - AGE 

PR COMPLEX on GENDER - AGE 

PR NOCARE on GENDER - AGE 

PR TOUCH on GENDER - AGE 

PR INTEREST on GENDER - AGE 

 

A slight editing of the output file ORD53.OUT gives the following estimated probit 

regressions. 

 
    NOSAY = 0.0 + 0.00899*GENDER + 0.0424*LEFTRIGH + 0.360*EDUCAT + 0.00453*AGE + 

Error, R² = 0.059 

 Standerr        (0.0675)         (0.0184)          (0.0519)       (0.00207)                         

 Z-values         0.133            2.308             6.946          2.187                           

 P-values         0.894            0.021             0.000          0.029     

               

VOTING = - 0.0344*GENDER - 0.0217*LEFTRIGH + 0.447*EDUCAT - 0.00634*AGE + 

Error 

(0.0667) (0.0181) (0.0515) (0.00205) 

-0.516 -1.195 8.673 -3.096 

 

COMPLEX = - 0.212*GENDER - 0.0233*LEFTRIGH + 0.494*EDUCAT + 0.000881*AGE + 

Error 

(0.0678) (0.0184) (0.0525) (0.00207) 

-3.135 -1.26 9.402 0.425 

 

  



 

Table 14: Estimated Category Probabilities (logit) 

 

Covariates Probabilities 

Gender LeftRight Education Age AS A D DS 

1 2 1 30 0.032 0.124 0.638 0.205 

1 2 1 60 0.026 0.102 0.626 0.246 

1 2 3 30 0.009 0.039 0.465 0.486 

1 2 3 60 0.007 0.031 0.417 0.545 

1 8 1 30 0.020 0.081 0.599 0.300 

1 8 1 60 0.016 0.066 0.567 0.351 

1 8 3 30 0.005 0.024 0.359 0.611 

1 8 3 60 0.004 0.019 0.311 0.665 

2 2 1 30 0.033 0.125 0.638 0.204 

2 2 1 60 0.026 0.103 0.626 0.245 

2 2 3 30 0.009 0.039 0.466 0.485 

2 2 3 60 0.007 0.032 0.418 0.544 

2 8 1 30 0.020 0.081 0.600 0.299 

2 8 1 60 0.016 0.066 0.568 0.350 

2 8 3 30 0.005 0.024 0.360 0.610 

2 8 3 60 0.004 0.019 0.312 0.664 

 

 
 

NOCARE = - 0.0402*GENDER + 0.0240*LEFTRIGH + 0.371*EDUCAT + 0.00288*AGE + 

Error 

(0.0669) (0.0182) (0.0514) (0.00205) 

-0.600 1.319 7.219 1.407 

 

TOUCH = 0.0382*GENDER + 0.0118*LEFTRIGH + 0.290*EDUCAT + 0.00540*AGE + Error 

(0.0676) (0.0184) (0.0516) (0.00207) 

 0.565         0.643  5.632  2.604 

 

INTEREST = 0.0316*GENDER - 0.00604*LEFTRIGH + 0.249*EDUCAT + 0.00467*AGE + 

Error (0.0672) (0.0183) (0.0511) (0.00206) 

       0.470        -0.331   4.864  2.266 

Thus,  

 

• GENDER has a significant effect only for COMPLEX. 

• LEFTRIGH is significant only for NOSAY. 

• EDUCAT is significant for all the ordinal variables. 

• AGE is significant for NOSAY, VOTING, TOUCH, and INTEREST. Note that the effect 

of AGE on VOTING is negative. 

 

The output file also gives the following information about the fit of the probit regressions.  

 
PR NOSAY on GENDER – AGE: 

 

-2lnL for Full Model                                       2344.591 

 -2lnL for Intercept-Only Model                             2398.103 

 Chi-Square for Testing Intercept-Only Model                  53.512 

 Degrees of Freedom                                                4 

 



 

 PR VOTING on GENDER – AGE: 

 

-2lnL for Full Model                                       2470.648 

 -2lnL for Intercept-Only Model                             2577.465 

 Chi-Square for Testing Intercept-Only Model                 106.818 

 Degrees of Freedom                                                4 

 

 PR COMPLEX on GENDER – AGE: 

 

-2lnL for Full Model                                       2284.676 

 -2lnL for Intercept-Only Model                             2393.401 

 Chi-Square for Testing Intercept-Only Model                 108.725 

 Degrees of Freedom                                                4 

 

 

 PR NOCARE on GENDER – AGE: 

 

-2lnL for Full Model                                       2401.907 

 -2lnL for Intercept-Only Model                             2455.675 

 Chi-Square for Testing Intercept-Only Model                  53.767 

 Degrees of Freedom                                                4 

 

 PR TOUCH on GENDER – AGE: 

 

-2lnL for Full Model                                       2249.115 

 -2lnL for Intercept-Only Model                             2284.420 

 Chi-Square for Testing Intercept-Only Model                  35.305 

 Degrees of Freedom                                                4 

 

 PR INTEREST on GENDER – AGE: 

 

-2lnL for Full Model                                       2338.651 

 -2lnL for Intercept-Only Model                             2364.814 

 Chi-Square for Testing Intercept-Only Model                  26.163 

 Degrees of Freedom                                                4 

 

The second line for each regression gives a deviance but since we have no base model to 

compare it with this does not provide any information about whether the probit model fits the 

data or not. The third and fourth lines give a chi-square test of the hypothesis that all regression 

coefficients are zero. It is seen that this hypothesis is rejected for all ordinal variables. This is 

as it should be. 

