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This document was originally published as a series of five notes on the analysis of ordinal variables at the
website of Scientific Software International, Inc. (SSI), in Karl’s Corner:

http://www.ssicentral.com/lisrel /corner.htm

The first note appeared in August 2001, shortly after the release of LISREL 8.50, a major improvement
of LISREL 8.3, the previous version of the program. The fifth and final note appeared in June 2002. The
development of this material gave rise to further improvements in the program, resulting in the release of
LISREL 8.51 in October 2001 and the release of LISREL 8.52 in June 2002.

With one exception, all the examples discussed in this document can be run with the student edition of
LISREL 8.52, which is available for free download at SSI's website: http://www.ssicentral.com.

After successful installation, both the full edition and the student edition of LISREL 8.52 feature a folder
(ORDINAL) with all the files needed to run the examples. Those example files as well as this document
(in PDF format) can be downloaded from SSI's website.






Contents

1 Preliminary Analysis 1
1.1 The Political Action Survey . . . . . . . . . . . . .. 1
1.2 Data Screening . . . . . . . . .. 2
1.3 Missing Values . . . . . . . . . e 3

1.3.1 Listwise Deletion . . . . . . . . .. . . L 4
1.3.2 Pairwise Deletion . . . . . . . .. Lo 5
1.3.3 Imputation . . . . .. .. . . 6
1.4 Using Interactive LISREL . . . . . . . . . . . .. . ... . .. . 8
141 Get Yourselfa PSF File . . . . . . . ... .. o 9
1.4.2 Imputation and Data Screening . . . . . . . . .. .. ... ... 9

2 Cross-Sectional Data 10
2.1 Ordinal Variables and Underlying Variables . . . . . . . .. .. ... .. ....... 10
2.2 Polychoric Correlations . . . . . . . . . . . e 11
2.3 Testing Underlying Bivariate Normality . . . . .. ... ... ... ... ... .... 13
2.4 Estimating the Polychoric Correlations and their Asymptotic Covariance Matrix . . 14
2.5 Fitting and Testing the Model . . . . . . . . .. .. . . o 21
2.6 How to Become a Chi-square Collector . . . . . . . ... ... .. ... ....... 22
2.7 Alternative Parameterization . . . . . . . . . ... ... . 23

3 Longitudinal Data 26
3.1 Equal Thresholds . . . . . . . . . . e 27
3.2 A Two Variables Example of Equal Thresholds . . . . ... ... ... ... .... 28
3.3 Estimating the Mean Vector and Covariance Matrix under Equal Thresholds . . .. 29
3.4 A Panel Model for Efficacy . . . ... ... ... o 31

3.4.1 Input . . . . . e 32
3.42 Output . . ... . 34
3.4.3 Testing Sequence . . . . . . . ... e e 36
3.4.4 Testing Equality of Variances . . . . . . . . . . . ... ... ... .. 37
3.4.5 Error Variances and Reliabilities . . . . . . ... ... ... ... ... ... 38
3.4.6 LISREL Notation . . . . ... ... ... . ... 38
3.4.7 LISREL Syntax . . . . . . . . . i ittt e 39
3.5 Four-Wave Models . . . . . . . .. . e 40
3.5.1 A Four-Wave Model with a Single Latent Variable . . ... ... ....... 40
3.5.2 A Four-Wave Model with Two Latent Variables . . . . . . .. ... ... ... 44

4 Multiple Groups 45
4.1 Data Screening . . . . . . . ... e e 46
4.2 PRELIS Step . . . . . . . o e e 49
4.3 LISREL Step . . . . . . . o o e 50

4.4 Conclusion . . . . . . o o e e e e 57



5 Covariates
5.1 Univariate Probit Regression . . . . . . . ... ... ... .. ..
5.2 Univariate Logit Regression . . . . . . . . .. . .. .. L o .
5.3 Testing the Model . . . . . . . . . .
5.4 Bivariate Probit Regression . . . . . . . . .. .o o
5.5 Multivariate Probit Regression . . . . . . ... . ... ... L o L.
5.6 PRELIS Implementation . . . . . . . . . . . . . .. ...
57 A Small Example . . . . . . ...
5.8 Data Screening . . . . . . . L e
5.9 Probit Regression of NOSAY . . . . . . .. ...
5.10 Probit and Logit Regression of All Efficacy Variables . . . . . ... ... ... ... ..
5.11 Estimating the Joint Covariance Matrix . . . . . . . . .. ... ... ... ....
5.12 A MIMIC Model for Efficacy and Respons . . . . . . . . .. ... ... ... .....

References
Appendix 1: Derivation of the RMSEA Measure

Appendix 2: Questions and Answers

57
58
61
62
62
64
65
65
67
68
70
72
73

75

76

77



1 Preliminary Analysis

Observations on an ordinal variable represent responses to a set of ordered categories, such as a
five-category Likert scale. It is only assumed that a person who selected one category has more of
a characteristic than if he/she had chosen a lower category, but we do not know how much more.
Ordinal variables are not continuous variables and should not be treated as if they are. It is common
practice to treat scores 1, 2, 3, ... assigned to categories as if they have metric properties but this
is wrong. Ordinal variables do not have origins or units of measurements. Means, variances, and
covariances of ordinal variables have no meaning. The only information we have are counts of cases
in each cell of a multiway contingency table. To use ordinal variables in structural equation models
requires other techniques than those that are traditionally employed with continuous variables.

In this paper I will illustrate how one can analyze ordinal variables with PRELIS and LISREL.
Some of the features I will describe have been available for some time but have not been properly
explained and illustrated. Other features are new in PRELIS 2.5 and LISREL 8.5.

1.1 The Political Action Survey

To illustrate the data analysis in this paper I use the Political Action Survey which was a cross-
national survey designed and carried out to obtain information on conventional and unconventional
forms of political participation in industrial societies (Barnes & Kaase, 1979).

The first Political Action Survey was conducted between 1973 and 1975 in eight countries: Britain,
West Germany, The Netherlands, Austria, the USA, Italy, Switzerland, and Finland. New cross-
sections including a panel were obtained during 1980-81 in three of the original countries: West
Germany, The Netherlands, and the USA. All data was collected through personal interviews on
representative samples of the population 16 years and older.!

The Political Action Survey contains several hundred variables. For the present purpose of illus-
tration the six variables representing the operational definition of political efficacy will be used.

The conceptual definition of political efficacy is the feeling that individual political action does
have, or can have, an impact upon the political process (Campbell, et al., 1954). The operational
definition of political efficacy is based on the responses to the following six items:?

NOSAY People like me have no say in what the government does

VOTING Voting is the only way that people like me can have any say about how the government runs
things

COMPLEX Sometimes politics and government seem so complicated that a person like me cannot really
understand what is going on

NOCARE I don’t think that public officials care much about what people like me think

TOUCH Generally speaking, those we elect to Congress in Washington lose touch with the people
pretty quickly

INTEREST Parties are only interested in people’s votes but not in their opinions

Permitted responses to these statements were

AS agree strongly

1The data was made available by the Zentralarchiv fiir Empirische Sozialforschung, University of Cologne. The
data was originally collected by independent institutions in different countries. Neither the original collectors nor the
Zentralarchiv bear any responsibility for the analysis reported here.

2These are the questions that were used in the USA. In Britain, the same questions were used with Congress in
Washington replaced by Parliament. In the other countries the corresponding questions were used in other languages



A agree

D disagree

DS disagree strongly
DK don’t know

NA no answer

These responses were coded 1, 2, 3, 4, 8, 9, respectively.

1.2 Data Screening

Most raw data from surveys are downloaded from large files at data archives and stored on media
like diskettes or tapes for analysis. The data file may contain many variables on many cases. Before
doing more elaborate analysis of the data, it is important to do a careful data screening to check
for coding errors and other mistakes in the data. Such a data screening will also reveal outliers and
other anomalies, and detect if there are specific patterns of missing values in the data. The data
screening gives a general idea of the character and quality of the data.

PRELIS 2 automatically does such a data screening by determining for each variable the distinct
data values present in the data and the number of each. If a variable has more than 15 distinct
values, PRELIS 2 will group them in intervals and determine the number in each interval.

The data on the efficacy variables for the USA are available in the file EFFICACY.RAW in the
1is850ex subdirectory. The data values have been recorded with one space before each number,
i.e., with two columns per variable.

There are two ways of running LISREL 8.5:

e From syntax files (in this case PRELIS syntax files)

e Using the point and click Windows interface as described in the new Interactive LISREL:
User’s Guide (Du Toit & Du Toit, 2001)

In the following I illustrate the examples using syntax files. In Section 1.4 I describe briefly how
one can do the same thing using Interactive LISREL.

A simple PRELIS input file for screening the data is as follows (ORD11.PR2):

EFFICACY: PRELIS Run 1
'Data Screening of Political Action Data for the USA:
!Cross-Section Data - Variables: 136 - 141 (Political Efficacy Variables)

Data Ninputvariables = 6

Labels

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST
Rawdata=EFFICACY.RAW

Output

Note that the number of cases (records of data) need not be specified; PRELIS determines the
sample size, all distinct data values for each variable and the absolute and relative frequency of
occurrence of each value. PRELIS also gives a bar chart showing the percentage of each data value.
The output file shows that PRELIS has correctly determined

e that there are 1719 cases in the data,

e that there are six distinct values on each variable, coded 1, 2, 3, 4, 8, 9,



Table 1: Univariate Marginal Distributions

Frequency Percentage
AS A D DS DK NA| AS A D DS DK NA
NOSAY 175 518 857 130 29 10 | 10.2 30.1 499 7.6 1.7 0.6
VOTING | 283 710 609 80 26 11 (165 413 354 47 15 0.6
COMPLEX | 343 969 323 63 9 12 1200 564 188 3.7 05 0.7
NOCARE | 250 701 674 57 20 17 | 145 408 392 33 12 1.0
TOUCH 273 881 462 26 60 17 {159 513 269 15 35 1.0
INTEREST | 264 762 581 31 62 19 | 154 443 338 1.8 36 1.1

e the distribution of these values.

The results are presented in compact form in Table 1.

These results agree exactly with those given in the Political Action Codebook, pp. 174-180. Thus,
we have a solid base to continue our analysis. If something had been wrong in the data, it would
have been detected by this kind of data screening.

In the Political Action Survey the responses Agree Strongly, Agree, Disagree, Disagree Strongly,
Don’t Know, No Answer to the political efficacy items were coded 1, 2, 3, 4, 8, 9, respectively. One
can assign category labels to category codes by including the following line in the input file (see file
ORD11.PR2):

CLabels NOSAY - INTEREST 1=AS 2=A 3=D 4=DS 8=DK 9=NA

1.3 Missing Values

Obviously, the responses Don’t Know and No Answer cannot be used as categories for the ordinal
scale that goes from Agree Strongly to Disagree Strongly. The usual way to deal with such responses
is to declare them as missing values and include some treatment of missing values in the analysis.
A lengthy discussion of this issue is beyond the scope of this paper. LISREL 8.50 provides multiple
imputation for continuous normally distributed variables with data missing at random (MAR), see
pp. 165-170 and 387-388 in the Interactive LISREL: User’s Guide (Du Toit & Du Toit, 2001). One
can also estimate a LISREL model directly from raw data with full information maximum likelihood
(FIML) under multivariate normality and MAR, see pp. 234-250 and 388-389 in the Interactive
LISREL: User’s Guide (Du Toit & Du Toit, 2001). Although very powerful under the assumptions
made, these procedures should not be used routinely to solve missing data problems. They cannot
(should not) be used with categorical variables.

One should try to take the mechanism that generates the missing data into account. Why are data
missing on a particular variable? Does the probability of a missing value on this variable depend on
the values of the variable itself? If so, MAR does not hold. Does the probability of a missing value
on this variable depend on other variables? If so, MAR may hold. But if one can find other variables
that can be used to predict the missing values these can be taken into account.

One general procedure to do this is the matching procedure described in Section 1.3.3. This can
be used with ordinal or continuous variables with any distribution and does not require MAR. For
continuous variables and data missing completely at random (MCAR), this procedure, also called
similar response pattern imputation, was evaluated by Brown (1994) and was found to work well as
compared with several other procedures, including listwise and pairwise deletion.

In the following, I consider these three procedures in turn. I do not recommend that listwise and
pairwise deletion be used to solve the missing data problem unless you have MCAR, and even with
MCAR, I do not recommend computing covariance or correlation matrices with pairwise deletion. I
include the listwise and pairwise procedures here as descriptive devices as they provide further insight



into the missing data problem. Computation of covariance and correlation matrices will be considered
in Section 2.

1.3.1 Listwise Deletion

Missing values do not seem to be a serious problem in this example. As seen in Table 1, the
percentage of Don’t Know answers varies from 0.5% for COMPLEX to 3.6% for INTEREST. More people
answer Don’t Know for TOUCH and INTEREST than for the other items. The percentage of No Answer
responses varies from 0.6% for NOSAY and VOTING to 1.1% for INTEREST. Listwise deletion means
that all cases with Don’t Know and No Answer responses will be excluded in the analysis. This is
illustrated in the following input file (ORD12.PR2):

EFFICACY: PRELIS Run 2

'Data Screening of Political Action Data for the USA:

!Cross-Section Data - Variables: 136 - 141 (Political Efficacy Variables)
'Listwise Deletion of Missing Values

Data Ninputvariables = 6 Missing = 8,9

Labels

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST

Rawdata=EFFICACY.RAW

CLabels NOSAY - INTEREST 1=AS 2=A 3=D 4=DS

Output

This gives the following results.
Number of Missing Values per Variable

NOSAY VOTING  COMPLEX NOCARE TOUCH INTEREST
39 37 21 37 7 81

Distribution of Missing Values

Total Sample Size = 1719
Number of Missing Values 0 1 2 3 4 5 6
Number of Cases 1554 106 26 18 4 2 9

The distribution of missing values over variables are given first. It is seen that there are only 21
missing values on COMPLEX whereas there are 77 and 81 on TOUCH and INTEREST, respectively. As
we already know that most of the missing values on TOUCH and INTEREST are Don’t Know rather
than No Answer responses, it seems that these items are considered by the respondents to be more
difficult to answer.

Further down in the output is the distribution of missing values over cases. It is seen that there
are only 1554 out of 1719 cases without any missing values. The other 165 cases have one or more
missing values. With listwise deletion this is the loss of sample size that will occur. Most, or 106, of
the 165 cases with missing values have only one missing value. But note that there are 9 cases with
6 missing values, i.e., these cases have either not responded or have responded Don’t Know to all of
the six items. These 9 cases are of course useless for any purpose considered here.

The rest of the output (not shown here) gives the distribution of the 1554 cases of the listwise
sample over the four ordinal categories for each variable. It is seen that most people answer either
agree or disagree. Fewer people answer with the stronger alternatives.



1.3.2 Pairwise Deletion

A more comprehensive data screening can be done by pairwise deletion. To do so, add the specifica-
tion Treatment = Pairwise to the Data line and put MP (for missing patterns) on the Output line
(see file ORD12.PR2).

This gives the following results:

Effective Sample Sizes
Univariate (in Diagonal) and Pairwise Bivariate (off Diagonal)

NOSAY VOTING COMPLEX NOCARE TOUCH  INTEREST
NOSAY 1680
VOTING 1658 1682
COMPLEX 1670 1674 1698
NOCARE 1655 1656 1675 1682
TOUCH 1620 1627 1635 1622 1642
INTEREST 1619 1621 1632 1622 1598 1638

This table gives the univariate and bivariate sample sizes. Thus, there are 1680 cases with complete
data on NOSAY but only 1638 cases with complete data on INTEREST. There are 1658 cases with
complete data on both NOSAY and VOTING but only 1598 cases with complete data on both TOUCH and
INTEREST.

The same kind of information, but in terms of percentage of missing data instead, is given in the
following table.

Percentage of Missing Values
Univariate (in Diagonal) and Pairwise Bivariate (off Diagonal)

NOSAY VOTING COMPLEX NOCARE TOUCH  INTEREST
NOSAY 2.27
VOTING 3.55 2.15
COMPLEX 2.85 2.62 1.22
NOCARE 3.72 3.66 2.56 2.15
TOUCH 5.76 5.35 4.89 5.64 4.48
INTEREST 5.82 5.70 5.06 5.64 7.04 4.71

The next lines give all possible patterns of missing data and their sample frequencies. Each column
under Pattern corresponds to a variable. A 0 means a complete data and a 1 means a missing data.

Missing Data Map

Frequency Pattern

1564 000000
16 100000
12 010000

1 110000
4 001000
11 000100
31 000010
1 010010
2 110010
1 011010
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Thus, there are 1554 cases with no missing data, there are 16 cases with missing values on variable 1
only, and 1 case with missing values on both variable 1 and 2, etc. Note again that there are 9 cases
with missing values on all 6 variables.

This kind of information is very effective in detecting specific patterns of missingness in the data.
In this example there are no particular patterns of missingness. The only striking feature is that
there are more missing values on TOUCH and INTEREST. We know from the first run that these are
mainly Don’t know responses.

1.3.3 Imputation

Another way to deal with the problem of missing values is by imputation, i.e., by substituting a
real scale value 1, 2, 3, or 4 for the missing values 8 and 9. PRELIS has a procedure for imputing
missing values on a variable by matching on other variables. This procedure is based on the idea
that if person a has a missing value on variable ¢ and has the same response pattern as person b
on a set of matching variables, it is likely that he/she should have the same value on variable ¢ as
person b. Therefore, b’s value on variable ¢ is substituted for a’s missing value on variable 7. If
there are several persons with the same response patterns on the matching variables and with the
same values on variable i, there is an even stronger case for substituting this value for a’s value on
variable i. For further details, see the PRELIS 2 User’s Reference Guide pp. 155-160.

As most of the missing values are on the variables TOUCH and INTEREST, one idea to increase the
listwise sample size is to impute missing values on TOUCH and INTEREST by matching on the other
variables. This is merely an illustration. To do imputation the following PRELIS input file can be
used (see file ORD13.PR2):

EFFICACY: PRELIS Run 3

Cross-Section Data - Variables: 136 - 141 (Political Efficacy Variables)
Imputation of Missing Values on TOUCH and INTEREST

Listwise Deletion of Missing Values after Imputation

Saving Imputed Data in EFFICACY.IMP

Data Ninputvariables = 6 Missing = 8,9

Labels

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST

Rawdata=EFFICACY.RAW

Impute (TOUCH INTEREST) (NOSAY - NOCARE) XN



CLabels NOSAY - INTEREST 1=AS 2=A 3=D 4=DS
Output Rawdata = EFFICACY.IMP

Missing values on TOUCH and INTEREST are only imputed if matching cases are found. Therefore,
there may still be missing values on TOUCH and INTEREST after imputation.
will only impute “legal” values, i.e., values 1, 2, 3, and 4, not values such as 2.5 or 3.4. All the
missing values on NOSAY — NOCARE are still there after imputation. In this example, all missing values
remaining after imputation are eliminated by listwise deletion and the listwise sample is saved in
the file EFFICACY.IMP. The specification Width = 2 Ndecimals
written in two-column fields without any decimals. Hence, the file EFFICACY.IMP can be read in free

format. This file has no missing values in it.

The output lists all imputed cases as follows:

Imputations for

Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case

28
29
238
336
418
530
578
600
604
684
951
963
985
1189
1268
1311
1541
1578
1684
1704

imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed

TOUCH

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value

Imputations for INTEREST

Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case
Case

12
28
48
67
332
418
469
510
530
578
598
653
680
796
951
1156
1227
1232

imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed
imputed

with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with
with

value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
value
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(Variance
(Variance
(Variance
(Variance

(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance
(Variance

Width = 2 Ndecimals

Ratio
Ratio
Ratio
Ratio
Ratio
Ratio
Ratio
Ratio
Ratio
Ratio
Ratio
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Ratio
Ratio
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Ratio
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Case 1249 imputed with value 3 (Variance Ratio = 0.435), NM= 27

Case 1368 imputed with value 2 (Variance Ratio = 0.414), NM= 76

Case 1477 imputed with value 3 (Variance Ratio = 0.266), NM= 7

Case 1516 imputed with value 2 (Variance Ratio = 0.323), NM= 145

Case 1556 imputed with value 3 (Variance Ratio = 0.497), NM= 6
2 0

Case 1704 imputed with value (Variance Ratio = 0.240), NM= 24

Here NM is the number of matching cases and the Variance Ratio is the ratio between the variance
of variable i for the matching cases and the total variance of variable 7 for all cases without missing
values.

After imputation, the distribution of missing values over variables is:

Number of Missing Values per Variable After Imputation

NOSAY VOTING  COMPLEX NOCARE TOUCH INTEREST
39 37 21 37 57 57

Compared with the previous output we have gained 20 cases on TOUCH and 24 cases on INTEREST.
These are the 44 cases just listed.

The distribution of missing values over cases is now:

Distribution of Missing Values

Total Sample Size = 1719
Number of Missing Values 0 1 2 3 4 5 6
Number of Cases 1589 80 17 18 4 2 9

Listwise Deletion

Total Effective Sample Size = 15689

The listwise sample size after imputation is 1589. This was 1554 in the previous output. Altogether
we have gained 35 cases with complete data. Of these 35 cases, 26 had 1 missing value and 9 had 2
missing values. All these missing values were imputed.

The analysis that follows in Section 2 will be based on the data on these 1589 cases stored in
the file EFFICACY . IMP. The univariate distributions of the six political efficacy items estimated from
these data are given in Table 2.

Table 2: Univariate Marginal Distributions

Frequency Percentage
AS A D DS | AS A D DS
NOSAY 163 492 811 123|103 31.0 51.0 7.7
VOTING | 275 658 580 76 [17.3 414 36.5 4.8
COMPLEX | 314 905 309 61 | 19.8 57.0 194 3.8
NOCARE | 241 656 636 56 | 15.2 41.3 40.0 3.5
TOUCH 261 857 446 25 [ 164 539 28.1 1.6
INTEREST | 260 740 560 29 | 164 46.6 352 1.8

1.4 Using Interactive LISREL

Here I describe briefly how to do data screening and imputation using Interactive LISREL. For further
information see the Interactive LISREL: User’s Guide (Du Toit & Du Toit, 2001).



1.4.1 Get Yourself a PSF File

To use Interactive LISREL, the first order of business is to get a PRELIS system file (PSF file) for the
raw data in file EFFICACY.RAW. To do this, go through the following steps:

1.

2.

Select Import Data in Free Format in the File Menu.

Go to the 1is850ex subdirectory where the file EFFICACY.RAW is and choose Free Format
Data (*.raw) under Files of Type. Open EFFICACY.RAW.

In the Enter Number of Variables Dialog Box, specify 6 variables and click OK.
LISREL then shows the data in a spread sheet. This is the way the PSF file is displayed.
To complete the specification of the PSF file, go to the Data Menu.

(a) Select Define Variables and type the names of the variables: NOSAY, VOTING, etc.

(b) Still in the Define Variables Dialog Box, select Variables Type. Select all variables
and define them as ‘Ordinal.” Click OK.

(c) Still in the Define Variables Dialog Box, select Category Labels. Select all variables
and define 1 = AS, 2 = A, etc. Click OK.

(d) Still in the Define Variables Dialog Box, select Missing Values. Specify 8 and 9 as
global missing values. As deletion method choose listwise or pairwise. Click OK.

(e) Still in the Define Variables Dialog Box, click OK.

1.4.2 Imputation and Data Screening

Once the PSF has been defined, it can be displayed by selecting Open in the File Menu and
choosing PRELIS Data (*.psf) under Files of Type. Then double clicking the filename will
display the PSF file in spreadsheet form.

To do imputation and data screening follow the following steps:

1.
2.

With the PSF file displayed, select the Statistics Menu and then Impute Missing Values.

In the Impute Missing Values dialog box, select TOUCH and INTEREST and click the first
Add button. This defines the variables to be imputed. Then select NOSAY — NOCARE and click
the third Add button. This defines the matching variables. Select List only successful
imputations and then click the Output Options button.

To save the imputed data as a PSF file, select the Data Dialog Box within the Qutput Dialog
Box and check Save the transformed data to file. Then type a file name with suffix PSF,
for example EFFICACY.PSF. Then click OK.

You will be returned to the Impute Missing Values dialog box. To generate a PRELIS syntax
file click the Syntax button. Otherwise, click the Run button.

A much easier way to generate the file EFFICACY.PSF after imputation is to add the specification
RA=EFFICACY.PSF on the Output line in PRELIS Run 3, see file ORD13A.PR2.

The generated file EFFICACY.PSF corresponds exactly to the file EFFICACY.IMP and the results
in the output file should be the same as for the second PRELIS run described in Section 1.3.3. As

will be illustrated in the next section, the file EFFICACY.PSF can be used for further analysis using
Interactive LISREL.



2 Cross-Sectional Data

In Section 1 I introduced a small data set of six variables from the cross-sectional USA sample of
the Political Action Survey. After imputation of some missing values and listwise deletion after
imputation I ended up with 1589 cases with complete data on all six variables. See page 1 for a
descripton of the variables.

Political scientists assume that these items measure a uni-dimensional trait called political efficacy
which has been defined as the feeling that individual political action does have, or can have, an
impact upon the political process (Campbell, et al., 1954). In this section, I will demonstrate how
the assumption of uni-dimensionality can be tested. I will also describe the statistical model used in
PRELIS and LISREL for this purpose and discuss the assumptions of this model.

2.1 Ordinal Variables and Underlying Variables

Observations on an ordinal variable represent responses to a set of ordered categories, such as a four-
category Likert scale. It is only assumed that a person who selected a specific category has more of
a characteristic than if he/she had chosen a lower category, but we do not know how much more.
Ordinal variables are not continuous variables and should not be treated as if they are. It is common
practice to treat scores 1, 2, 3, ... assigned to categories as if they have metric properties but this
is wrong. Ordinal variables do not have origins or units of measurements. Means, variances, and
covariances of ordinal variables have no meaning. The only information we have are counts of cases
in each cell of a multiway contingency table. To use ordinal variables in structural equation models
requires other techniques than those that are traditionally employed with continuous variables.

For each ordinal variable z (which may be a y- or a z-variable in LISREL sense), it is assumed that
there is an wunderlying continuous variable z*. This continuous variable z* represent the attitude
underlying the ordered responses to z and is assumed to have a range from —oco to 4+o0o. The
underlying variable z* can be used in structural equation modeling, not the observed variable z. The
underlying variable assigns a metric to the ordinal variable.

If z has m categories labeled 1,2, ..., m, the connection between z and z* is
z2=1 <= T_1<z"<T, 1=1,2,...,m,

where

—00=Tp <M1 <T2 < ...<Tm-1 < Ty = +00,
are parameters called threshold values. With m categories, there are m — 1 threshold parameters
T1,72y s Tm—1-

Because we have only ordinal information, the distribution of z* is determined only up to a
monotonic transformation. In principle, one can choose any continuous distribution for z*. However,
any continuous variable with a density and a distribution function can be transformed by a monotonic
transformation to a normal distribution. It is therefore convenient to choose the standard normal
distribution with density function ¢(u) and distribution function ®(u) for z*. Then the probability
of a response in category 7 is

M= Prlz—i] = Prlr_1 < 2* < 7] = /T $(w)du = B(rs) — B(r_1) , (1)

so that

=0 Y+t W), i=1,....m—1, (2)
where ! is the inverse of the standard normal distribution function. The quantity (m+mo+- - -+m;)
is the probability of a response in category ¢ or lower.

The probabilities 7; are unknown population quantities. In practice, m; can be estimated consis-
tently by the corresponding percentage p; of responses in category i which is given in the PRELIS
output. Then, estimates of the thresholds can be obtained as

K= Mprtpet--+p),  i=1...,m—1. (3)
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The quantity (p1 + p2 + - -+ + p;) is the proportion of cases in the sample responding in category ¢
or lower. Equation (3) is in fact the maximum likelihood estimator of 7; based on the univariate
marginal sample data. But the model is saturated; there are m — 1 parameters 7; and there are m —1
independent sample proportions p;. The fit is perfect since

ﬁ'i = (I)(ﬁ) - (I)(ﬁ'_l) =P -

The estimation of thresholds is illustrated in Fig. 1. Suppose there are 8, 41, 39, and 12% re-
sponding in category 1, 2, 3, and 4, respectively. Cumulatively this is 8, 49, 88, 100%. The first
threshold is located where the area under the normal to the left of the threshold is 8%. The second
threshold is located where the area under the normal to the left of the threshold is 49%. The third
threshold is located where the area under the normal to the left of the threshold is 88%. This gives
approximately

T = —1.404, To = —0.025, 73 = 1.075 .
A
t } >z
8% 41% 39% 12%
8% 49% 88% 100%

Figure 1: lllustrating Thresholds

2.2 Polychoric Correlations

Let z; and z; be two ordinal variables with m; and mso categories, respectively. Their marginal
distribution in the sample is represented by a contingency table

ni11 ni2 o Mime
n21 22 st M2my

9
nmll nm12 e nm1m2

where n;; is the number of cases in category ¢ on variable 1 and in category j on variable 2. Since the
underlying variables 2z and z3 are normal with zero means, unit variances, it is natural to assume
that zi and z3 are standard bivariate normal with correlation p. However, unlike the univariate
marginal normality of zf and 25, which cannot be falsified using univariate marginal data, the
bivariate normality of 2] and 25 is an assumption which is testable using bivariate marginal data.
Normality of 2} and z5 does not imply bivariate normality of 27 and z3.

The polychoric correlation is the correlation p in the bivariate normal distribution of the underlying
variables 2] and z3. If m; = my = 2 this is called a tetrachoric correlation.

Let 7'1(1), 7'2(1), - (1)71 be the thresholds for variable 2] and let 7'1(2), 72(2), - ,7'7(32)71 be the thresh-

7Tm1
olds for variable z3. Then the polychoric correlation can be estimated by maximizing the log-

11



likelihood of the multinomial distribution,

mi1 ma
InL = Z Znij log m;;(6) ,
i=1 j=1
where
ey e
7i;(0) = Prizy = i,20 = j] = /(1) /<2> ¢2(u,v)dudv , (4)
Tic1 YT
and 2 |
02 (u,v) 1wl 2wte®)

V) = ———
2my/(1 = p?)
is the standard bivariate normal density with correlation p.

The model defined by (4) expresses the mimgy probabilities m;;(6) as functions of the parameter
vector ) ) )
1) (1 1
0= (7'1( ),7'2( ), . ,7'7(n1)_1,7'1( ),7'2( ), e ,TT(nQ)_l,p) , (5)
consisting of the thresholds for the two variables and the polychoric correlation p. Maximizing In L
is equivalent to minimizing the fit function

F(0) = ZZPU‘ [np;; —Inm;(0)] = sz‘j In[p;;/mi;(0)], (6)
i=1 j=1 ij

where p;; = n;; /N are the sample proportions.

The estimation of the polychoric correlation is illustrated in Fig. 2. Here the numbers are the
sample proportions and the vertical and horizontal lines represent the thresholds. The ellipse repre-
sents the standard bivariate normal distribution with correlation p. The value of p determines the
orientation and concentration of the ellipse. This can be fitted to the sample proportions.

5.2 34.5] 13.9 0.3

7.2 119.5 9

=~

Y

Figure 2: Estimating the Polychoric Correlation

PRELIS estimates the parameters by a two-step procedure, see Olsson (1979). In the first step, the
thresholds are estimated from the univariate marginal distributions by (3). In the second step, the
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polychoric correlations are estimated from the bivariate marginal distributions by minimizing (6) for
given thresholds. The parameters can also be estimated by a one-step procedure. It is no problem to
estimate the thresholds and the polychoric correlations simultaneously, but this is not necessary and
it is not practical. It is not necessary because the estimates are almost the same as with the two-step
procedure. It is not practical because it would yield different thresholds for the same variable when
paired with different variables. For an example, see Section 2.3.

2.3 Testing Underlying Bivariate Normality

To test the model, one can use the likelihood ratio (LR) test statistic

mi1 ma2 mi1 ma

Xtr = 2D Y nijIn(pij/7i;) = 2N Y > pijIn(p; /i) = 2NF(6) (7)

i=1 j=1 i=1 j=1

where 0 is the estimated parameter vector and 7;; = le(é) Hence, this x? is just 2N times the
minimum value of the fit function (6). If the model holds, this is distributed approximately as x>
with degrees of freedom

d:(mlmg—l)—(m1—1)—(m2—1)—1=m1m2—m1—m2. (8)

Alternatively, one can use the goodness-of-fit (GF) test statistic

mi1 mo m1 M2

Xer = Y > l(nij — Nay)? [ (N#ig)) = N> Y (pi — i) /7 - 9)

i=1 j=1 i=1 j=1

If the model holds, both statistics (7) and (9) have the same asymptotic distribution. In practice,
when the fit is good the LR and GF statistic are quite close but when the model does not fit well
they can be quite different.?

If my = mge =2, d = 0. That is, if both variables are dichotomous, the degrees of freedom is zero,
the model is saturated and it is not possible to test underlying bivariate normality.

Because of the two-step procedure used in PRELIS, the xZr reported by PRELIS slightly over-
estimates the correct asymptotic chi-square. However, this is of no practical importance since the
parameter estimates are essentially the same, whether the two-step or the one-step procedure is used.
Table 3 gives an example based on the data for NOSAY vs VOTING.

Table 3: Two-Step vs One-Step Procedure

Two-Step Method One-Step Method
Thresholds for NOSAY —1.267 —0.222 1.423 | —1.267 —0.222 1.419
Thresholds for VOTING —0.942 0.220 1.666 | —0.942 0.218 1.666
Polychoric Correlation 0.329 0.330
LR Chi-Square with 8 df | 222.381 222.365
GF Chi-Square with 8 df | 325.120 324.804

This example shows that the parameter estimates and chi-squares are essentially the same for the
two methods. It also shows that the LR-chi-square and the GF-chi-square can be quite different when
the model does not fit. Lack of fit will be discussed in the next section.

3The LR and GF statistics are sometimes denoted G? and X2, respectively.
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2.4 Estimating the Polychoric Correlations and their Asymptotic Covari-
ance Matrix

We now return to the analysis of the data on the six political efficacy items. Do the six items
measure one uni-dimensional latent variable? For this to work there must be a clear correspondence
between the values of the latent variable and the categories of the ordinal variables, see Costner
(1969). In this case, people who are high on Efficacy are supposed to disagree or disagree strongly
and people who are low on Efficacy should agree or agree strongly to these items. If this is the
case, there would be a positive association between the latent variable Efficacy and each ordinal
variable. But isn’t something wrong with VOTING? If I am high on Efficacy and I believe that
voting is the only way I can influence politics, then I would agree or agree strongly to the VOTING
statement. This fact in itself is sufficient to suggest that the VOTING item should be excluded from
further consideration. However, to begin with, I shall keep it to demonstrate what consequences this
has in the data analysis.

To estimate the one-factor model there are two steps:

e Use PRELIS to estimate the polychoric correlations and their asymptotic covariance matrix.

e Use these matrices in LISREL to estimate the one-factor model with weighted least squares
(WLS).

The PRELIS step is described in this section and the LISREL step in Section 2.5. For the PRELIS
step, use the following syntax file (file ORD21.PR2):

EFFICACY: PRELIS Run 4

Computing Polychoric Correlations and Asymptotic Covariance Matrix
Data Ninputvariables = 6

Labels

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST

Rawdata=EFFICACY.IMP

CLabels NOSAY - INTEREST 1=AS 2=A 3=D 4=DS

Output MA=PM PM=EFFICACY.PM AC=EFFICACY.ACP

The data is in the file EFFICACY.IMP, see p. 6. MA=PM on the Output line means that the matrix of
polychoric correlations should be estimated, PM=EFFICACY.PM means that this matrix will be saved
in the file EFFICACY.PM and AC=EFFICACY.ACP means that the asymptotic covariance matrix will be
saved in the file EFFICACY.ACP. The first file is in text (ASCII, readable) format and the second is in
binary (unreadable) format.

If you have saved the imputed data as a PSF file, EFFICACY.PSF, say, instead of as the text file
EFFICACY.IMP, you can use a much shorter PRELIS input file* (file ORD21A.PR2):

EFFICACY: PRELIS Run 4

Computing Polychoric Correlations and Asymptotic Covariance Matrix
SY=EFFICACY.PSF

Output MA=PM PM=EFFICACY.PM AC=EFFICACY.ACP

A new feature in PRELIS 2.51 not available in PRELIS 2.50 is that the program will write a separate
output file listing all response patterns occuring in the sample and the frequency of occurrence of
each pattern. This file has the name inputfilename.FREQ. For example, if the input file for PRELIS
Run 4 is O0RD21.PR2, the FREQ file will be ORD21.FREQ. The 20 most common response patterns will
also be listed in the ordinary output file. The FREQ file should be regarded as a data file. It gives the
data in the most concise form. The FREQ file may be read by PRELIS by specifying the frequency

4An easy way to obtain the file EFFICACY.PSF is to add RA=EFFICACY.PSF on the Output line in PRELIS Run 3, see
p- 9 and file ORD13A.PSF.
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variable as a weight variable. The reason for the FREQ file having the name of the input file rather
than the name of the data file is that it depends on the PRELIS commands in the input file. If you
have PRELIS 2.51, T suggest that you rerun the three PRELIS input files given in Section 1 and take
a look at the corresponding FREQ files.

In the Efficacy example, each variable has four categories. Thus, there are 4096 possible response
patterns but since we have data on only 1589 cases, every response pattern cannot be present in the
data. In fact, there are only 476 different response patterns occuring in the sample. All these are
given in the FREQ file. The output file lists the 20 most common response patterns as

There are 476 distinct response patterns, see FREQ-file.
The 20 most common patterns are :

106 2 2 2 2 2 2
70 3 3 2 3 3 3
51 3 2 2 2 2 2
45 3 3 3 3 3 3
45 3 3 2 2 2 2
40 3 2 2 3 3 3
32 3 3 2 3 2 2
31 3 3 2 3 2 3
25 2 2 i 2 2 2
23 1 1 1 1 1 1
20 3 2 2 3 2 2
19 2 2 1 1 1 1
19 2 3 2 2 2 2
18 3 3 2 2 2 3
16 3 3 3 3 2 3
16 3 2 2 3 2 3
15 3 3 2 3 3 2
15 3 2 3 3 3 3
15 2 i 2 2 2 2
14 2 2 2 3 2 2

It is seen that the most common response pattern is to answer Agree to all six items (106 cases).
The second most common response pattern is to answer Agree to COMPLEX and Disagree to all the
other five items (70 cases). To investigate whether there is a tendency to give the same response to
all six items, one can note that there are 45 cases who Disagree to all six items and 23 cases who
Agree Strongly to all six items. Further screening of the FREQ file reveals that there are only 3 cases
who Disagree Strongly to all six items. Note that among the 20 most common response patterns
there are no response Disagree Strongly on any of the six variables.

The output gives the following table of univariate marginal parameters. This refers to the under-
lying variables. An alternative parameterization is presented in Section 2.7.