 

For comparison, I give the fit statistics for the logit regressions obtained by putting LR instead 

of PR in ORD53.PRL, see file ORD53A.PRL. 

 
LR NOSAY on GENDER – AGE: 

 

-2lnL for Full Model                                       2340.790 

 -2lnL for Intercept-Only Model                             2398.103 

 Chi-Square for Testing Intercept-Only Model                  57.313 

 Degrees of Freedom                                                4 

 

 LR VOTING on GENDER – AGE: 

 

-2lnL for Full Model                                       2467.314 

 -2lnL for Intercept-Only Model                             2577.465 

 Chi-Square for Testing Intercept-Only Model                 110.152 

 Degrees of Freedom                                                4 



 

 

 LR COMPLEX on GENDER – AGE: 

 

-2lnL for Full Model                                       2279.764 

 -2lnL for Intercept-Only Model                             2393.401 

 Chi-Square for Testing Intercept-Only Model                 113.637 

 Degrees of Freedom                                                4 

 

 LR NOCARE on GENDER – AGE: 

 

-2lnL for Full Model                                       2392.594 

 -2lnL for Intercept-Only Model                             2455.675 

 Chi-Square for Testing Intercept-Only Model                  63.081 

 Degrees of Freedom                                                4 

 

 LR TOUCH on GENDER – AGE: 

 

-2lnL for Full Model                                       2244.766 

 -2lnL for Intercept-Only Model                             2284.420 

 Chi-Square for Testing Intercept-Only Model                  39.653 

 Degrees of Freedom                                                4 

 

 LR INTEREST on GENDER – AGE: 

 

-2lnL for Full Model                                       2334.276 

 -2lnL for Intercept-Only Model                             2364.814 

 Chi-Square for Testing Intercept-Only Model                  30.538 

 Degrees of Freedom                                                4 

  

Does the logit model fit better than the probit model? The answer is Yes, Yes, Yes, Yes, Yes, 

and Yes. The two models have the same number of parameters but the deviance is smaller for 

the logit model than for the probit model for all variables. Take NOSAY, for example. The 

difference in deviance is 2344.591 - 2340.790 = 3.801. Note that one can obtain the same 

number as the difference between the two chi-squares in the reverse order: 57.313 - 53.512 = 

3.801. 

12. Estimating the Joint Covariance Matrix 

To estimate the joint covariance matrix of the continuous variables underlying the ordinal 

variables and the covariates as defined in Section 6, one must use a Fixedvariables command 

(or FI command for short), see Jöreskog & Sörbom (1999a, pp. 180-183). Instead of 

Fixedvariables one can write Covariates.  In addition to all probit regressions, these 

commands give estimates of the conditional covariance matrix and the joint unconditional 

covariance matrix as defined in Section 6. File ORD54.PRL illustrates this using the Standard 

Parameterization. It also shows how one can obtain the asymptotic covariance matrix of the 

joint unconditional covariance matrix. File ORD54.PRL is 

 
Computing Covariance Matrix 

SY=USA.LSF 

Fixedvariables: GENDER - AGE 

Output MA=CM CM=USA.CM AC=USA.ACC WP 

 

All variables specified on the Covariates: line are automatically treated as continuous 

variables. All other variables are assumed to be ordinal. 

 



 

The output file ORD54.OUT gives the conditional covariance matrix as 

 

 
Conditional Covariance Matrix    

  

 

               NOSAY     VOTING    COMPLEX     NOCARE      TOUCH   INTEREST 

            --------   --------   --------   --------   --------   -------- 

    NOSAY     1.000  

  

   VOTING     0.284      1.000  

             (0.034) 

              8.312  

  

  COMPLEX     0.270      0.204      1.000  

             (0.035)    (0.035) 

              7.746      5.766  

  

   NOCARE     0.567      0.223      0.379      1.000  

             (0.027)    (0.035)    (0.032) 

             21.089      6.412     11.720  

  

    TOUCH     0.367      0.206      0.274      0.637      1.000  

             (0.033)    (0.035)    (0.035)    (0.024) 

             11.106      5.824      7.874     26.169  

  

 INTEREST     0.460      0.200      0.305      0.657      0.674      1.000  

             (0.030)    (0.035)    (0.034)    (0.023)    (0.023) 

             15.117      5.677      8.963     28.183     29.221  

 

In this case, when the Standard Parameterization is used, this is the correlation matrix of the 

error terms. All correlations are highly significant. This means that the covariates alone do 

not account for the correlations of the ordinal variables (or more correctly the variables 

underlying the ordinal variables). This is not surprising since we know from the second 

example in this set that we need the latent variables Efficacy and Respons to account for these 

correlations. In Section 13 I will use these latent variables as well. 