Univariate Marginal Parameters

Variable Mean St. Dev. Thresholds
NOSAY 0.000 1.000 -1.267 -0.222 1.423
VOTING 0.000 1.000 -0.942 0.220 1.666
COMPLEX 0.000 1.000 -0.850 0.729 1.770
NOCARE 0.000 1.000 -1.029 0.162 1.809
TOUCH 0.000 1.000 -0.977 0.535 2.151
INTEREST 0.000 1.000 -0.980 0.330 2.091
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With 6 variables there are 15 different pairs of variables. The contingency tables for each of these

is given in the output as®

Bivariate Distributions for Ordinal

Variables (Frequencies)

VOTING COMPLEX NOCARE
NOSAY AS A D DS AS A D DS AS A D DS
AS 70 51 28 14 84 52 17 10 81 60 19 3
A 82 313 88 9 123 303 57 9 106 292 93 1
D 93 280 413 25 90 496 202 23 44 286 457 24
DS 30 14 51 28 17 54 33 19 10 18 67 28
TOUCH INTEREST
NOSAY AS A D DS AS A D DS
AS 76 69 16 2 86 51 24 2
A 101 329 61 1 101 296 95 0
D 63 415 318 15 57 362 380 12
DS 21 44 51 7 16 31 61 15
COMPLEX NOCARE TOUCH
VOTING AS A D DS AS A D DS AS A D DS
AS 104 127 37 7 74 110 79 12 82 137 50 6
A 134 407 101 16 99 342 208 9 103 415 136 4
D 63 343 153 21 556 193 312 20 58 279 233 10
DS 13 28 18 17 13 11 37 15 18 26 27 5
INTEREST
VOTING AS A D DS
AS 86 105 75 9
A 107 368 181 2
D 50 249 270 11
DS 17 18 34 7
NOCARE TOUCH INTEREST
COMPLEX  AS A D DS AS A D DS AS A D DS
AS 136 117 56 5 133 145 31 5 125 143 41 5
A 84 435 370 16 91 538 269 7 101 462 332 10
D 16 89 187 17 23 156 124 6 25 119 162 3
DS 5 15 23 18 14 18 22 7 9 16 256 11

5PRELIS 2.50 automatically gives these tables and the corresponding tables of sample proportions in the output;
they can be omitted by putting XB on the Output line. Several users have suggested that it should be the other way
around, i.e., they should only be given if requested. In PRELIS 2.51, we have therefore changed it to this effect. In
PRELIS 2.51, these tables will only appear in the output if requested by BT on the Output line.
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TOUCH INTEREST

NOCARE  AS A D DS AS A D DS

AS 1562 74 13 2 156 71 14 0
A 86 483 85 2 81 456 117 2
D 20 286 319 11 17 201 407 11

DS 3 14 29 10 6 12 22 16

INTEREST

AS 169 72 19 1
A 83 548 221 5
D 7 114 310 15

DS 1 6 10 8

Note that there are two zero cells in these tables, one in the table for NOSAY and INTEREST and one in
the table for NOCARE and INTEREST. The fit function (6) is not defined if p;; is zero. In the estimation
of the polychoric correlations, PRELIS skips such zero cells. But too many zero cells in a table can be
problematic and give estimates that are imprecise and unreliable. If there is only one nonzero cell in
a row or a column, the estimation procedure breaks down. A zero cell is particularly problematic in
the case when both variables are dichotomous because then the tetrachoric correlation is undefined.
In this case PRELIS replaces the zero by a half. But the estimate of the tetrachoric correlation is
very sensitive to changes in the value used to substitute the zero cell. Other programs use different
values and therefore get different estimates of the tetrachoric correlation.

From the table of NOSAY vs VOTING it is seen that of the 163 cases who agree strongly with NOSAY,
14 disagree strongly with VOTING. It is also seen that of the 275 cases who agree strongly with VOTING,
30 disagree strongly with NOSAY. Are these numbers consistent with an underlying bivariate normal
distribution? The answer is given in the next table in the output.

Correlations and Test Statistics

(PE=Pearson Product Moment, PC=Polychoric, PS=Polyserial)

Test of Model Test of Close Fit
Variable vs. Variable Correlation Chi-Squ. D.F. P-Value RMSEA P-Value
VOTING vs. NOSAY 0.329 (PC) 222.381 8 0.000 0.130 0.000
W_A_R_N_I_N_G: Underlying bivariate normality may not hold, see BTS-file
COMPLEX vs. NOSAY 0.330 (PC) 81.237 8 0.000 0.076 0.995
COMPLEX vs. VOTING 0.291 (PC) 42.658 8 0.000 0.052 1.000
NOCARE vs. NOSAY 0.559 (PC) 77.651 8 0.000 0.074 0.998
NOCARE vs. VOTING 0.276 (PC) 76.577 8 0.000 0.073 0.998
NOCARE vs. COMPLEX 0.462 (PC) 66.600 8 0.000 0.068 1.000
TOUCH vs. NOSAY 0.402 (PC) 85.511 8 0.000 0.078 0.991
TOUCH vs. VOTING 0.243 (PC) 61.711 8 0.000 0.065 1.000
TOUCH vs. COMPLEX 0.353 (PC) 95.351 8 0.000 0.083 0.967
TOUCH vs. NOCARE 0.645 (PC) 92.483 8 0.000 0.082 0.977
INTEREST vs. NOSAY 0.456 (PC) 83.077 8 0.000 0.077 0.994
INTEREST vs. VOTING 0.242 (PC) 82.070 8 0.000 0.076 0.995
INTEREST vs. COMPLEX 0.379 (PC) 70.733 8 0.000 0.070  0.999
INTEREST vs. NOCARE 0.681 (PC) 132.135 8 0.000 0.099 0.535
INTEREST vs. TOUCH 0.685 (PC) 89.920 8 0.000 0.080 0.983
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For each pair of variables this gives the estimated polychoric correlation, the LR-chi-square, the
degrees of freedom, and the P-value. It is seen that the hypothesis of underlying bivariate normality
is rejected for all pairs of variables.

Models do not have to be true to be useful. It is sufficient that the model holds approximately. If
the model holds approximately, it will be rejected by the LR-chi-square in large samples. We are not
interested in this test as such. We are only interested in obtaining a suitable correlation for ordinal
variables. The assumption of underlying bivariate normality is needed to calculate the polychoric
correlation. How robust is the polychoric correlation to violations of underlying bivariate normality?
This was studied in the dissertation of Ana Maria Quiroga (1992) who found that the polychoric
correlation is very robust to violations of underlying bivariate normality but the LR-chi-square is
very sensitive. This has led me to consider an alternative test based on the non-central, rather than
the central, chi-square distribution.

I have developed an RMSEA measure of population discrepancy similar to Steiger’s (1990) RMSEA
measure for structural equation models. The theory for this is outlined in Appendix 1. By further
simulation studies based on varying degree of underlying bivariate non-normality I have found that
there are no serious effects of non-normality unless RMSEA is larger than 0.1. The last two columns of
the table give the value of RMSEA and the P-value for the test of the hypothesis that the population
value of RMSEA is less than 0.1. By these criteria it is seen that the hypothesis of approximate
underlying bivariate normality is rejected only for the pair NOSAY vs VOTING. I will therefore take a
closer look at the data for this pair.

If the P-value for the test of approximate underlying normality is less than 0.05, PRELIS writes
some further information to a file inputfilename .BTS, where inputfilename is the name of the input
file. For example, if the input file for PRELIS Run 4 is ORD21.PR2, the BTS file will be ORD21.BTS.
In this case, the BTS file gives four bivariate tables for NOSAY vs VOTING. These will be explained in
turn.

The first table is the contingency table for NOSAY and VOTING.

Observed Frequencies

AS A D DS | Rowsum

AS | 70 51 28 14 | 163

A | 82 313 88 9 | 492

D | 93 280 413 25 | 811

DS | 30 14 51 28 | 123
Colsum | 275 658 580 76 | 15689

The second table gives the expected frequencies under underlying bivariate normality. Note that
the univariate margins fit exactly. Note also that the observed frequencies overestimate the expected
frequencies in the (AS,DS) and (DS,AS) cells.

Expected Frequencies

AS A D DS | Rowsum

AS | 57.0 73.0 31.5 1.5 | 163.0

A | 110.5 224.1 146.0 11.4 | 492.0

D | 101.3 325.5 337.8 46.4 | 811.0

DS | 6.3 35.4 64.7 16.7 | 123.0
Colsum | 275.0 658.0 580.0 76.0 | 1589.0

The next table gives the cell contributions to the LR chi-square statistic. The LR cell contribution
in row ¢ and column j is

2Npij ln(p”/fr”) .
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The sum of these cell contributions is the LR-chi-square statistic (7) previously given in the output
as 222.381. Note that the LR-contributions can be positive or negative. A positive value indicates
that the observed value overestimates the corresponding expected value, whereas a negative value
indicates that the observed value underestimates the corresponding expected value.

LR Contributions

AS A D DS | Rowsum

AS | 28.8 -36.6 -6.6 62.1 | a7.7

A | -48.9 209.2 -89.1 -4.3 | 66.9

D | -15.9 -84.3 165.9 -30.9 | 34.9

DS | 94.0 -26.0 -24.2 29.1 | 72.9
Colsum | 58.1 62.3 46.0 55.9 | 222.4

The next table gives the cell contributions to the GF-chi-square statistic (9). The GF cell contri-

bution in row 7 and column j is
N(pij — tij)* /75 -

These are always non-negative, so they do not provide any information about over- or underestima-
tion. The sum of these cell contributions is the GF-statistic which in this case is 325.4, quite different
from the LR-statistic. Here it can be seen more clearly that most of the lack of fit is associated with
the (AS,DS) and (DS,AS) cells. It is also seen that the bad fit is associated with the AS and DS
categories.

GF Contributions

AS A D DS | Rowsum

AS | 3.0 6.6 0.4 102.0 | 112.0

A | 7.3 35.3 23.0 0.5 | 66.2

D | 0.7 6.4 16.7 9.9 | 33.6

DS | 90.1 13.0 2.9 7.7 | 113.7
Colsum | 101.1 61.2 43.0 120.1 | 325.4

The best way to locate the source of bad fit is to examine the standardized residuals. A residual for
a cell can be defined as the square root of a GF contribution, i.e.,

nig Nt =N BT i . (10)
It turns out that the asymptotic variance of (10) is not 1 but smaller than 1. The asymptotic variance

of (10) is (see e.g., Rao (1965), eq. (6b.3.2))

Vij = 1— i — ZZ(l/ﬂ'ij)(871'1']'/395)(87Tij/80t)65t 5

where e®? is an element of the inverse of the information matrix
E = (1/7)(0mi;/08)(9mi;/00") .
ij

The residual in (10) divided by the square root of v;; gives the standardized residual. The stan-
dardized residuals are given in the last table of the BTS file. It is seen that several standardized
residuals are too large or too small. The two largest standardized residuals occur for the (AS,DS)

and (DS,AS) cells.
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Standardized Residuals

AS A D DS | Rowsum

AS | 2.7 -3.7 -0.8 10.6 | 8.7

A | -4.0 9.9 -7.4 -0.8 | -2.4

D | -1.3 -4.7 8.6 -5.2 | -2.7

DS | 10.6 -4.8 -2.6 3.5 | 6.6
Colsum | 7.9 -3.3 -2.3 8.0 | 10.3

All the tables in the BTS file suggest that there are too many cases in the (AS,DS) and (DS,AS)
cells. This is in line with the previous argument that VOTING is an ambiguous item.

What should one do when underlying bivariate normality does not even hold approximately? From
a practical point of view there are three things that can be done.

e Reduce the number of categories. In this case one could collapse the two categories agree
strongly and agree into one category and the two categories disagree strongly and disagree
into one category. This can be done for any of the variables. If it is done for all variables,
all variables will be dichotomous. The model of underlying bivariate normality then becomes
saturated as the total number of parameters (3) equals the number of independent cells in the
contingency table.

e Eliminate the most offending variables thereby obtaining more homogeneity for the retained
variables. In this case I would recommend deleting the variable VOTING since this has an
ambiguous question wording.

e If the probability of the various response patterns depends on covariates such as gender, age,
income, and education, one can replace the assumption of underlying bivariate normality with
the assumption of underlying bivariate normality conditional on the covariates. This is a much
more flexible assumption. I will consider this case in Section 5.

It is better to be theory-driven than data-driven. So, I choose the second alternative. The VOTING
variable can be eliminated in PRELIS or in LISREL. I choose to eliminate it in LISREL. To eliminate
it in PRELIS, just add the line

Sdelete VOTING
in PRELIS Run 4. Alternatively, one can select the variables to be included with
Select NOSAY COMPLEX - INTEREST
At the end of the output file for PRELIS Run 4, the matrix of polychoric correlations is given as

Correlation Matrix

NOSAY VOTING COMPLEX NOCARE TOUCH  INTEREST
NOSAY 1.000
VOTING 0.329 1.000
COMPLEX 0.330 0.291 1.000
NOCARE 0.559 0.276 0.462 1.000
TOUCH 0.402 0.243 0.353 0.645 1.000
INTEREST 0.456 0.242 0.379 0.681 0.685 1.000

Note that the correlations for VOTING are all smaller than all the other correlations. This is another
indication that VOTING does not belong with the other items.
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2.5 Fitting and Testing the Model

Do the five efficacy items (after exclusion of VOTING) measure a unidimensional trait? This can be
tested by running the following SIMPLIS syntax file (file ORD22.SPL):

EFFICACY: LISREL Run 1
Testing Measurement Model 1
Observed Variables: NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST
Correlation Matrix from File EFFICACY.PM
Asymptotic Covariance Matrix from File EFFICACY.ACP
Sample Size: 1589
Latent Variable: Efficacy
Relationships:
NOSAY COMPLEX - INTEREST = Efficacy
Path Diagram
End of Problem

Note that the selection of variables is automatic, i.e., no selection line is needed. VOTING is included
in the correlation matrix and in the asymptotic covariance matrix but since it is not included in the
model, it will not be used.

Since PRELIS Run 4 generates a data system file or DSF file for short, see Joreskog, et al. (2001),
p. 169. By reading the data from this file, here assumed to have the name ORD21.DSF, one can use
the following shorter SIMPLIS command file (file ORD22A.SPL):

EFFICACY: LISREL Run 1
Testing Measurement Model 1
System File from File ORD21.DSF
Latent Variable: Efficacy
Relationships:
NOSAY COMPLEX - INTEREST = Efficacy
Path Diagram
End of Problem

Some selected lines from the fit statistics are

Degrees of Freedom = 5
Minimum Fit Function Chi-Square = 28.10 (P = 0.00)
Root Mean Square Error of Approximation (RMSEA) = 0.054
90 Percent Confidence Interval for RMSEA = (0.036 ; 0.074)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.33

In terms of exact fit, the model is rejected. However, the last three lines indicate that the model
might hold approximately in the population, see Browne & Cudeck (1993). But since I want a
model that has a better chance of being invariant over time and across countries, I will consider
an alternative model. It has been suggested in the political science literature that there are two
components of Political Efficacy: Internal Efficacy (here called Efficacy) indicating individuals self-
perceptions that they are capable of understanding politics and competent enough to participate in
political acts such as wvoting, and External Efficacy (here called Responsiveness and abbreviated
Respons) indicating the belief that the public cannot influence political outcomes because government
leaders and institutions are unresponsive (Miller, et al., 1980; Craig & Maggiotto, 1982). With this
view, NOSAY and COMPLEX are indicators of Efficacy and TOUCH and INTEREST are indicators of
Respons. The statement NOCARE contains two referents: public officials and people like me. This
statement might elicit perceptions of the responsiveness of government officials to public opinion
generally, in which case the emphasis is on the political actors, or it might express the opinions of
people like me in which case the emphasis is on the respondent. In the first case, NOCARE measures
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Respous; in the second case, it measures Efficacy. I will therefore consider NOCARE as a complex
variable, i.e., as a variable measuring both Efficacy and Respons or a mixture of them. To estimate
this model, use the following SIMPLIS input file (file 0RD23A.SPL) or, alternatively, ORD23.SPL:

EFFICACY: LISREL Run 2
Testing Measurement Model 2
System File from File ORD21.DSF
Latent Variables: Efficacy Respons
Relationships:
NOSAY COMPLEX NOCARE = Efficacy
NOCARE TOUCH INTEREST = Respons
Path Diagram
End of Problem

This gives the following test statistics

Degrees of Freedom = 3
Minimum Fit Function Chi-Square = 1.38 (P = 0.71)
Root Mean Square Error of Approximation (RMSEA) = 0.0
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.031)
P-Value for Test of Close Fit (RMSEA < 0.05) = 1.00

indicating that the model fits very well. The path diagram with parameter estimates is shown in
Fig. 3. The path from Respons to NOCARE is not significant. Its t-value is 1.10. This does not mean
that this path should be eliminated if one believes it exists.

I will investigate this model and its invariance over time in Section 3 and its invariance across
countries in Section 4.

2.6 How to Become a Chi-square Collector

It is easy to become a chi-square collector. Each output from LISREL gives you at least two chi-
squares, sometimes four or five. I have many “wrong” ones and some “right” ones in my collection.
To get some of each kind, add the line

Method: Maximum Likelihood

before the End of Problem line. This means that the ML method will be used to fit the model but
standard errors and chi-squares will be corrected for non-normality using the asymptotic covariance
matrix provided. This has the advantage that the asymptotic covariance matrix need not be inverted.
This method works better with smaller sample sizes. Simulation studies suggest that this may work
with samples as small as 200.

The output gives four different chi-squares as

Degrees of Freedom = 3
Minimum Fit Function Chi-Square = 3.85 (P = 0.28)
Normal Theory Weighted Least Squares Chi-Square = 3 (P 0.28)
Satorra-Bentler Scaled Chi-Square = 1.44 (P =
Chi-Square Corrected for Non-Normality = 1.38 ( 71)

The first two are the “wrong” ones and the last two are the “right” ones.® The first two (3.85 and
3.83) assume normality but normality does not hold here. The last two chi-squares (1.44 and 1.38)

%You might say that it does not matter if you choose the wrong chi-square since it does not change the conclusion
about the fit of the model. However, the “wrong” ones are in fact about 80% larger than the “right” ones. In many
cases these differences are large enough to make a real difference in conclusion. I suggest that you do the same analysis
with LISREL Run 1. Then the “right” ones suggest that fit is almost OK but the “wrong” ones suggest that the model
does not fit at all.
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Figure 3: Path Diagram with Parameter Estimates

take non-normality into account by using asymptotic covariance matrix. The third chi-square (1.44)
does not require this matrix to be inverted whereas the fourth one (1.38) does. It is the third one that
seems to work best in small samples. For further explanation see Joreskog, et al. (2001), Chapter 4
and Appendix A.

2.7 Alternative Parameterization

A weakness of the approach outlined in Sections 2.1 and 2.2 is that all underlying variables are
standardized to zero means and unit standard deviations. But when the response alternatives are
the same for several variables, differences in distributions of these variables may reflect differences
in means and/or variances of the underlying variables.

To use such differences, another parameterization of the underlying variables is necessary. This is
obtained by putting AP on the OU line in PRELIS 2.50. In PRELIS 2.51, this parameterization will
automatically be used if MA=CM (or MA=MM or MA=AM). We refer to the default parameterization as the
Standard Parameterization and the AP parameterization as the Alternative Parameterization.

The two parameterizations can be explained as follows. The variable z* underlying the ordinal
variable z is determined only up to a monotonic transformation. If we want to retain normality of
the underlying variable, the transformation must be linear. In principle, one can make an arbitrary
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linear transformation of the underlying variable. If the number of categories m > 3, one such
transformation is obtained by specifying that 7 = 0 and 75 = 1. Then the mean p and standard
deviation o of z* can be defined instead.

The parameters of the two parameterizations are given in the following table.

Parameterization | Mean St.Dev. Thresholds
Standard 0 1 T To T3 Tm—1
Alternative I o* 0 1 75 ... 715,

where

p=—11/(m2 — 11), o =1/(12 — 1),

= (ri—m)/(r2 —71),
It should be emphasized that the two parameterizations are equivalent in the sense that there is a

one-to-one correspondence between the two sets of parameters. This correspondence carries further

as will be illustrated with the Efficacy example.

For the Alternative Parameterization to be meaningful there must be at least three categories.
If there are only two categories there is only one threshold and it is impossible to estimate both
the mean and the standard deviation of the underlying variable. In this case, PRELIS will fix the
threshold at 0, the standard deviation at 1 and estimate the mean.

Before I return to the Efficacy example, I will illustrate the Alternative Parameterization using a
small data set consisting of two ordinal variables on a 5-point scale.” The contingency table and the
marginal distributions are

X2
X1 1 2 3 4 5

1 8 307 315 291 56 | 1054
2 61 353 520 687 236 | 1857
3 22 172 248 478 227 | 1147
4 8 53 138 393 232 | 824
5 0 6 15 44 53 | 118

176 891 1236 1893 804 | 5000

If these two variables are on the same response scale, there is a shift in the distribution: For X1
most people are in the low end of the scale whereas for X2 most people are in the high end of the
scale. How can this fact be represented?

To read the data in PRELIS, one can use a frequency data file TWOVARS .FRQ consisting of 24 lines
as follows

8611
307 1 2
3151 3
291 1 4
56 1 5
61 21
353 2 2
520 2 3
687 2 4
236 2 5
22 31
172 3 2

TRolf Steyer generated 5000 observations on these two variables, but for convenience I have converted the data to
a b X b contingency table.
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Reading this is much faster than reading the data file with 5000 lines.
Now run the following PRELIS syntax file (file TWOVARS.PR2):

Illustration of Alternative Parameterization
DA NI=3

RA=TWOVARS.FRQ

LA

FREQ X1 X2

WEIGHT FREQ

0U MA=CM AP

With PRELIS 2.51 AP on the 0U line is not needed.

The output reveals the following
Univariate Marginal Parameters

Variable Mean St. Dev. Thresholds
X1 0.795 0.989 0.000 1.000 1.669 2.757
X2 1.783 0.986 0.000 1.000 1.686 2.760

from which it is seen that there is a shift in the mean of the underlying variables of about one unit,
whereas the standard deviations and the thresholds are roughly the same.

I now return to the Efficacy example. Run the following PRELIS input (file 0RD24.PR2):

EFFICACY: PRELIS Run 5

Computing Covariance Matrix and Asymptotic Covariance Matrix
Data Ninputvariables = 6

Labels

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST

RA=EFFICACY.IMP

CLabels NOSAY - INTEREST 1=AS 2=A 3=D 4=DS

Output MA=CM AP CM=EFFICACY.CM AC=EFFICACY.ACC

This is the same as PRELIS Run 4 except for the last line. Here we are computing the covariance
matrix and its asymptotic covariance matrix instead of the polychoric correlation matrix and its
asymptotic covariance matrix. With PRELIS 2.51 AP on the 0OU line is not needed. The output gives
the covariance matrix, the mean vector and the standard deviations as

25



Covariance Matrix

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST
NOSAY 0.916
VOTING 0.271 0.740
COMPLEX 0.200 0.1568 0.401
NOCARE 0.449 0.199 0.246 0.704
TOUCH 0.254 0.138 0.148 0.358 0.437
INTEREST 0.333 0.159 0.183 0.436 0.346 0.583
Means
NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST
1.212 0.811 0.538 0.864 0.646 0.748

Standard Deviations

NOSAY VOTING COMPLEX NOCARE TOUCH  INTEREST

The covariance matrix obtained in PRELIS Run 5 is just a scaling of the matrix of polychoric
correlations obtained in PRELIS Run 4 using the standard deviations from Run 5 as scale factors.
These scale factors are also used in the computation of the asymptotic covariance matrix. The mean
vector and covariance matrix can be used in LISREL in the same way as for continuous variables. The
alternative parameterization is most useful in combination with equal thresholds or fixed thresholds.
This will be the topics in Sections 3 and 4.

For the moment it is sufficient to do the following. Replace the two lines in ORD23.SPL, see file
ORD25.SPL

Correlation Matrix from File EFFICACY.PM
Asymptotic Covariance Matrix from File EFFICACY.ACP

with

Covariance Matrix from File EFFICACY.CM
Asymptotic Covariance Matrix from File EFFICACY.ACC

Alternatively, you can replace 0RD21.DSF in ORD23A.SPL with ORD24.DSF, see ORD25A . SPL.

Verify that the factor loadings and error variances are different but the standardized solution and
all fit statistics are the same.

3 Longitudinal Data

In the two previous sections I explained how one can analyze ordinal variables in cross-sectional
studies.

This section considers models for analyzing data from longitudinal studies where the same in-
dividuals are observed or measured at two or more occasions. Such studies are very common in
psychology, education, sociology and other fields. Many papers have considered the specification of
models incorporating causation and measurement errors in the analysis of data from panel studies,
and statistical models and methods for analysis of longitudinal data.
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The characteristic feature of a longitudinal research design is that the same measurement instru-
ments are used on the same people at two or more occasions. The purpose of a longitudinal or panel
study is to assess the changes that occur between the occasions, and to attribute these changes to
certain background characteristics and events existing or occurring before the first occasion and/or
to various treatments and developments that occur after the first occasion. Often, when the same
variables are used repeatedly, there is a tendency for the measurement errors in these variables to
correlate over time because of specific factors, memory or other retest effects. Hence there is a need
to consider models with correlated measurement errors.

The analysis of ordinal variables in longitudinal studies requires special techniques and procedures
which are different from those used with continuous longitudinal variables. This section illustrates
these techniques and procedures using the Political Action Panel Study for the USA which is a
two-wave panel study. The model considered here is an extension of a model developed by Aish
& Joreskog (1990). The original USA sample consisted of 1719 cases interviewed in 1974. Five
years later 933 of these cases were reinterviewed using the same six political efficacy items that were
analyzed in Section 2.

In order to estimate differences in means and variances of latent variables over time one must
ascertain that the latent variables are on the same scale at different occasions. Both the origin and
the unit of measurement must be the same over time. If the observed indicators are continuous,
this can be achieved by anchoring each latent variable in one of its observed indicators, a so called
reference variable, and by assuming that the mean of the latent variable is zero at one occasion, e.g.,
the first. By choosing the same reference variable at all occasions one can ascertain that this latent
variable is on the same scale over time. However, if the observed indicators are ordinal this is not
sufficient, for ordinal variables do not have metric scales so it is meaningless to say that they are on
the same scale over time, see Section 2. Again we must use the underlying variables instead of the
observed ordinal variables. The underlying variables can be put on the same scale by assuming equal
thresholds for the underlying variables of the same ordinal variable across time.

3.1 Equal Thresholds

Consider k ordinal variables z1, 2o, . . ., 2z, with mq1,ma, ..., my categories, respectively. Assume that
these ordinal variables have been measured on N individuals at T" occasions, as in a longitudinal
study. Denote by m; . the probability of a response in category c of variable ¢ at time ¢, ¢ =
1,2,....my, i=1,2,...,k, t=1,2,...,T. Let

Til < T2 <...<Tim;—1

be a set of thresholds for variable i assumed to be the same at all occasions. Assuming that the
underlying variable 27, is normally distributed with mean p;; and standard deviation o;; at time ¢,
the probability of a response in category c of variable ¢ at time ¢ is

(Ti,e—Hit) /it
mue= [ olu)du., (11)
(Ti,e—1—it)/oit

where ¢ is the standard normal density function. Consider a given variable ¢ with m categories.
Omitting index 7, equation (11) becomes

(Te—pt)/ot
me= [ o(u)du (12)
(Tc—l—ltt)/at
The probability of a response in category a or lower is
a (Ta_l/‘t)/o't T —
Ta=dome= [ du)du = o( L), (13)
c=1 - gt
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where ® is the distribution function of the standard normal distribution. There are two fundamental
indeterminacies in (13). One can add a constant to all the 7’s and to p and one can multiply all the
T’s, 4, and o by a non-zero constant without altering the right hand side of the equation. In other
words, a linear transformation of z* changes the 7’s, y, and ¢ while retaining normality and leaving
(13) unchanged. This is a reflection of the fact that although the scale of z; is the same over time,
the origin and unit of measurement are still arbitrary. Solving for (7, — ut)/0+, equation (13) can be
written

Ta 7 Ht _g=1(x2,), (14)
¢ ’
or equivalently, .
To =t + 0@ (M5 ,) = pue + 0475 (15)

where &~ is the inverse function of ®. The quantity ®~'(x} ;) on the right side of (14) and in the
middle of (15) is the unconstrained threshold 7, determined for each variable from the univariate
marginal probabilities at each time. It is convenient to refer to the 7, on the left side of equation (15)
as the constrained threshold. Equation (15) represents a set of constraints on u; and o; because the
right hand side varies with ¢ whereas the left hand side does not. If m > 3, the common thresholds,
¢ and oy can be estimated from the univariate marginal data of those variables whose thresholds
are supposed to be equal. If m = 2, i.e., if a variable is dichotomous, only one of u; or oy can be
estimated. In this case, PRELIS sets o, = 1 and estimates ;.

To identify the parameters, the origin and the unit of measurement of the common scale must be
fixed. In the standard parameterization, this is done such that Zle i =0 and 23;1 62 =T, ie.,
the average mean is 0 and the average variance is 1. In the alternative parameterization, the scale
is fixed by 4 =0 and 7» = 1.

For T' = 2 and the standard parameterization, equal thresholds is illustrated in the following table

Variable | Mean St.Dev. Thresholds
1 1 o1 T T2 T3 Tim—1
2 123 02 TI T2 T3 Tm—1

where p + pe = 0 and 0% + 03 = 2.

For T = 2 and the alternative parameterization, equal thresholds is illustrated in the following

table
Variable | Mean St.Dev. Thresholds
T M o [0 3 - .
2 i o |01 7 Th

The alternative parameterization is obtained from the standard parameterization as follows.

1. For each variable, subtract 71 from all the thresholds and from u.

2. For each variable, divide all thresholds and p and o by 7 — 1.

The estimated means and standard deviations of the underlying variables can be used to form an
estimated mean vector and covariance matrix for all variables. These matrices can be used in LISREL
in the usual way. The procedures are illustrated in the following sections.

3.2 A Two Variables Example of Equal Thresholds

First I will illustrate equal thresholds by means of the two variables data that I introduced in Sec-
tion 2. It consists of 5000 cases on two variables on a five point scale. To estimate the thresholds and
the polychoric correlation under the condition of equal thresholds and the standard parameterization,
use the following PRELIS command file (file TWOVARS31.PR2):
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Illustration of Equal Thresholds
DA NI=3

RA=TWOVARS.FRQ

LA

FREQ X1 X2

WEIGHT FREQ

ET X1 X2

0U MA=PM

This gives the following marginal parameters

Variable Mean St. Dev. Thresholds

X1 -0.498 1.003 -1.304 -0.290 0.388 1.492
X2 0.498 0.997 -1.304 -0.290 0.388 1.492

Note that

e The thresholds are equal
e The sum of the means is 0

e The sum of squares of the standard deviations is 2

To estimate the marginal parameters under the alternative parameterization one can either put AP
on the 0U line or replace MA=PM by MA=CM, see file TWOVARS32.PR2. This gives the following univariate
marginal parameters

Variable Mean St. Dev. Thresholds
X1 0.795 0.989 0.000 1.000 1.669 2.757
X2 1.777 0.983 0.000 1.000 1.669 2.757

The thresholds are still equal but the second and third property no longer holds. The underlying
variables are now on a different scale.

To obtain a test of the hypothesis of equal thresholds, one can run TWOVARS31 .PR2 with and without
the ET line and compute the difference in chi-square for test of underlying bivariate normality, see
Section 2. With ET this gives a chi-square of 18.411 with 19 degrees of freedom. Without ET this gives
a chi-square of 17.249 with 15 degrees of freedom. The test of equal thresholds gives a chi-square
of 18.411 — 17.249 = 1.162 with 19 — 15 = 4 degrees of freedom. Hence, the hypothesis of equal
thresholds cannot be rejected.

3.3 Estimating the Mean Vector and Covariance Matrix under Equal
Thresholds

Most of the remaining part of this section will be devoted to the analysis of the USA panel data of
the political efficacy items. The six political efficacy items NOSAY, VOTING, COMPLEX, NOCARE, TOUCH,
and INTEREST and their response category codings were introduced in Section 2. The difference now
is that I will be analyzing the panel data consisting of the 933 cases answering the same items at
two points in time with a five year time lag. The panel data in free format is available in the file
PANUSA.RAW in the PR2EX subdirectory. There are 12 variables. The first six are responses to the
efficacy items at time 1 and the second are responses to the same items at time 2.

The PRELIS command file below (ORD31.PR2) will do the following

e Eliminate the VOTING item since this will not be used, see Section 2 for the reason for this.
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e Impute missing values of the time 2 variables using time 1 variables as matching variables (for
information on imputation, see Section 1).

e Estimate the mean vector and the covariance matrix of the underlying variables under the
condition of equal threshold for each item over time.

e The asymptotic covariance matrix of the covariance matrix will also be estimated.

e The mean vector, the covariance matrix, and the asymptotic covariance matrix are saved in

files.

PANELUSA: PRELIS Run 1

Estimating Mean Vector and Covariance Matrix under Equal Thresholds
DA NI=12 MI=8,9

LA

NOSAY1 VOTING1 COMPLEX1 NOCARE1 TOUCH1 INTERES1
NOSAY2 VOTING2 COMPLEX2 NOCARE2 TOUCH2 INTERES2
RA=PANUSA .RAW

SD VOTING1 VOTING2

IM (NOSAY2 - INTERES2) (NOSAY1 - INTERES1) XN

ET NOSAY1 NOSAY2

ET COMPLEX1 COMPLEX2

ET NOCARE1 NOCARE2

ET TOUCH1 TOUCH2

ET INTERES1 INTERES2

Output MA=CM ME=PANUSA.ME CM=PANUSA.CM AC=PANUSA.ACC

After imputation there are 849 cases with complete data on all 10 variables. The univariate
marginal parameters are estimated under the alternative parameterization as

Variable Mean St. Dev. Thresholds
NOSAY1 1.294 0.960 0.000 1.000 2.680
COMPLEX1 0.579 0.631 0.000 1.000 1.677
NOCARE1 0.926 0.793 0.000 1.000 2.3561
TOUCH1 0.709 0.674 0.000 1.000 2.141
INTERES1 0.821 0.754 0.000 1.000 2.383
NOSAY2 1.326 0.780 0.000 1.000 2.486
COMPLEX2 0.643 0.545 0.000 1.000 1.667
NOCARE2 0.954 0.638 0.000 1.000 2.214
TOUCH2 0.657 0.574 0.000 1.000 2.144
INTERES2 0.838 0.632 0.000 1.000 2.350

Note that the thresholds are equal for each item over time. The covariance matrix of the 10 variables
is estimated as

NOSAY1 .922

COMPLEX1 || .242 .398

NOCARE1 451 213 .628

TOUCH1 296 141 328 455

INTERES1 || .363 .175 .403 .357 .569

NOSAY2 326 111 227 131 187 .608

COMPLEX2 || .142 .157 .096 .056 .091 .155 .297

NOCARE2 .260 .106 .245 .164 .220 .295 .130 .406

TOUCH2 .1568 .073 145 142 185 172 .072 .235 .330
INTERES2 || .218 .103 .202 .150 .234 .226 .100 .285 .262 .400
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By this procedure the mean vector and covariance matrix have been estimated such that the
underlying variables of each item are on the same scale across time, at least to a sufficient degree
of approximation. One can therefore proceed as if these underlying variables had been measured on
the same scale over time. This assumption is fundamental for the rest of the analysis.

3.4 A Panel Model for Efficacy

In this section I develop a panel model for efficacy. The measurement model involves two components
of efficacy called Efficacy and Respons. It is the same as considered in Section 2 and estimated
from cross-sectional data. This measurement model is applied at each time point.

The objective of the panel model is to answer such questions as: Has the level of efficacy increased
or decreased over time? Has the variance of efficacy increased or decreased over time?

A conceptual path diagram of the panel model for efficacy is shown in Fig. 4.

NOSAY 2
w COMPLEX 2 1&—
NOCARE 2 {+—

INTEREST 2 p¢—

— NOSAY 1

— COMPLEX 1 |

—t NOCARE 1

— TOUCH 1

— INTEREST 1

Figure 4: Panel Model for Efficacy and Respons

In the following I refer to the observed variables in the sense of their underlying variables. Thus,
when I refer to COMPLEX1 and COMPLEX2, for example, I mean the variables underlying COMPLEX1 and
COMPLEX2.

The model also involves a structural model in the middle of the path diagram in which Efficacy
at time 2 is predicted by Efficacy at time 1 without the use of Respons at time 1, and Respons at
time 2 is predicted by Respons at time 1 without the use of Efficacy at time 1. In addition to these
features, the model includes several features not visible in Fig. 4.

e The measurement error in each variable at time 1 correlates with the measurement error in the
corresponding variable at time 2 due to a specific factor in each item. To explain this further,
I take COMPLEX as an example. Let x be COMPLEX1 and y be COMPLEX2. Then the measurement
equations for COMPLEX1 and COMPLEX2 can be written

Timel: z=M+0=ME+s+d

Time2: y=Xon+e=Xan+s+e,

where £ is Efficacl and n is Efficac2, § and € are the so called measurement errors in the
LISREL model. Each of these error terms are the sum of two components, one specific factor s
unique to the item COMPLEX, and one pure random error component, d and e, respectively,
where d and e are uncorrelated. It follows that § and € are correlated and that

Cov(d,e) =Var(s) .
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Thus, the specific error variance can be estimated as the autocovariance between the LISREL
measurement errors.

e The loading of NOSAY1 on Efficacl and of NOSAY2 on Efficac2 are fixed to 1 to fix the unit
of measurement for Efficacl and Efficac2. Since NOSAY1 and NOSAY2 have the same unit
of measurement (by the construction of equal thresholds), Efficacl and Efficac2 will also
have the same unit of measurement. Similarly, the loadings of INTERES1 on Responsi1 and
of INTERES2 on Respons?2 are fixed to 1 to fix the unit of measurement for Respons1 and
Respons2. Since INTERES1 and INTERES2 have the same unit of measurement, Respons1 and
Respons2 will also have the same unit of measurement.

e The other four loadings on the latent variables are constrained to be the same across time.

e There is also an intercept term (not visible in the path diagram) in each measurement equation.
These intercept terms are also constrained to be equal across time.

e The equality of intercepts and factor loadings across time is necessary in order to compare the
latent variables over time on the same scale, i.e., with the same origin and unit of measurement.

3.4.1 Input

A SIMPLIS command file for estimating this panel model is (file ORD32.SPL):

SIMPLIS File for Estimating the Panel Model

Observed Variables: ! 1
NOSAY1 COMPLEX1 NOCARE1 TOUCH1 INTERES1 ! 2
NOSAY2 COMPLEX2 NOCARE2 TQOUCH2 INTERES2 ! 3
Means from File PANUSA.ME ! 4
Covariance Matrix from File PANUSA.CM ! 5
Asymptotic Covariance Matrix from File PANUSA.ACC ! 6
Sample Size: 832 ! 7
Latent Variables: Efficacl Responsl Efficac2 Respons2 ! 8
Relationships ! 9
NOSAY1 - NOCARE1 = CONST Efficacil 110
NOCARE1 - INTERES1 = CONST Responsl P11
NOSAY1 = 1xEfficacl 112
INTERES1 = 1xResponsl ! 13
NOSAY2 - NOCARE2 = CONST Efficac2 114
NOCARE2 - INTERES2 = CONST Respons2 ! 15
NOSAY2 = 1xEfficac2 1 16
INTERES2 = 1*Respons2 'o17
Let the errors of NOSAY1 and NOSAY2 correlate ! 18
Let the errors of COMPLEX1 and COMPLEX2 correlate 119
Let the errors of NOCARE1 and NOCARE2 correlate 120
Let the errors of TOUCH1 and TOUCH2 correlate 21
Let the errors of INTERES1 and INTERES2 correlate 122
Set Efficacl -> COMPLEX1 = Efficac2 -> COMPLEX2 123
Set Efficacl -> NOCARE1 = Efficac2 -> NOCARE2 1 24
Set Responsl -> NOCARE1 = Respons2 -> NOCARE2 ! 25
Set Responsl -> TOUCH1 = Respons2 -> TOUCH2 ! 26
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Set CONST -> NOSAY1 = CONST -> NOSAY2 127
Set CONST -> COMPLEX1 = CONST -> COMPLEX2 ! 28
Set CONST -> NOCARE1 = CONST -> NOCARE2 29
Set CONST -> TOUCH1 = CONST -> TOUCH2 ! 30
Set CONST -> INTERES1 = CONST -> INTERES2 131

Efficac2 = CONST Efficacl 132

Respons2 = CONST Responsl ! 33
Let the errors of Efficac2 and Respons2 correlate ! 34

Path Diagram
End of Problem

To refer to different lines in this input file, I have numbered the lines in the right margin.