 

The output ORD54.OUT also gives the joint covariance matrix of the variables underlying the 

ordinal variables and the covariates. This is too large to list here. It is saved in the file USA.CM   

and its asymptotic covariance matrix is saved in the file USA.ACC. The covariance matrix 

USA.CM is an unconstrained covariance matrix just as a sample covariance matrix for 

continuous variables.  It can therefore be used for modeling in LISREL just as if all variables 

were continuous. The only restriction is that the covariates must not be treated as indicators 

of latent variables. In LISREL, one can estimate the model either by WLS using the inverse of 

USA.ACC as a weight matrix or by ML using USA.ACC to correct standard errors and chi-

square for non-normality. 

 

In the second example, I used the ordinal Efficacy variables to establish a measurement model 

for the two latent variables Efficacy and Respons. Now I will investigate to what extent the 

covariates affect these two latent variables. To investigate this, one can use a MIMIC model 

described in Section 13. 

 



 

13. A MIMIC Model for Efficacy and Respons 

The idea of a MIMIC model is that a set of possibly explanatory variables (covariates) affects 

latent variables which are indicated by other observed variables, in this case ordinal variables. 

Thus there are multiple indicators and multiple causes of latent variables, see Jöreskog & 

Goldberger  (1975). For examples of MIMIC models with continuous indicators see Jöreskog    

Sörbom (1999b). The MIMIC model considered here is shown in Fig. 10. 

 

 

  
Figure 10: MIMIC Model for Effcacy and Respons 

 

A SIMPLIS command file for estimating the model in Fig. 10 is ORD55.SPL: 

 
MIMIC Model 

Observed Variables: NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST  

GENDER LEFTRIGH EDUCAT AGE 

Covariance Matrix from File USA.CM 

Asymptotic Covariance Matrix from File USA.ACC 

Sample Size: 1076 

Latent Variables: Efficacy Respons 

Relationships: 

   NOSAY COMPLEX NOCARE =  Efficacy 

   NOCARE TOUCH INTEREST = Respons 

   NOSAY = 1*Efficacy 

   INTEREST = 1*Respons 

   Efficacy Respons = GENDER LEFTRIGH EDUCAT AGE 

Let the errors of Efficacy and Respons correlate 

Path Diagram 

End of Problem 

 



 

The output gives the structural equations as 

 
Efficacy =  - 0.0717*GENDER + 0.0251*LEFTRIGH + 0.381*EDUCAT + 0.00225*AGE, Errorvar.= 

0.435  , R² = 0.131 

 Standerr     (0.0497)        (0.0135)          (0.0406)       (0.00151)               

(0.0411)             

 Z-values     -1.441           1.860             9.392          1.485                   

10.572              

 P-values      0.149           0.063             0.000          0.137                   0.000    

  

  Respons = 0.0352*GENDER + 0.00277*LEFTRIGH + 0.257*EDUCAT + 0.00476*AGE, Errorvar.= 

0.701  , R² = 0.0430 

 Standerr  (0.0567)        (0.0154)           (0.0431)       (0.00174)               (0.0448)              

 Z-values   0.621           0.180              5.962          2.738                   15.633               

 P-values   0.534           0.858              0.000          0.006                   0.000    

 

which shows that GENDER has a significant effect on Efficacy and EDUCAT has significant 

effects on both Efficacy and Respons. LEFTRIGH and AGE have no significant effects on 

either of the latent variables. The fact that they are non-significant does not mean they do not 

exist, only that the sample size is not sufficiently large to make them significant. 

 

The model fits the data reasonably well as judged by the following fit statistics.  For this 

conclusion I use the information about RMSEA and the guidelines of Browne & Cudeck 

(1993). 

 
  Goodness-of-Fit Statistics 

 

 Degrees of Freedom for (C1)-(C2)                      15 

 Maximum Likelihood Ratio Chi-Square (C1)              94.022 (P = 0.0000) 

 Browne's (1984) ADF Chi-Square (C2_NT)                92.916 (P = 0.0000) 

  

 Estimated Non-centrality Parameter (NCP)              79.022 

 90 Percent Confidence Interval for NCP                (52.089 ; 113.457) 

  

 Minimum Fit Function Value                            0.0875 

 Population Discrepancy Function Value (F0)            0.0735 

 90 Percent Confidence Interval for F0                 (0.0485 ; 0.106) 

 Root Mean Square Error of Approximation (RMSEA)       0.0700 

 90 Percent Confidence Interval for RMSEA              (0.0568 ; 0.0839) 

 P-Value for Test of Close Fit (RMSEA < 0.05)          0.00692 

 