Lines 1-7 specify the names of variables and the data. One can replace all these lines by the single
line (see file ORD32A.SPL):

System File from File ORD31.DSF

The system file ORD31.DSF, obtained by running ORD31.PR2, has all the information about the
variables and the data, even the location of the asymptotic covariance matrix.

The variable CONST is a variable which is equal to 1 for every case. This variable is always available
in SIMPLIS; it need not be in the data. It is used to estimate an intercept term or a mean. For
example,

Y = CONST X
is used to specify the regression of Y on X:
Y=a+79X.

« is the coefficient of CONST just like «y is the coefficient of X. One can also use CONST to estimate a
mean. For example,

Y = CONST

will estimate the mean of Y as the coefficient of CONST. Y and X can be any variables, observed or
latent. For further examples of CONST, see Joreskog & Sorbom (1999b), Chapter 2.

Lines 10-11 give the measurement model at time 1 and lines 12-13 specify NOSAY1 and INTERES1
as reference variables for Efficacl and Respons1, respectively. Similarly lines 14-15 give the mea-
surement model at time 2 and lines 1617 specify the corresponding reference variables at time 2.
Note that all the measurement equations include intercept terms. Also note that NOCARE loads on
both Efficacy and Respons.

Lines 18-22 specify the autocorrelated measurement errors needed to estimate the specific factor
in each item.

Lines 23-26 constrain the factor loadings to be the same at time 1 and time 2. Here Efficacl
-> COMPLEX1, for example, is short for “the path from Efficacl to COMPLEX1.” There are 4 factor
loadings that are supposed to be equal. The other two loadings at each time point are fixed at 1.

Lines 27-31 constrain the intercepts in the measurement equations to be equal at time 1 and
time 2.

Lines 32-33 give the structural equations. The idea is that Efficacy at time 2 is predicted by
Efficacy at time 1 without the use of Respons at time 1, and Respons at time 2 is predicted by
Respons at time 1 without the use of Efficacy at time 1. These structural equations also include
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intercept terms. As will be seen later, these can be interpreted as the mean difference in the latent
variables.

Line 34 specifies that the two error terms in the structural equations are allowed to be correlated.
This is my way of saying that I do not think that the correlation between Efficacy and Respons at
time 2 can be entirely explained by Efficacy and Respons at time 1. There may be many variables
out there in the world that influences Efficacy and Respons. One such variable might be interest
in politics, for example. If there is such a variable that affects all four latent variables but is not
included in the model it implies that Efficacy and Respons will be correlated at time 2 even after
controlling for the effects of Efficacy and Respons at time 1.

3.4.2 Output

The output from ORD32.SPL or ORD32A.SPL gives the following fit statistics

31
21.85 (P = 0.89)

Degrees of Freedom
Minimum Fit Function Chi-Square

indicating that the model fits quite well. The model was fitted by WLS using the inverse of the
asymptotic covariance matrix as a weight matrix. The chi-square is a C1 in the sense of Joreskog,
et al. (2001), Chapter 4 and Appendix A. As explained in Section 2, one can also use ML to fit
the model and the asymptotic covariance matrix to correct the chi-square for non-normality, see file
ORD32B.SPL. This gives a C3 as

Degrees of Freedom = 31
Satorra-Bentler Scaled Chi-Square = 24.99 (P = 0.77)

Note that these two ways of fitting the model gives approximately the same chi-square.

In the following I present results from the output of ORD32.SPL or ORD32A.SPL. The measurement
equations are estimated as

NOSAY2 = 1.29 + 1.00xEfficac2, Errorvar.= 0.25
(0.045) (0.043)
28.66 5.77

COMPLEX2 = 0.60 + 0.44xEfficac2, Errorvar.= 0.23
(0.042) (0.034) (0.014)
14.35 12.87 15.81

NOCARE2 = 0.93 + 0.44xEfficac2 + 0.58*Respons2, Errorvar.= 0.11
(0.051) (0.086) (0.083) (0.020)
18.34 5.03 7.00 5.66

TOUCH2 = 0.69 + 0.80*Respons2, Errorvar.= 0.12
(0.058) (0.028) (0.016)
11.89 29.06 7.54

INTERES2 = 0.83 + 1.00*Respons2, Errorvar.= 0.069
(0.060) (0.021)
13.83 3.27

NOSAY1 = 1.29 + 1.00xEfficacl, Errorvar.= 0.37
(0.045) (0.063)
28.66 5.82
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COMPLEX1 = 0.60 + 0.44xEfficacl, Errorvar.= 0.29
(0.042) (0.034) (0.020)
14.35 12.87 14.51

NOCARE1 = 0.93 + 0.44xEfficacl + 0.58*Responsl, Errorvar.= 0.17
(0.051) (0.086) (0.083) (0.030)
18.34 5.03 7.00 5.84

TOUCH1 = 0.69 + 0.80*Responsl, Errorvar.= 0.17
(0.058) (0.028) (0.023)
11.89 29.06 7.60

INTERES1 = 0.83 + 1.00*Responsl, Errorvar.= 0.13
(0.060) (0.029)
13.83 4.32

It is seen the measurement model is the same at both time points and that all parameters are
statistically significant.

The error covariances (specific factors) are estimated as

Error Covariance for NOSAY1 and NOSAY2 = 0.043
(0.031)
1.38

Error Covariance for COMPLEX1 and COMPLEX2 = 0.10
(0.013)
7.96

Error Covariance for NOCARE1 and NOCARE2 = 0.021
(0.012)
1.66

Error Covariance for TOUCH1 and TOUCH2 = 0.013
(0.010)
1.21

Error Covariance for INTERES1 and INTERES2 = 0.015
(0.012)
1.23

All the estimates of error covariances are positive which is in line with the interpretation of them as
variances of the specific factors. However, only the specific error variance of COMPLEX is statistically
significant. This does not mean that the other specific factors do not exist, only that they are smaller
than that of COMPLEX and that the sample is not large enough to make them significant.

The structural equations are estimated as

Efficac2 = 0.050 + 0.51%Efficacl, Errorvar.= 0.22

(0.069) (0.038) (0.030)
0.72 13.54 7.09
Respons2 = - 0.011 + 0.50*Responsl, Errorvar.= 0.22
(0.059) (0.032) (0.017)
-0.19 15.94 12.51
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This shows that the stability coefficients are statistically significant suggesting that the latent vari-
ables at time 2 can be predicted from those of time 1, to some extent. But as indicated by the R?’s
the predictions are not very accurate. Other variables outside of the model may be needed to make
these predictions more accurate. The covariance between the two error terms is estimated as

Error Covariance for Respons2 and Efficac2 = 0.14
(0.018)
7.98

indicating that this is highly significant.

The means of the latent variables cannot be determined on an absolute scale. Although Efficaci
and Efficac2 are on the same scale, the origin of the scale is undetermined. We can only estimate
the mean difference between Efficac2 and Efficacl and between Respons2 and Responsl. We
can fix the origin of the Efficacy scale at the mean of Efficacl and then estimate the mean of
Efficac2. Similarly, we can fix the origin of the Respons scale at the mean of Respons1 and estimate
the mean of Respons2. By this convention (or identification condition) the mean differences equal
the intercept terms in the structural equations. It is seen that both of these are non-significant
indicating no change in level of the two latent variables over time. A larger sample is needed to be
able to tell whether there is a change in level over time. If the intercept terms had been significant
there is probably an increase rather than a decrease over time.

Further information about the four latent variables in the output is summarized in Tables 4 and
5.

Table 4: Estimated Means and Covariance Matrix for Efficacy

Efficacyl Efficacy2 | Means
Efficacyl 0.55 0.00
Efficacy2 0.28 0.36 0.05

Table 5: Estimated Means and Covariance Matrix for Respons

Responsl Respons2 [ Means
Respons1l 0.04 0.00
Respons?2 0.22 0.33 -0.01

The variance of both Efficacy and Respons has decreased over time indicating that the population
is more homogenous at time 2 than at time 1. The question is whether this decrease is statistically
significant. It is not possible to test the hypothesis of equal variances of the latent variables over
time using this model. One needs to use another parameterization for this. I will consider this in
Section 3.4.4.

3.4.3 Testing Sequence

Some readers may say: How can I put up this model directly without first testing all the assumptions
it is based on? Obviously, since the model fits the data well and all results make good sense, there is
no need to test all the intermediate steps. However, in general this is a good idea. For instructional
purposes, I will therefore go over the steps here. I leave it to the reader to actually do these steps.

There are several ways to do the tests. I recommend the following sequential testing procedure.

1. Test the measurement model at each time point separately. To test the measurement model at
time 1, include only the lines 10-13. To test the measurement model at time 2, include only the
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lines 14-17. Selection of variables is automatic in SIMPLIS; only the variables included in the
model will be used. If the measurement model fits at both occasions one can continue with the
next step. If the measurement model fits at one occasion but not at the other occasion it means
that the measurement models are not functionally equivalent, i.e., the observed variables do
not measure the same latent variables at each occasion. Then further analysis is meaningless.
If the measurement models fail to fit at both occasions, both models should be modified and
their functional equivalence should be tested again.

2. Test the two measurement models jointly. This is done by including only the lines 10-17. The
covariance matrix of the four latent variables is left unconstrained. If this model does not
fit (which is the case here), one must introduce the specific factors by adding the lines 18-
22. If, after adding the specific factors, the model still does not fit, there must be something
fundamentally wrong. This should not happen if Step 1 has been satisfactorily resolved.

3. Test the equality of factor loadings over time. This is done by adding the lines 23-26. The test
of equality of factor loadings is obtained by computing the difference in chi-squares between
this model and the previous one. If the hypothesis of equal factor loadings is rejected it will
not be possible to compare the latent variables over time with the same unit of measurement.?

4. Test the equality of intercept terms over time. This is done by adding lines 27-31. The test of
equality of intercept terms is obtained by computing the difference in chi-squares between this
model and the previous one. If the hypothesis of equal intercept terms is rejected it will not
be possible to compare the latent variables over time with the same origin, but see footnote 8.

5. Test the structural model. This is done by adding lines 32-34. This test is obtained by com-
puting the difference in chi-squares between this model and the previous one. If the structural
model does not fit, replace the two lines

Efficac2 = CONST Efficacl I 32
Respons2 = CONST Responsl ' 33
with

Efficac2 = CONST Efficacl Responsl
Respons2 = CONST Efficacl Responsl

This model is equivalent to the model in Step 4. So it will fit if that model fits.

3.4.4 Testing Equality of Variances

In Section 3.4.2 I found that the factor variances decreased over time but I was unable to test
whether this decrease is statistically significant. In this section I show how this can be done by a
slight modification of the input.

Replace the lines

Efficac2 = CONST Efficacl 132
Respons2 = CONST Responsl ! 33
Let the errors of Efficac2 and Respons2 correlate ! 34

with (see file ORD33.SPL)

8Under partial invariance of factor loadings, i.e., if some factor loadings are equal while others are different, such
a comparison may still be possible, but this is very tricky.
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Efficacl = O0xCONST
Responsl = 0*xCONST
Efficac2 = CONST
Respons2 = CONST

This will leave the covariance matrix of the four latent variables unconstrained but the model is
otherwise the same as before. In fact, the model is the same as in Step 4 of the previous section.
This model has a chi-square of 22.60 with 29 degrees of freedom.

A test of equality of factor variances can now be obtained by adding the lines (see ORD33A.SPL):

Equal Variances: Efficacl Efficac2
Equal Variances: Responsl Respons2

This model has a chi-square of 64.83 with 31 degrees of freedom. The difference in chi-squares is
42.23 with 2 degrees of freedom which is highly significant. The hypothesis of equal variances must
be rejected. Thus, we can conclude that the factor variances have decreased over time. This could
be tested separately for Efficacy and Respons.

3.4.5 FError Variances and Reliabilities

In Steps 3 and 4 of Section 3.4.3 I discussed functional equivalence of measurement models across
time. I did not include equal error variances in this concept. Equal error variances is not necessary
to compare latent variables over time. However, if the goal is to have the most parsimonious model,
it may be of interest to test the hypothesis of equal error variances over time. To do so, add the lines

Equal Error Variances: NOSAY1 NOSAY2
Equal Error Variances: COMPLEX1 COMPLEX2
Equal Error Variances: NOCARE1 NOCARE2
Equal Error Variances: TOUCH1 TOUCH2
Equal Error Variances: INTERES1 INTERES2

in ORD32.SPL or ORD32A.SPL, see file ORD34.SPL. This gives a chi-square of 45.93 with 36 degrees
of freedom. This should be compared with 27.47 with 31 degrees of freedom for the original panel
model. The difference in chi-squares is 18.46 with 5 degrees of freedom. This difference is significant
at the 1% level. So the hypothesis of equal error variances is rejected. However, this hypothesis can
be tested for each item separately. The test for NOSAY gives (see file ORD34A.SPL) a chi-square of
29.92 with 32 degrees of freedom. The chi-square difference is 2.45 with 1 degree of freedom. Hence,
the hypothesis of equal error variances for NOSAY cannot be rejected.

The fact that the error variances of NOSAY1 and NOSAY2 are equal does not imply that their
reliabilities are equal. I found in Section 3.4.4 that the variance of Efficacy decreased over time.
As a consequence of this, the fitted variance of NOSAY1 and NOSAY2 will be different.

To estimate the reliabilities of NOSAY1 and NOSAY2 proceed as follows.

e From the output of ORD34A.SPL find the error variance of NOSAY and the specific variance
of NOSAY. These are 0.31 and 0.031, respectively. Thus, the pure random measurement error
variance of NOSAY is 0.31 — 0.03 = 0.28. This is the same for NOSAY1 and NOSAY2.

e Next find the fitted variances of NOSAY1 and NOSAY2 (these are obtained if the line Print
Residuals is included in the input). These are 0.87 and 0.65, respectively.

e The reliability of NOSAY1 is now computed as 1 — 0.28/0.87 = 0.68. For NOSAY2 I get the
reliability 1 — 0.28/0.65 = 0.57.

3.4.6 LISREL Notation

Some readers may be interested in doing the modeling using LISREL notation and syntax. Those
who are not interested in this can skip this section.
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Let

x= (NOSAY1, COMPLEX1, NOCARE1, TOUCH1, INTERES1),
y= (NOSAY2, COMPLEX2, NOCARE2, TOUCH2, INTERES2),
&= (Efficacl, Responsl),
n= (Efficac2, Respons2).

Then the panel model in LISREL notation is (see Joreskog & Sérbom, 1999b, Chapter 10 or Joreskog,
et al., 2001, Chapter 1).

X1 T1 1 0 51
T2 T2 A2r 0 ¢ 2
zz | =] 1™ [+ | A1 As ( 51 >+ 3
T4 T4 0 A 2 04
Is T5 0 1 55
Y1 T 1 0 €1
Y2 T2 A1 O €2
y3 | = ™ |+ | A1 Ast < n ) + | e
Y4 T4 0 A 112 €4
Ys 75 0 1 €5

m\_ [ o 7M1 0 &1 G
()= ()= (0 2 ) (8)+(2)
These correspond to the three general equations in LISREL.

X=7T,+A £+,
y:Ty+Ay7I+€7

n=a+Bn+Té+¢.

3.4.7 LISREL Syntax

An input file in LISREL syntax corresponding to ORD32A.SPL is (file ORD35.LS8)

LISREL File for Estimating the Panel Model
SY=0RD31.DSF

SE

67891012345

MO NY=5 NX=5 NE=2 NK=2 GA=FI PS=SY,FR TH=FI TX=FR TY=FR AL=FR
LK Efficacl Responsi

LE Efficac2 Respons2

VA 1 LY(1,1) LY(5,2) LX(1,1) LX(5,2)

FR LX(2,1) LX(3,1) LX(3,2) LX(4,2)

FR GA(1,1) GA(2,2)

FR TH(1,1) TH(2,2) TH(3,3) TH(4,4) TH(5,5)
EQ LX(2,1) LY(2,1)

EQ LX(3,1) LY(3,1)

EQ LX(3,2) LY(3,2)
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EQ LX(4,2) LY(4,2)
EQ TX(1) TY(1)

EQ TX(2) TY(2)

EQ TX(3) TY(3)

EQ TX(4) TY(4)

EQ TX(5) TY(5)

QU

The lines

SE
67891012345

are needed to order the variables such that the y-variables come first, as required by LISREL. The
rest of the output is self-explanatory for users who are familiar with LISREL syntax. It can be verified
that the results from ORD35.LS8 are the same as for ORD32A. SPL.

3.5 Four-Wave Models

The previous two-wave model can be generalized to the multiwave situation when the same ordinal
variables are used at more than two occasions. I do not have access to any multiwave ordinal data,
so I will use generated data on four occasions. I will pretend that the variables are the six efficacy
items (this time I include VOTING) measured on a four-category scale with categories having the same
meaning, see Section 2.

3.5.1 A Four-Wave Model with a Single Latent Variable

The data for this example is in the file EFFI4WS.RAW in free format. There are 3 x 4 = 12 variables,
where the first 3 correspond to Time 1, the next 3 to Time 2, etc.

PRELIS Step I begin by estimating the mean vector, the covariance matrix, and the asymptotic
covariance matrix of the variables underlying the ordinal variables under equal thresholds for each
item over time. The PRELIS command file for this is (file EFFI4WS1.PR2):

Computing ME, CM, and ACC for EFFI4WS.RAW

Under Equal Thresholds over Time

DA NI=12

LA

NOSAY1 VOTING1 COMPLEX1 NOSAY2 VOTING2 COMPLEX2
NOSAY3 VOTING3 COMPLEX3 NOSAY4 VOTING4 COMPLEX4
RA=EFFI4WS.RAW

CL NOSAY1 - COMPLEX4 1=AS 2=A 3=D 4=DS

ET NOSAY1 NOSAY2 NOSAY3 NOSAY4

ET VOTING1 VOTING2 VOTING3 VOTING4

ET COMPLEX1 COMPLEX2 COMPLEX3 COMPLEX4

0U MA=CM ME=EFFI4WS.ME CM=EFFI4WS.CM AC=EFFI4WS.ACC

The output reveals that there are 2357 cases and that the univariate marginal parameters are

Variable Mean St. Dev. Thresholds
NOSAY1 -0.032 1.090 0.000 1.000 2.058
VOTING1 -0.003 0.935 0.000 1.000 1.850
COMPLEX1 -0.008 1.001 0.000 1.000 1.946



NOSAY2 0.818 1.192  0.000 1.000 2.058
VOTING2 0.582 1.019 0.000 1.000 1.850
COMPLEX2 0.599 1.097 0.000 1.000 1.946
NOSAY3 2.035 1.399 0.000 1.000 2.058
VOTING3 1.402 1.134 0.000 1.000 1.850
COMPLEX3 1.455 1.204 0.000 1.000 1.946
NOSAY4 3.800 1.666 0.000 1.000 2.058
VOTING4 2.470 1.199 0.000 1.000 1.850
COMPLEX4 2.736 1.430 0.000 1.000 1.946

Note that there is an increasing trend in the means of the underlying variables over time.

LISREL Step The measurement model assumes that NOSAY, VOTING, and COMPLEX are indicators
of a single latent variable Efficacy. This measurement model is employed at each time point and
is assumed to be invariant over time. Both the intercepts and the factor loadings are assumed to be
the same across time. In addition, it is assumed that VOTING and COMPLEX, but not NOSAY, contain
specific factors denoted Voting and Complex. These specific factors are constant over time and
uncorrelated with Efficacy at all times.

First I focus on the estimation of the means and variances of Efficacy over time without assuming
any structural model. A SIMPLIS command file to estimate such a model is (file EFFI4WS2.SPL):

SIMPLIS Input for Four-Wave Model

One Factor

Observed Variables:

NOSAY1 VOTING1 COMPLEX1 NOSAY2 VOTING2 COMPLEX2
NOSAY3 VOTING3 COMPLEX3 NOSAY4 VOTING4 COMPLEX4

Means from File EFFI4WS.ME

Covariance Matrix from File EFFI4WS.CM

Asymptotic Covariance Matrix from File EFFI4WS.ACC

Sample Size: 2357

Latent Variables: Efficacl Efficac2 Efficac3 Efficac4
Voting Complex

Relationships

NOSAY1
NOSAY1

COMPLEX1 = CONST (1)*Efficacl
1xEfficacl

NOSAY2 - COMPLEX2 = CONST (1)*Efficac2
NOSAY2 = 1xEfficac2

NOSAY3 - COMPLEX3 = CONST (1)*Efficac3
NOSAY3 = 1xEfficac3

NOSAY4 - COMPLEX4 = CONST (1)*Efficac4
NOSAY4 = 1xEfficac4

Set CONST -> NOSAY1 = CONST -> NOSAY2
Set CONST -> VOTING1 = CONST -> VOTING2
Set CONST -> COMPLEX1 = CONST -> COMPLEX2

Set CONST -> NOSAY1 = CONST -> NOSAY3

Set CONST -> VOTING1 = CONST -> VOTING3
Set CONST -> COMPLEX1 = CONST -> COMPLEX3
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Set CONST -> NOSAY1 = CONST -> NOSAY4
Set CONST -> VOTING1 = CONST -> VOTING4
Set CONST -> COMPLEX1 = CONST -> COMPLEX4

Set Efficacl -> VOTING1 = Efficac2 -> VOTING2
Set Efficacl -> COMPLEX1 = Efficac2 -> COMPLEX2

Set Efficacl -> VOTING1 = Efficac3 -> VOTING3
Set Efficacl -> COMPLEX1 = Efficac3 -> COMPLEX3

Set Efficacl -> VOTING1 = Efficac4 -> VOTING4
Set Efficacl -> COMPLEX1 = Efficac4 -> COMPLEX4

VOTING1 VOTING2 VOTING3 VOTING4 = 1xVoting
COMPLEX1 COMPLEX2 COMPLEX3 COMPLEX4 = 1xComplex

Set the covariances of Voting and Complex to O

Efficacl = 0*CONST
Efficac2 = CONST
Efficac3 = CONST
Efficac4 = CONST

Set the covariances of Efficacl - Efficac4 free
Set the covariances between Voting - Complex and Efficacl - Efficac4 to O

End of Problem

A difference between this example and the two-wave models considered previously is that the
specific factors are now modeled directly as factors affecting the underlying variables rather than as
error covariances, see the lines marked A and B. It is possible to specify them as error covariances also
but this is tedious in the SIMPLIS command language because one has to define six error covariances
for each of VOTING and COMPLEX and one has to specify the equality of these six error covariances as
well.

Without (1)* in front of Efficacy in the measurement model, the LISREL iterations do not
converge. But this is only a starting value problem. All one needs to do is to give LISREL some help
to get iterations started. This is done by specifying 1 as a starting value for the factor loading of
Efficacy. Note the difference between (1)* and 1% as in lines A and B. The latter is a fixed value.

I leave it to the reader to contemplate most of the information in the output. Here I will confine
myself to giving only the covariance matrix and the mean vector of the latent variables

Covariance Matrix of Independent Variables

Efficacl Efficac2 Efficac3 Efficac4d Voting Complex
Efficacl 0.79
(0.02)
37.14
Efficac2 0.70 1.08
(0.02) (0.02)
36.30 49.49
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Efficac3 0.75 1.14 1.61

(0.02) (0.02) (0.03)
30.79 54 .58 63.22
Efficac4 0.81 1.27 1.74 2.35
(0.03) (0.03) (0.03) (0.04)
23.89 41.00 56.22 53.68
Voting - - - - - - - - 0.21
(0.01)
19.55
Complex - - - - - - - - - - 0.30
(0.01)
21.18
Mean Vector of Independent Variables
Efficacl Efficac2 Efficac3 Efficac4 Voting Complex
- - 0.83 2.04 3.78 - - - -
(0.03) (0.03) (0.03)
32.26 81.46 134.78

which shows that there is an increasing trend in both means and variances of the latent variables
over time. It also shows that there are specific factors in VOTING and COMPLEX.

A Simplex Model Next I assume that Efficacy is generated by an autoregressive process:

Efficacy, = ong) + ﬂt(E)Eff:'LcaLcyF1 , t=2,3,4

This kind of model is sometimes called a Simplex model, see, e.g., Joreskog & Sorbom, 1999b,
pp. 230-238.

A SIMPLIS command file to estimate this model is (file EFFI4WS3.SPL):

SIMPLIS Input for Four-Wave Model
Single Simplex

Set the covariance between Voting and Complex to O

Efficac2 = CONST Efficacl
Efficac3 = CONST Efficac2
Efficac4d = CONST Efficac3

No x-variables
Admissibility Check Off
End of Problem

The lines down to and including

Set the covariance between Voting and Complex to O

43



are the same as before.

This kind of model is best handled as a model with only y- and n-variables in LISREL (LISREL
submodel 3B, see Joreskog & Sorbom, 1999¢c, Chapter 6). The SIMPLIS command to specify this is

No x-variables
The line
Admissibility Check Off

is needed to make the iterations converge (LISREL checks the admissibility of parameters after 50
iterations® and stops if this check is not set off, see Joreskog & Sérbom, 1999¢c, pp. 322-323).

The chi-square for this model is 119.18 with 61 degrees of freedom, compared with the previous
115.71 with 58 degrees of freedom. The difference 3.47 with 3 degrees of freedom means that the
Simplex model cannot be rejected.

3.5.2 A Four-Wave Model with Two Latent Variables

The previous four-wave model can be generalized to a model with six observed and two latent
variables. This generalization is straightforward but the input files are very long and elaborate.
Rather than listing these files here, I leave it for the interested reader to carry out the analysis.

The data is in the file EFFI4W.RAW in free format. There are 6 x 4 = 24 variables, where the first
6 correspond to Time 1, the next 6 to Time 2, etc.

PRELIS Step I begin by estimating the mean vector, the covariance matrix, and the asymptotic
covariance matrix of the variables underlying the ordinal variables under equal thresholds for each
item over time. The PRELIS command file for this is EFFI4W1.PR2.

LISREL Step The measurement model is shown in Fig. 5. This measurement model is employed

—1{ NOSAY

[ voma

— COMPLEX

— NOCARE
~{rov
— INTERES

Figure 5: Six Variables Measurement Model for Efficacy and Respons

at each time point and is assumed to be invariant over time. In addition, I assume that VOTING and
COMPLEX contain specific factors denoted Voting and Complex. These specific factors are constant
over time and uncorrelated with the factors Efficacy and Respons at all times. Efficacy and
Respons are themselves contemporaneously correlated.

9The book says 10 but the current version of LISREL uses 50.
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The structural model assumes that Efficacy and Respons are generated by an autoregressive
process:

Efficacy, = ong) + [3,5(E)Efficacyt_1 , t=2,3,4

Respons, = agR) + ,Bt(R)Responst_1 , t=2,3,4

A SIMPLIS command file to estimate this model is EFFI4W2.SPL. This command file is quite
large and elaborate. For this kind of models, the LISREL command language is more convenient.
Users who have learned to master the LISREL command language can use the shorter input given in
EFFI4W3.LS8.

4 Multiple Groups

In Section 2 I explained how one can analyze ordinal variables in longitudinal studies. This section
considers the situation where data on the same ordinal variables have been collected in several groups.
These groups may be different nations, states or regions, culturally or socioeconomically different
groups, groups of individuals selected on the basis of some known selection variables, groups receiving
different treatments, etc. In fact, they may be any set of mutually exclusive groups of individuals
which are clearly defined. It is assumed that the data is a random sample of individuals from
each group. The objective is to compare different characteristics across groups. In particular, the
procedure to be described can be used for testing factorial invariance and for estimating differences
in factor means. For information and examples on how to do this with continuous variables see
Chapters 9 and 10 in Joreskog & Sorbom (1999¢) and Chapter 2 in Joreskog & Sorbom (1999b). Just
as in the cases of analysis of cross-sectional data, described in Section 2, and analysis of longitudinal
data, described in Section 3, the analysis of ordinal variables in multiple groups requires a PRELIS
step before one can proceed to analyze models with LISREL. For further information about PRELIS,
see Joreskog & Soérbom (1999a).

In this section I continue the analysis of the efficacy variables in the Political Action Survey which
was carried out in eight countries. For information about this survey and the efficacy variables, see
Section 1. In Sections 2 and 3 I analyzed only data from the USA. Here I will analyze the data from
all eight countries. The procedure to be described here makes it possible to answer questions like
these:

e Do the efficacy items measure the same latent variables in all countries?
e If so, are the factor loadings invariant over countries?

e Are the intercepts invariant over countries?

If these conditions are satisfied one can estimate differences in means, variances, and covariances of
the latent variables Efficacy and Respons between countries. Recall from Section 2 that Efficacy
and Respons are two different components of Political Efficacy, where Efficacy indicates individuals’
self-perceptions that they are capable of understanding politics and competent enough to participate in
political acts such as voting, and Respons (short for Responsiveness) indicates the belief that the public
cannot influence political outcomes because government leaders and institutions are unresponsive.
People who are low on Efficacy or low on Respons are expected to agree or agree strongly with the
items. Hence, the items measure these components from low to high.

Complete factorial invariance over all eight countries should not be expected to hold for the
following reasons:

e The items are stated in different languages.

e Words may have different connotations in different languages.

45



e Other cultural differences between countries may lead to different response styles or response
patterns in different countries.

These reasons may imply that the items are interpreted differently in different countries.

The procedure to study factorial invariance with ordinal variables is as follows:

PRELIS Step Define a set of thresholds for each variable to be the same in each country. Since the
underlying variables are only determined up to a monotonic transformation, one can simply
choose these as 0, 1, 2, ... for all variables. Alternatively, one can use PRELIS to estimate a
set of thresholds from the total sample by pooling the data from all groups into one data file.
Either way, these thresholds define a scale for the underlying variables common to all groups.
Using the thresholds as fized thresholds, PRELIS can estimate the mean vector, the covariance
matrix, and the asymptotic covariance matrix of the underlying variables for each group.

LISREL Step These mean vectors, covariance matrices, and asymptotic covariance matrices can
be used in a multigroup analysis in LISREL as if the underlying variables had been observed.

4.1 Data Screening

The data for all countries is in the datafile EFFITOT.RAW in free format. The first variable is COUNTRY
coded as 1 = USA (USA), 2 = Germany (GER), 3 = The Netherlands (NET), 4 = Austria (AUS),
5 = Britain (BTN), 6 = Italy (ITY), 7 = Switzerland (SWI), and 8 = Finland (FIN). The other
variables are the six efficacy variables described in Section 1. The item VOTING is included here but
will be eliminated in the LISREL step. The response categories and their codings are those described
in Section 1, but in Italy there was an additional response category Don’t Understand (DU) coded
as 6.

A data screening of all the data can be obtained by running the following PRELIS command file
(file ORD41.PR2):

!Data Screening of EFFITOT.RAW

Data Ninputvariables = 7

Labels

COUNTRY NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST

Rawdata = EFFITOT.RAW

Clabels COUNTRY 1=USA 2=GER 3=NET 4=AUS 5=BTN 6=ITY 7=SWI 8=FIN
Clabels NOSAY - INTEREST 1=AS 2=A 3=D 4=DS 6=DU 8=DK 9=NA
Output

The output gives the numbers in the right and bottom margins of Tables 6 and 7. Just like in the
USA sample, there are more people in the Don’t Know than in the No answer categories.

To screen the data for one country, use the following PRELIS command file, here illustrated with
the USA (file ORD42.PR2):

'Data Screening of EFFITOT.RAW for Country USA

Data Ninputvariables = 7

Labels

COUNTRY NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST

Rawdata = EFFITOT.RAW

Clabels COUNTRY 1=BTN 2=GER 3=NET 4=AUS 5=USA 6=ITY 7=SWI 8=FIN
Clabels NOSAY - INTEREST 1=AS 2=A 3=D 4=DS 6=DU 8=DK 9=NA
Sdelete COUNTRY = 1

Output

To repeat this for another country, just change the line
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Table 6: Observed Frequency Distributions

NOSAY
Response Category | USA GER NET AUS BTN ITY SWI FIN || Total
Agree Strongly 175 721 171 804 211 306 347 295 3030
Agree 518 907 479 432 693 797 463 413 4702
Disagree 857 464 460 215 488 3656 314 425 3588
Disagree Strongly 130 133 49 50 33 57 137 50 639
Don’t Understand - - - - - 74 - - 74
Don’t Know 29 27 40 82 42 173 26 35 454
No Answer 10 3 2 2 16 7 3 6 49
All Responses 1719 2255 1201 1585 1483 1779 1290 1224 || 12536

VOTING
Response Category | USA GER NET AUS BTN ITY SWI FIN || Total
Agree Strongly 283 790 195 903 218 341 371 429 3530
Agree 710 861 634 431 884 902 403 512 5337
Disagree 609 448 285 135 289 271 310 234 2581
Disagree Strongly 80 103 38 28 19 45 150 18 481
Don’t Understand - - - - - 57 - - 57
Don’t Know 26 49 43 85 57 159 53 26 498
No Answer 11 4 6 3 16 4 3 5 52
All Responses 1719 2255 1201 1585 1483 1779 1290 1224 || 12536

COMPLEX
Response Category | USA GER NET AUS BTN ITY SWI FIN || Total
Agree Strongly 343 688 262 531 312 484 495 386 3483
Agree 969 801 592 557 777 88 394 588 5536
Disagree 323 516 273 283 310 225 267 198 2395
Disagree Strongly 63 214 45 125 40 55 112 37 691
Don’t Understand - - - - - 39 - - 39
Don’t Know 9 30 25 86 28 114 18 28 338
No Answer 12 6 4 3 16 4 4 5 54
All Responses 1719 2255 1201 1585 1483 1779 1290 1224 || 12536
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Table 7: Observed Frequency Distributions

NOCARE
Response Category | USA GER NET AUS BTN ITY SWI FIN || Total
Agree Strongly 250 569 156 590 205 402 354 226 2752
Agree 701 880 487 474 756 853 418 552 5121
Disagree 674 638 421 334 404 286 364 354 3475
Disagree Strongly 57 103 36 86 33 24 82 26 467
Don’t Understand - - - - - 45 - - 25
Don’t Know 20 57 95 98 68 184 48 60 630
No Answer 17 8 6 3 17 5 8 6 66
All Responses 1719 2255 1201 1585 1483 1779 1290 1224 || 12536
TOUCH
Response Category | USA GER NET AUS BTN ITY SWI FIN || Total
Agree Strongly 273 697 197 602 276 481 325 319 3170
Agree 881 978 575 533 737 869 523 578 5674
Disagree 462 425 267 257 347 167 262 230 2417
Disagree Strongly 26 49 25 49 18 15 56 21 259
Don’t Understand - - - - - 45 - - 45
Don’t Know 60 101 133 140 88 198 116 68 904
No Answer 17 5 4 4 17 4 8 8 67
All Responses 1719 2255 1201 1585 1483 1779 1290 1224 || 12536
INTEREST
Response Category | USA GER NET AUS BTN ITY SWI FIN || Total
Agree Strongly 264 541 147 629 280 469 343 331 3004
Agree 762 792 443 458 709 834 432 519 4949
Disagree 581 698 443 309 377 247 318 280 3253
Disagree Strongly 31 149 44 76 24 26 93 28| 471
Don’t Understand - - - - - 24 - - 24
Don’t Know 62 66 120 110 76 172 96 58 760
No Answer 19 9 4 3 17 7 8 8 75
All Responses 1719 2255 1201 1585 1483 1779 1290 1224 || 12536
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Sdelete Country = 1

The Sdelete line (short for Select and Delete) first selects all cases with COUNTRY = 1 and then
deletes the variable COUNTRY (it is no use to keep the variable COUNTRY after selection of cases since
all cases have the same value 1 on this variable).

One can screen the data for each and all countries simultaneously by running a file with stacked
input, see file 0RD42A.PR2. Collecting the results from this output gives the results shown in Tables 6
and 7.

It is seen in Tables 6 and 7 that there are considerable differences between countries in the univari-
ate marginal distribution of these variables but these distributions are rather similar across variables.
Countries like the USA and Britain which use the same language (English) are rather similar. Ger-
many and Austria, where the German language was used, are also rather similar. But there is a
considerable difference between these two pairs of countries. Most notably is the distribution in
Austria where many people respond in the Agree Strongly category. We shall see that these manifest
differences may be viewed as reflections of differences in the means of the latent variables between
countries.

4.2 PRELIS Step

Write a text file of thresholds called EFFITOT.THR, say, as follows

O O O O O o
e = = = =
N NDNDDNDDNDDN

The first line gives the thresholds for NOSAY, the second for VOTING, etc. After listwise deletion
of all responses in the Don’t Understand, Don’t Know, and No Answer categories, there are four
categories on the ordinal scale. Thus there should be three thresholds for each variable. Any set of
monotonically increasing thresholds will do, and they do not have to be the same for all variables.
But they must be the same for all countries.

In the PRELIS step we compute the mean vector, the covariance matrix, and the asymptotic
covariance matrix of the underlying variables for each country. For the USA this can be done with
the following PRELIS command file (file 0RD43.PR2):

Computing mean vector, covariance matrix and asymptotic covariance matrix
for country USA

Data Ninputvariables = 7

Labels

COUNTRY NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST
Rawdata=EFFITOT.RAW

Sdelete COUNTRY = 1

Missing 6,8,9 NOSAY - INTEREST

CLabels NOSAY - INTEREST 1=AS 2=A 3=D 4=DS
FT=EFFITOT.THR NOSAY

FT VOTING

FT COMPLEX

FT NOCARE

FT TOUCH

FT INTEREST

Output MA=CM ME=EFFUSA.ME CM=EFFUSA.CM AC=EFFUSA.ACC
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In the same way one can obtain the three matrices for all the other countries by changing the country
code on the Sdelete line and changing the three file names on the output line. File ORD43A.PR2,
not listed here, shows how this can be done for all countries in one single run.

The listwise sample sizes are given in Table 8. The estimated means and standard deviations of
the underlying variables are given in Table 9.

Table 8: Listwise Sample Sizes

USA GER NET AUS BTN ITY SWI FIN
1554 2062 945 1318 1266 1237 1085 1066

Table 9: Means and Standard Deviations

Means

| USA GER NET AUS BTN ITY SWI FIN |

NOSAY 1.018 0.458 0.823 -0.024 0.716 0.609 0.677 0.659
VOTING 0.758 0.361 0.640 -0.292 0.587 0.494 0.640 0.301
COMPLEX | 0.586 0.553 0.605 0.452 0.569 0.388 0.425 0.383
NOCARE 0.781 0.589 0.789 0.337 0.686 0.416 0.638 0.633
TOUCH 0.637 0.367 0.601 0.206 0.557 0.245 0.508 0.425
INTEREST | 0.691 0.661 0.822 0.222 0.580 0.308 0.578 0.462

Standard Deviations

|USA GER NET AUS BTN ITY SWI FIN|

NOSAY 0.729 0.986 0.742 1.112 0.654 0.770 1.082 0.811
VOTING 0.760 0.989 0.731 1.081 0.628 0.744 1.187 0.788
COMPLEX | 0.755 1.102 0.803 1.122 0.736 0.841 1.207 0.839
NOCARE 0.700 0.858 0.691 1.097 0.669 0.704 0.994 0.691
TOUCH 0.642 0.815 0.697 0.994 0.666 0.721 0.880 0.739
INTEREST | 0.649 0.926 0.705 1.115 0.690 0.791 1.016 0.790

Table 9 shows that there are considerable differences in the means between countries. Note par-
ticularly the large differences between the USA and Austria on NOSAY and VOTING.
4.3 LISREL Step

The model is the same as the one considered in Section 2.1° This was found to fit the cross-sectional
data for the USA very well. A path diagram is shown in Fig. 6.

In standard LISREL notation the model is
x(@) — T, + Amg(g) + 5@ , (16)

where x(9) is a vector of the underlying variables of NOSAY, COMPLEX, NOCARE, TOUCH, and INTEREST

10The VOTING item is not included for reasons explained in Section 2.
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Figure 6: Measurement Model for Efficacy and Respons

in group g, T, is a vector of intercepts, A, is the matrix

1 0
AL o
DYDY I
0 AY

0 1

5(9) is a vector of the latent variables Efficacy and Respons in group g, and 59 is a vector of
measurement errors in group g.

The parameter matrices 7, and A, are regarded as attributes of the variables and are therefore
assumed to be invariant over groups. The unit of measurement in the latent variables are defined by
the two elements 1 in A,. This makes these units the same across groups which makes it possible to
compare the variances and covariances of the latent variables across groups. The fact that 7, is also
invariant over groups makes it possible to estimate differences in the means of the latent variables
between groups. To do so, it is convenient to fix the mean of £ to 0 in the first group and estimate
the mean of £ in the other groups. Any group can be chosen as the first group.

USA vs Britain

I begin with the comparison of the two countries USA and Britain where the same language, English,
was used in the survey.!!

A SIMPLIS command file for analysis of these two samples is (file 0RD44 . SPL)

Group USA
Observed Variables: NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST
Means from File EFFUSA.ME
Covariance Matrix from File EFFUSA.CM
Asymptotic Covariance Matrix from File EFFUSA.ACC
Sample Size: 1554
Latent Variables: Efficacy Respons
Relationships:
NOSAY = CONST 1xEfficacy

11 The same wording was used in these countries, except the USA had Congress in Washington whereas Britain had
Parliament in the TOUCH item, see Section 1.
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COMPLEX = CONST Efficacy
NOCARE = CONST Efficacy Respons
TOUCH = CONST Respons

INTEREST = CONST 1*Respons

Group BTN
Observed Variables: NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST
Means from File EFFBTN.ME
Covariance Matrix from File EFFBTN.CM
Asymptotic Covariance Matrix from File EFFBTN.ACC
Sample Size: 1266
Latent Variables: Efficacy Respons
Relationships:
Efficacy Respons = CONST
Set the error variance of NOSAY free
Set the error variances of COMPLEX - INTEREST free
Set the variances of Efficacy - Respons free
Set the covariance between Efficacy and Respons free
Path Diagram
End of Problem

The general rule in SIMPLIS is that everything is the same as in the previous group unless otherwise
stated. The model is specified as relationships. Note that VOTING is not included in the relationships.
As a consequence, VOTING is automatically excluded in the model although it is included in the data,
i.e., it is included in the mean vector, the covariance matrix, and the asymptotic covariance matrix.
Since the relationships are the same in group 2 they are not repeated in that group. The mean vector
of & is zero in group 1 by default. The line

Efficacy Respons = CONST
in group 2 means that we want to estimate that mean vector in that group. The two lines

Set the error variance of NOSAY free
Set the error variances of COMPLEX - INTEREST free

specify that we want to estimate the measurement error variances as free parameters in group 2.
Note that it is not possible to specify this with the single line

Set the error variances of NOSAY - INTEREST free
because this will include VOTING. The two lines

Set the variances of Efficacy - Respons free
Set the covariance between Efficacy and Respons free

specify that we do not want to constrain the covariance matrix of £ to be the same in the two groups.

The output file gives the following fit statistics of overall fit (here I have selected the only fit
statistics you need to consider).

Degrees of Freedom = 13
Minimum Fit Function Chi-Square = 19.47 (P = 0.11)
Root Mean Square Error of Approximation (RMSEA) = 0.019
90 Percent Confidence Interval for RMSEA = (0.0 ; 0.035)
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As judged by the P-value for exact fit, the model fits very well. Some people might say that I should
test whether 7, and A, are invariant over groups and not just assume that. However, since the
model fits well and makes good sense, I do not need to do that.

The results concerning the distribution of the latent variables is summarized in Table 10. This
gives the estimated means, variances, and covariances of the latent variables, with their standard
errors and t-values (The standard error is given in parenthesis and the ¢-value follows after the
standard errors).

Table 10: USA vs Britain: Estimated Means and Covariance Matrices

USA
Efficacy Respons Means
Efficacy | 0.19(0.02)9.85 0.00
Respons | 0.20(0.01)17.09 | 0.31(0.02)20.08 | 0.00
Britain
Efficacy Respons Means
Efficacy | 0.15(0.01)10.09 -0.13(0.03)—4.00
Respons | 0.18(0.01)14.57 | 0.38(0.02)21.42 | —0.09(0.04)-2.14

The t-values for the means suggest that there is a significant mean difference between the two
countries for both Efficacy and Respons. The means are larger in the USA than in Britain. One
might say that “the USA is ahead of Britain on Efficacy” or that “people in the USA are more
efficacious than in Britain”.

The t-values for the variances and covariances are not useful. The only hypothesis of any interest
is whether the covariance matrix of the latent variables are the same in both countries. This can be
tested formally by omitting the two lines

Set the variances of Efficacy - Respons free
Set the covariance between Efficacy and Respons free

in the second group. However, for most purposes, it does not matter if this hypothesis holds or not.
It is more important to consider the interpretation of differences in variances and covariances. If
the variance of Efficacy, say, is noticeably smaller in one country than in another country, it can
be interpreted as “People in the first country are more homogeneous with regard to their feeling of
efficacy” in the first country compared to the other country. If the differences between the variances
are small but the difference between the covariances is large, such that the correlation between the
latent variables are different in the two countries, this might suggest that “there is more confusion
about the distinction between Efficacy and Respons” in the country with the smaller covariance
than in the country with the larger covariance. In my example, the differences in variances and
covariances are rather small, even if some difference may be statistically significant.

Two other countries with the same language are Germany and Austria. I leave it as an exercise for
anyone interested to carry out the same analysis for these two countries and to verify that the same
model also fits well in these two countries. I now turn to the analysis of the USA and Germany.

USA vs Germany

Fitting the model of factorial invariance (in the sense of equal intercepts and equal factor loadings)
to the USA and Germany gives a chi-square of 140.17 with 13 degrees of freedom and a RMSEA
of 0.074 indicating that the model does not fit well.}> There are large modification indices for the

12Since I do not believe that the model holds exactly in the population, I use RMSEA and the guidelines of Browne
& Cudeck (1993) to judge whether the model fits approximately in the population.
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two loadings of NOCARE indicating that these are different in the two countries (they are larger in
Germany). Allowing these two loadings to be free in each country gives a chi-square of 72.47 with
11 degrees of freedom and a RMSEA of 0.056. Note that it is still possible to compare the variances
and covariances of the two latent variables across countries since they are still measured in the same
units (because they are measured in the units of the underlying variables of NOSAY and INTEREST
which themselves are in the same units by the construction in the PRELIS step). The fit is still
not adequate. There are large modification indices for the intercepts of NOSAY and COMPLEX. This
indicates that the large differences between the mean vectors of the underlying variables between the
two countries cannot be entirely accounted for by the mean differences in the latent variables.

One must be careful in relaxing the assumption of equal intercepts, however. It is this assumption
that makes it possible to estimate the means of the latent variables on a scale with the same origin.
In this case, if we allow the intercepts of NOSAY, COMPLEX, and NOCARE to be different, one will not be
able to estimate the mean difference in Efficacy. One can, however, allow one of these intercepts
to be different. Relaxing the intercept of NOCARE will not improve the fit much. In choosing between
NOSAY and COMPLEX, it is best to choose COMPLEX, because the mean difference of Efficacy is well
defined by the mean difference in NOSAY. Thus, in the next model, I will allow the intercept of
COMPLEX to be different in the two countries but assume that all the other intercepts are the same.
This gives a chi-square of 20.21 with 10 degrees of freedom and a RMSEA of 0.024. Thus, this model
fits well. Note that chi-square decreased from 72.47 to 20.21 only by adding one single parameter.

The SIMPLIS command file for the last model is not listed here but is given in file 0RD45.SPL. The
estimated means, variances, and covariances of the latent variables, with their standard errors and
t-values, are given in Table 11.

Table 11: USA vs Germany: Estimated Means and Covariance Matrices

USA
Efficacy Respons Means
Efficacy | 0.19(0.02)10.01 0.00
Respons | 0.20(0.01)17.35 | 0.32(0.01)22.72 | 0.00
Germany
Efficacy Respons Means
Efficacy | 0.62(0.02)25.47 —0.52(0.05)-11.30
Respons | 0.44(0.01)37.05 | 0.61(0.02)39.16 | —0.12(0.03)-3.92

All Countries

I will now analyze the data from all countries simultaneously. There are several ways to do this and
several models that can be considered. In line with the previous sections my objective is to achieve
maximum factorial invariance over countries in the sense that intercepts and factor loadings should
be invariant over countries. But the model must also fit the data reasonably well and all estimated
parameters should be statistically significant and meaningful. In particular, I want to estimate the
mean vector (relative to the USA) and the covariance matrix of the latent variables in each country.

I know from the previous analysis of the USA and Germany that I will not be able to fit the model
of complete factorial invariance over all eight countries. If I do I get a chi-square of 473.32 with 73
degrees of freedom and a RMSEA of 0.059. This is not a satisfactory fit.

My guess is that I can fit the model of complete factorial invariance over the USA, The Netherlands,
Britain, Italy, Switzerland, and Finland but not with Germany and Austria. I can also fit complete
factorial invariance over Germany and Austria, but the model in Germany and Austria differs slightly
from that of the other countries. The only differences are that (i) the two loadings of NOCARE are
different and (ii) the intercept of COMPLEX is different. To estimate this model with SIMPLIS it is
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convenient to order the countries in the command file such that Germany and Austria are the last
two countries. The SIMPLIS command file is not listed here but is given in file 0RD46. SPL.

Note the following

e The measurement relations are not repeated in The Netherlands, Britain, Italy, Switzerland,
and Finland. Hence the intercepts and factor loadings in these countries are the same as in
the USA.

e The lines

Set the error variance of NOSAY free

Set the error variances of COMPLEX - INTEREST free
Set the variances of Efficacy - Respons free

Set the covariance between Efficacy and Respons free

are repeated in each country to allow the error variances and the covariance matrix of the
latent variables to be free in each country.

e The line
Efficacy Respons = CONST

is included in each country except the USA to specify that the means of the latent variables
are to be estimated in these countries. These means are zero in the USA.

e The two lines

COMPLEX = CONST
NOCARE = Efficacy Respons

are added in Germany to specify that the two loadings of NOCARE are different and that the
intercept of COMPLEX is different in Germany. Note that these lines are not repeated in Austria,
which makes these quantities equal in Germany and Austria.

The output gives the following set of fit statistics.

Degrees of Freedom = 70
Minimum Fit Function Chi-Square = 236.51 (P = 0.0)
Root Mean Square Error of Approximation (RMSEA) = 0.043
90 Percent Confidence Interval for RMSEA = (0.037 ; 0.049)

The hypothesis that the model holds exactly in the population is rejected. But, following the guide-
lines of Browne & Cudeck (1993), since RMSEA is below 0.05 and its upper confidence limit is below
0.08, I judge that the fit represents a reasonable degree of approximation in the population.

If one includes the line
LISREL Output

the set of factor loadings common to the USA, The Netherlands, Britain, Italy, Switzerland, and
Finland is given in the output as

Efficacy Respons

NOSAY 1.00 - -
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COMPLEX 1.04

(0.02)

55.99

NOCARE 0.97
(0.05)

18.90

TOUCH - -
INTEREST - -

0.26
(0.03)
7.63

0.88
(0.01)
94.51

1.00

The loadings for Germany and Austria differ from these only for NOCARE. For Germany and Austria

these loadings are

NOCARE 0.43
(0.02)

17.45

0.61
(0.02)
27.40

The loading on Efficacy is noticeably smaller and the loading on Respons is noticeably larger.
Thus, the item NOCARE functions differently in these two groups of countries. In the USA, The
Netherlands, Britain, Italy, Switzerland, and Finland, NOCARE is mainly a measure of Efficacy,
whereas in Germany and Austria, NOCARE is more of a measure of Respons than of Efficacy.

In the USA, The Netherlands, Britain, Italy, Switzerland, and Finland the intercepts in the mea-
surement equations are estimated as

NOSAY COMPLEX NOCARE TOUCH INTEREST

0.91 0.66 0.89 0.55 0.69
(0.03) (0.02) (0.02) (0.03) (0.03)
35.72 26.37 42.25 19.87 23.18

In Germany and Austria these intercepts are estimated as

NOSAY COMPLEX NOCARE TOUCH  INTEREST

0.91 1.21 0.89 0.55 0.69
(0.03) (0.04) (0.02) (0.03) (0.03)
35.72 28.07 42.25 19.87 23.18

The only difference is for COMPLEX but this difference is highly significant.

The estimated means of Efficacy and Respons are given in Table 12. All these means are
statistically significant except for the mean of Respons in Britain. Note that all estimated means
are negative except for Respons in The Netherlands. Hence, the USA is “ahead” of all countries on
Efficacy and “ahead” of all countries except The Netherlands on Respons. Note also that Germany
and Austria are “way below” the USA on Efficacy and that Austria is “way below” the USA on
Respons as well. If we rank the countries in order of decreasing Efficacy, the order is the USA,
The Netherlands, Britain, Switzerland, Finland, Italy, Germany and Austria.

A command file in LISREL syntax for doing exactly the same thing as in ORD46.SPL is given in
ORD46A .LS8.
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Table 12: Estimated Means of Efficacy and Respons

USA GER NET AUS BTN ITY SWI FIN
Efficacy | 0.000 -0.55 -0.08 -0.82 -0.15 -0.30 -0.23 -0.25
Respons | 0.000 -0.10 0.08 -0.41 -0.07 -0.39 -0.09 -0.18

4.4 Conclusion

In this section I have examined the factorial invariance of the five efficacy items NOSAY, COMPLEX,
NOCARE, TOUCH, and INTEREST in the eight countries USA, The Netherlands, Britain, Italy, Switzer-
land, Finland, Germany, and Austria using data from the Political Action Survey. The conclusions
are

e The five efficacy items measure the same two latent variables Efficacy and Respons in all
countries.

e NOSAY, TOUCH, and INTEREST are functionally equivalent in all eight countries, in the sense that
the intercepts and slopes (factor loadings) are the same in all eight countries. COMPLEX and
NOCARE are functionally equivalent in the six countries USA, The Netherlands, Britain, Italy,
Switzerland, and Finland. They are also functionally equivalent in Germany and Austria, but
these countries differ from the other six countries in two respects

— The loadings of NOCARE on Efficacy and Respons are different. In Germany and Austria
the loading on Efficacy is much smaller and the loading on Respons is much larger than
in the other six countries. Thus, the item NOCARE functions differently in these two groups
of countries. In the USA, The Netherlands, Britain, Italy, Switzerland, and Finland,
NOCARE is mainly a measure of Efficacy, whereas in Germany and Austria, NOCARE is
more of a measure of Respons than of Efficacy.

— COMPLEX measures Efficacy at a higher level in the sense that the intercept is much larger
in Germany and Austria than in the other six countries.

e The means of Efficacy and Respons are considerably different among the eight countries,
with the USA being the most efficacious and Germany and Austria the least efficacious.

5 Covariates

In the previous four sections I assumed that all observed variables were ordinal. Thus, in Section 2,
I described the analysis of ordinal variables in cross-sectional studies, in Section 3, I described the
analysis of ordinal variables in longitudinal studies, and in Section 4, I described the analysis of
ordinal variables observed in several groups. In this section I consider the case when one or more
ordinal variables are observed jointly with a set of possibly explanatory variables, so called covariates.
These covariates can be dummy-coded categorical variables or measured variables on an interval scale.
They are assumed not to contain measurement error. With PRELIS one can estimate the effect of the
covariates on the probability of response in various categories of the ordinal variables using either
the probit or the logit model. PRELIS can also estimate the joint covariance matrix of the covariates
and the variables underlying the ordinal variables. This can be used for further modeling in LISREL.

Continuing my analysis of the Efficacy variables from the Political Action Survey, I illustrate the
analysis of the six Efficacy variables using four covariates: Gender, Age, Education, and a Left-Right
Scale. For information about the Political Action Survey and the Efficacy variables, see Section 1.
As in Sections 2 and 3, I will only use the data from the USA sample.

Since probit and logit regression have not been well documented in the LISREL literature, I give a
rather technical description in Sections 5.1-5.5. Readers who are merely interested in how to do it
with LISREL can skip this and proceed to Section 5.6.
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5.1 Univariate Probit Regression

Let y be a single ordinal variable!® with m categories and let x(q x 1) be a vector of covariates.
Corresponding to y there is an underlying continuous variable y*. The connection between the
ordinal variable y and the underlying variable y* is

y=a <= T4.1 <y <7g, a=1,2,....,m, (17)

where
T=—00,T1<T<...<Tm-1, Tm = +00,

are threshold parameters. For variable y with m categories, there are m — 1 threshold parameters
T = (Tl,TQ,. . ~7Tm—1) .
The specification (17) is the same as in Section 2. In fact, the development in Section 2 is a special

case of the more general case described here, namely when ¢ = 0.

Consider the regression of y* on x:
v =a+vx+z, (18)

where « is an intercept term, -y is a vector of regression coefficients, and z is an error term. The
underlying variable y* is not observed; only the ordinal variables y and x are.

The probit model assumes that z is normally distributed with mean 0 and variance 92, i.e., y* is
normal conditional on x:
y* ~ N(a+~'%,9%) .
It follows that the probability m.(x) of a response in category ¢ or lower, conditional on x, where
c=12,....m—1,is
Te—a—7v'x
G

where ® is the standard normal distribution function.

me(x) = @( ) (19)

Equation (19) can be viewed as a special case of a generalized linear model, see e.g., McCullagh
& Nelder (1983). In this tradition there are no concepts of underlying variables and thresholds.
Instead, (19) is written

me(x) = (a7 — v"'x) (20)

where

is interpreted as an intercept term and
* _ —1
Y=Y,
is a vector of regression coefficients.

To explain the term probit regression, take the inverse of (20):
7 re(x)] = ap =% ., (21)

where @1 is the inverse function of ®. The quantity ®~!(7) is called the probit of 7. If 7 goes from
0 to 1, ®!(7) goes from —oco to +oo. Equation (21) shows that the probit of m.(x) is linear in x,
hence the term probit regression. Note that the sign of -+ is negative in (20) but positive in (18). In
(20), for example, if v is positive, the probability of a response in category c or lower decreases as
x1 increases. Which says the same thing as the probability of a response in a category higher than
¢ increases with z1. In (18), however, y* increases if x; increases which increases the probability of
a higher response. Thus, the two models are equivalent.

13The term univariate is used here in the sense of one variable at a time. One can very well have several ordinal
variables but they are analyzed one at a time.
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One can regard (21) as m — 1 parallel regression lines. Note that the intercepts vary with ¢ but
the regression coefficients are the same. For ordinal variables the intercepts must satisfy the order
condition

g <ab<...<ar_q.

To illustrate the function 7.(x) in (19), consider the case of a single covariate z. Let o =0, ¢ =1
and denote
Ty (2) = (7 — y) .
Fig. 7 shows four curves 7, (z) for —10 < < 10 using the parameter values
Curve 1 7= —-0.5and v=1.0
Curve 2 T =15and y=1.0
Curve 3 7= —-0.5and vy =04

Curve 4 7 =1.5and v =0.4.

It is seen that the probability of a response in category c or lower, i.e., the probability that y* < 7,
decreases with x. The larger «y is, the faster is the rate of decrease. As 7 increases or decreases, the
curves are just shifted vertically.

) 10
Figure 7: Four Cumulative Response Functions

I now return to the development of equation (19). There are two fundamental indeterminacies in
(19):

e One can add a constant to all 7’s and to «.

e One can multiply all 7’s, «, and « by a constant and multiply v by the same constant.

Neither of these changes has any effect on the right hand side of (19). This is a reflection of the
fact that since only ordinal information is available about y, y* is only determined up to a linear

transformation4.

PRELIS has two ways of resolving these indeterminacies:

14 Actually, y* is only determined up to a monotonic transformation, but under normality the transformation must
be linear.

99



Standard Parameterization: a« =0and ¢y =1

Alternative Parameterization: =0 and 7, =1

These paramaterizations fix the origin and unit of measurement of y* in two different ways. The
Standard Parameterization is the same as used in Generalized Linear Models. The Alternative
Parameterization requires that m > 3. If m = 2 under this parameterization, PRELIS will set 7, = 0
and ¢¥ = 1.

For m > 3, the parameters of the two parameterizations are given in the following table.

Parameterization | Intercept Error Var. Thresholds Regr. Coeff.
Standard 0 1 TL T2 T3 oo Tm—1 |71 Y2 .- g
Alternative a 2 0 1 7 ... 7ty m ..o
where

a=-11/(rg—11), Yp=1/(12 —71),

= (1 — 1) /(T2 — T1), i=34,...,m—1,

*

Vi

It should be emphasized that the two parameterizations are equivalent in the sense that there is a
one-to-one correspondence between the two sets of parameters.

’71'/(7-277-1% i:1727"'7q

For estimation, the probability of a response in category a is needed, where a = 1,2, ..., m. This

is
!/ !/
To —a—'x Ta—1 — Q@ —7'X
— ) (/) (22)
(4 (4

It is convenient to refer to (22) as the category probability function and to (19) as the cumulative
probability function.

Priy = a | x} = ma(x) = ma1(x) = &(

For a single x, the category probability functions in (22) are shown in Fig. 8 for « = 0, ¢ = 1,
71 = —05, 7 =15and vy = 1 (Curve 1) and v = 0.4 (Curve 2). As z increases the category
probability increases up to a maximum

T1 +7'2

20

(Tg—’l’l)]—l at =

)

N =

and then decreases. The rate of increase and decrease is larger for larger v than for smaller 7. Note
that the maximum is independent of ~.

Suppose we have a random sample of N independent observations of y and x:
(yi,xi)7 221,2,,N
Let ki =1, if y; = a, and k;q = 0, otherwise. Then

Ta —a—v'%

E(kia | xi) = ®( m ) — & 7 ) =Tia(xi) (23)
say. The likelihood of the sample is
N m
L=l x) e dn(x) (24)
i=1 a=1

where p(x) is the density function of x. The latter is unspecified and assumed to have no parameters
of interest. The parameter vector is

0: (T7a777¢) °

This can be estimated by maximizing the likelihood L of either of the two parameterizations.
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Figure 8: Two Category Response Functions (probit)

5.2 Univariate Logit Regression

One can obtain logit regression, sometimes called logistic regression, in the same way simply by
replacing the normal distribution function ®(z) by the logistic distribution function

e
\I’ =
(w) = 1 P
The inverse function of ¥ is -
(7)) =1In 7
-

The quantity In ;2= is called the logit of 7. If 7 goes from 0 to 1, logit(m) goes from —oo to +oo.

The logit model is

me(x) a* x!
In i . (25)

This is also a special case of a Generalized Linear Model, see McCullagh & Nelder (1983)5.
PRELIS estimates the logit model in the form

Te—a—~'x
(0

using either the Standard Parameterization or the Alternative Parameterization as defined in the
previous Section.

me(x) = ¥( ) (26)

The probability of a response in category a is

Te —a—7'x Ta1— 0 —~'X

Priy=a|x} = ma(x) ~ oo (x) = $(T— v

This probability as a function of a single x is shown in Fig. 9 for the same parameters as in Fig. 8.

) —¥( ) (27)

It is seen that the logit model gives less probability to the category corresponding to 7 < y* < 7
and more probability to the other categories than the probit model. In general, the logit model gives

15The logit model seems to be more often used in practice than the probit model. This is probably because ¥—1!
has an explicit form. However, with computers it is almost as easy to compute ® 1 as it is to compute ¥—1.
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Figure 9: Two Category Response Functions (logit)

less probability to the middle categories and more probability to the outer categories than the probit
model.

The logistic and the normal distribution are similar, but the variance of the logistic distribution
U(u) is not 1 as is the case of the normal distribution ®(u). Lord & Novick (1968, p. 299) noted
that

|®(u) — ¥(1.7u)| < 0.01, for all x . (28)

Because of this closeness, results obtained under the Standard Parameterization with the logit model
are likely to be close to those obtained with the probit model except for a scale factor. As will be
demonstrated, the Alternative Parameterization eliminates this scale factor and makes the regression
equations directly comparable and similar.

5.3 Testing the Model

The univariate probit and logit models make strong assumptions about the cumulative response
functions in the form of (19) and (26), respectively. Can these assumptions be tested? The typical
way of doing this is to compute a deviance, i.e., the difference between —21n L for the model and the
same quantity for another more general model, where L is the maximum value of (24). This kind
of deviance has not been implemented in PRELIS because it is not obvious what the more general
model should be. However, PRELIS prints the value of —21n L so one can compare this for different
models. We have also implemented a test of the hypothesis that v = 0, i.e., that all regression
coefficients are zero. This can also be regarded as a measure of how much better the model fits than
the model with no covariates. This will be illustrated in Section 5.10.

5.4 Bivariate Probit Regression

The normal distribution generalizes naturally to the bivariate and multivariate case. The logistic
distribution function, however, does not have any convenient generalization to the bivariate and
multivariate case. For this reason I consider only the case of underlying bivariate and multivariate
normality in what follows.
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Consider two ordinal variables y, and yp, with underlying continuous variables y; and y;, respec-
tively. The equations to be estimated are

Y, =g + 7qu + 24, (29)

Yn =on +Ypx+ 2n (30)

where o, and ay, are intercept terms, v, and v, are vectors of regression coefficients, and z,4 and 2,
are error terms. It is assumed that z, and z;, have a bivariate normal distribution with means zero

and covariance matrix )
by
1/)gh 7121}21

In the Standard Parameterization this is a correlation matrix with correlation pg,. Variable y, has
thresholds

Ty = (Tg,1,7g,2--- ng,mg—l) )

and variable y;, has thresholds
Th = (Th,17 Th,27 e 7Th,mh—1) .

The probability that an individual ¢ with covariates x; responds in category a on y, and in category
b on yp, is

Ti*g,a "'i*h,b
Tigh,ab = Pr{yig = @, Yih = b | xi} = /* / ¢(2) (Uv’U»Pgh)dUd’U ) (31)
Tiga—1 Y Tih b1
hy
here * Tga — Otg — Y gXi
= BT )
g

and ¢ (u, v, p) is the density function of the standardized bivariate normal distribution with corre-
lation p. The parameter vector is

0= (0970hapgh) )
where
0y = (79, 9,74, Yg) ,
0 = (Thy @y Yy ¥n) -

The likelihood function is N
Mg mp
kiq ,a
=11 (H 11 ”ighf”abb) p(xi) (33)
i=1 \a=1b=1

where kignqp = 1 if case ¢ responds in category a on y, and in category b on yp, and kigh.ap = 0,
otherwise.

PRELIS estimates 8, and ), from the univariate marginal distribution of y, and yp, respectively,
as described in Section 5.1. Given these estimates, PRELIS estimates pgn, by maximizing the bivariate

likelihood L in (33). Under the Alternative Parameterization, the conditional covariance between y
and y; is estimated as

2&gh = &g’&hﬁgh .
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5.5 Multivariate Probit Regression

Let y(p x 1) be a vector of ordinal variables with underlying variables y*. It is assumed that
y'|x~Na+TIx,¥).

The rows of o and T" and the diagonal elements of ¥ are estimated from the univariate margins as
described in Section 5.1, and the off-diagonal elements of ¥ are estimated from the bivariate margins
as described in Section 5.4.

Denoting these estimates as &, f‘, and \il, we have the following:

e The estimated conditional covariance matrix of y* for given x is ¥. In the Standard Parame-
terization this is a correlation matrix.

e The estimated unconditional covariance matrix of y* is
r'S,.I" + ¥,
where S, is the sample covariance matrix of x.
e The estimated joint unconditional covariance matrix of y* and x is

~ ~/ ~
5= PSal +¥ : (34)

The relationship between the Standard and Alternative Parameterizations can be expressed in
matrix form as follows. Let D be the diagonal matrix of order p x p

1 1 1

D = diag( , ey
T1,2 —T1,1 72,2 — 721 Tp,2 — Tp,1

) (35)

and let y§ and y?% denote the vector of underlying variables in the Standard and Alternative Para-
meterizations, respectively. Then

* *
ya =a+ Dyg, (36)
where
o —71,1 —T72,1 —Tp,1 /
a= , ey .
T1,2 —T1,1 72,2 — 72,1 Tp,2 — Tp,1

Furthermore, let f‘g and ‘i’s be the matrices I' and ¥ estimated under the Standard Parameteriza-
tion, and let I'4 and W4 be the corresponding matrices estimated under the Alternative Parameter-
ization. Then

I'y=DIg, (37)

¥, =D¥D. (38)
Using the same notation for the matrix 3 in (34), we have
$4=D,3:D,, (39)
where D, is the diagonal matrix of order p+ ¢ X p+ ¢
1 1 1

, ey
T1,2 —T1,1 72,2 —T2,1 Tp,2 — Tp,1

D; = diag( ,1,1,...,1) . (40)

PRELIS can also estimate the asymptotic covariance matrix of >

There is no latent variable model (LISREL model) imposed on the 3 in (34). It is an unconstrained
covariance matrix just as a sample covariance matrix S for continuous variables. It can therefore
be used for modeling in LISREL just as if y* and x were directly observed. This is illustrated in
Section 5.12.
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5.6 PRELIS Implementation

The features described here have been implemented in PRELIS 2.52 which is available with LIS-
REL 8.52 in June 2002. In PRELIS 2.51 or earlier versions, probit regression was available via the FI
command, see Joreskog & Sorbom (1999a, pp. 180-183) and logit regression was not available at all.

I illustrate the case of 3 ordinal variables and 4 covariates. Let Y1 Y2 Y3 be the names of the
ordinal variables and let X1 X2 X3 X4 be the names of the covariates.

Probit regression of Y1 is obtained by the PRELIS command
PR Y1 on X1 X2 X3 X4
Similarly, logit regression of Y1 is obtained by the PRELIS command
LR Y1 on X1 X2 X3 X4

One can select any subset of y-variables and any subset of z-variables to be included in the equa-
tion. Thus, one can obtain the univariate probit or logit regression for all the ordinal variables
simultaneously. For example,

PR Y1 Y2 Y3 on X1 X2 X3 X4

will give three univariate probit regressions. Note the word on (or ON) separating the ordinal variables
from the covariates.

One can have several PR and/or LR commands in the same input file. All z-variables used as
covariates must be declared continuous before the first PR or LR command, or else they must have at
least 16 different values.

The Standard Parameterization is used by default. To obtain the Alternative Parameterization put
AP on the Output line. The PR or LR command produces only univariate probit or logit regressions.
Thus an MA value specified on the Output line has no meaning. To obtain the matrix 3 in (34), use
an FI command and put MA=CM on the Output line. No other value of MA is meaningful since Sisa
covariance matrix even in the Standard Parameterization. There are two reasons why the covariance

matrix 3 in (34) is not computable with PR or LR commands:

e Since one can have several PR or LR commands in the same PRELIS command file, there is no
way PRELIS will know which covariance matrix to compute.

e Since the logistic distribution does not generalize to the multivariate case, the covariance matrix
can only be estimated under multivariate normality. It would be odd to estimate the univariate
parameters a and « under the logistic distribution and then estimate the covariance of the error
terms under multivariate normality.

The various alternatives are illustrated in the sections that follow.

5.7 A Small Example

Before proceeding to analyze the Efficacy variables, I illustrate the various alternatives by means
of a small example based on generated data. File ORDATA.RAW contains data in free format on one
ordinal variable y and two covariates z; and x3. To estimate the probit regression in the Standard
Parameterization, use the following PRELIS command file (file ORDATA.PR2):

Data Ninputvars = 3
Labels

Y X1 X2

Rawdata = ORDATA.RAW
Continuous X1 X2

PR Y on X1 X2

Output
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The probit regression is estimated as
Thresholds: -1.910 -0.962 0.662 2.050

Y = 1.006%X1 + 2.028%X2 + Error, R2 = 0.838
(0.0860) (0.119)
11.696 16.997

To estimate the same regression in the Alternative Parameterization, just put AP on the Output line.
This gives the following results:

Thresholds: 0.0 1.0 2.714 4.179

Y = 2.147 + 1.061*X1 + 2.141%X2 + Error, R2 = 0.838
(0.0907) (0.126)
11.696 16.997

Note that

e The regression coefficients in the Standard and Alternative Parameterizations are different but
the t-values are the same.

e R? is the same.

e Although different, the regression coefficients are rather close. However, this is just a coinci-
dence that occurs because 75 — 71 is close to 1.

To use logit regression, put LR instead of PR. Logit regression gives the following results in the
Standard Parameterization:

Thresholds: -3.417 -1.746 1.216 3.687

Y = 1.790%X1 + 3.631*X2 + Error, R2 = 0.943
(0.154) (0.227)
11.599 15.977

Comparing the standard solutions for probit and logit regression, it is seen that the regression co-
efficients are quite different. However, a closer look shows that the regression coefficients of the
logit equation are approximately 1.79 times those of the probit regression. This confirms the state-
ment made earlier that the regression coefficients will be roughly proportional. The scale factor 1.79
may require some further explanation. The factor 1.7 in (28) should be regarded as an approxi-
mate population quantity, whereas the scale factor 1.79 is estimated from a random sample of 400
observations.

That the results of the probit and logit regressions are close can be seen much better if one uses
the Alternative Parameterization. The result of logit regression in the Alternative Parameterization
is:

Thresholds: 0.0 1.0 2.773 4,251

Y =2.178 + 1.071*X1 + 2.173*X2 + Error, R2 = 0.943
(0.0924) (0.136)
11.599 16.977

As can be seen, this is quite similar to the corresponding regression equation for the probit model.
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5.8 Data Screening

I now return to the analysis of the Efficacy variables in the Political Action Survey described in
Section 1. The data file for this illustration is USA.RAW. This contains 10 variables in free format.
The first six are the six Efficacy variables; the other four variables are (the original variable names
are given in parenthesis):

YOB Year of birth with Don’t Know coded as 1998 and No Answer coded as 1999 (V0146). Recall
that the interviews were done in 1974.

GENDER Gender coded as 1 for Male, 2 for Female, and 9 for No Answer (V0283).

LEFTRIGH A left-right scale from 1 to 10 with Don’t Know coded as 98 and No Answer coded as 99
(V0020).

EDUCAT Education coded as 1 for Compulsory level only, 2 for Middle level, 3 for Higher or Academic
level, and 9 for No Answer (V0214)

As always, it is a good idea to begin with a data screening. This can be done by running the
following PRELIS command file (file ORD51 .PR2)

Screening the Data in USA.RAW

Data Ninputvars = 10

Labels

NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST YOB GENDER LEFTRIGH EDUCAT
Rawdata = USA.RAW

Clabels NOSAY - INTEREST 1=AS 2=A 3=D 4=DS 8=DK 9=NA

Clabels GENDER 1=MALE 2=FEMA 9=NA

Clabels LEFTRIGH 98=DK 99=NA

Clabels EDUCAT 1=COMP 2=MIDD 3=HIGH 9=NA

Output

The output reveals that

There are 1719 cases in the USA sample, 736 males and 983 females.

The marginal distributions of the six efficacy variables are those reported in Section 1.

There are more than 15 different birthyears in the sample. The oldest person was born in 1882.
Only one person did not report his/her birthyear and nobody reported not knowing his/her
year of birth.

e As many as 547 persons or 31.8% did not place themselves on the left-right scale.

e Only 8 persons did not answer the education question.

Before one can proceed one must decide how to treat the Don’t Know and No Answer responses.
In Section 1, I discussed various alternative ways of dealing with missing values. I do not want to
repeat that discussion here. The major difficulty is to decide how to treat the 547 people who did
not answer the LEFTRIGH variable. Does this mean that these people are in the middle of the scale,
or that the concept of left-right has no meaning for them, or what? I do not know. So I will treat
them as having provided no information.

File ORD51A.PR2 eliminates all cases with Don’t Know and No Answer responses (listwise deletion)
and saves the data on all complete cases in a PRELIS system file called USA.PSF. In addition, AGE is
computed as 1974 - YOB. This is a proxy for age. The output file shows that the resulting listwise
sample size is 1076. Thus, 643 cases were lost.
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5.9 Probit Regression of NOSAY

The following PRELIS command file (file 0RD52.PR2) estimates the probit regression of NOSAY (as a
y-variable) on GENDER, LEFTRIGH, EDUCAT, and AGE (as a-variables — covariates) using the Alternative
Parameterization.

Probit Regression of NOSAY
SY=USA.PSF

Continuous GENDER - AGE
PR NOSAY on GENDER - AGE
Output AP

The output gives the following information about the probit regression:

Univariate Probit Regression for NOSAY
Alternative Parameterization

Thresholds: 0.0 1.0 2.825

NOSAY = 0.173 + 0.00927*GENDER + 0.0437*LEFTRIGH + 0.371*EDUCAT
(0.0696) (0.0189) (0.0534)
0.133 2.308 6.946

+ 0.00467*AGE + Error, R2 = 0.0586
(0.00213)
2.187

Because the t-values for LEFTRIGH, EDUCAT, and AGE are all positive and larger than 2, this means
that people on the right of the left-right scale, people with higher education and older people have
a tendency to respond higher on the ordinal scale for NOSAY, that is, they are likely to disagree or
disagree strongly to NOSAY. This seems quite plausible.

The corresponding logit regression is obtained by replacing PR with LR. The resulting regression
equation is

Univariate Logit Regression for NOSAY
Alternative Parameterization

Thresholds: 0.0 1.0 2.771

NOSAY = 0.114 - 0.00285*GENDER + 0.0492*LEFTRIGH + 0.379*EDUCAT
(0.0693) (0.0188) (0.0538)
-0.0411 2.616 7.043

+ 0.00456*AGE + Error, R2 = 0.171
(0.00212)
2.147

The logit regression is very similar to the probit regression, but note that R? is larger for the logit
model than for the probit model. I will discuss the issue of the fit of the probit vs logit model in the
next Section.

In addition to the ordinary output file ORD52.0UT, the run of ORD52.PR2 gives another output file
ORD52.FIT giving information about the fit of the probit and logit regressions. For the initial probit
regression of NOSAY, this file looks like this:
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Variable -21nl. Chi-square  df
NOSAY 2344.591 53.512 4

This does not give much information; only that the four covariates fit much better than no covariate
at all. However, consider entering the covariates stepwise one at a time using the following input file
(ORD52A . PR2:

Probit Regression of NOSAY

SY=USA.PSF

Continuous GENDER - AGE

PR NOSAY on GENDER

PR NOSAY on GENDER AGE

PR NOSAY on GENDER AGE LEFTRIGH

PR NOSAY on GENDER AGE LEFTRIGH EDUCAT
Output AP

The file ORD52A.FIT looks like this

Variable -21nl. Chi-square df Covariates
NOSAY 2398.100 0.004 1 GENDER
NOSAY 2395.940 2.163 2 GENDER AGE
NOSAY 2393.094 5.009 3 GENDER AGE LEFTRIGH
NOSAY 2344 .591 53.512 4 GENDER AGE LEFTRIGH EDUCAT

This can be interpreted as follows. GENDER is no better than no covariate at all, i.e., GENDER alone
cannot be used to predict NOSAY. If AGE is used together with GENDER there is no significant improve-
ment in fit. GENDER and AGE alone does not predict NOSAY. If LEFTRIGH is added to the equation,
there is still no significant improvement in fit because 5.009 — 2.163 = 2.846 is not significant as a
chi-square with one degree of freedom. If EDUCAT is added to the equation, there is a highly signifi-
cant improvement in fit. This suggest that EDUCAT is the best predictor of NOSAY. These findings are
confirmed in the output file ORD52A. QUT.

How come that LEFTRIGH and AGE are significant in the last equation whereas they are not signif-
icant in any equation that does not include EDUCAT? The reason is that EDUCAT is correlated with
LEFTRIGH and AGE thereby generating interactive effects of LEFTRIGH and AGE. This can be seen by
entering the covariates one at a time in the opposite order, see file ORD52B.PR2. The fit file from this
run is

Variable -21nl. Chi-square df Covariates
NOSAY 2357.968 40.136 1 EDUCAT
NOSAY 2349.465 48.638 2 EDUCAT LEFTRIGH
NOSAY 2344.609 53.494 3 EDUCAT LEFTRIGH AGE
NOSAY 2344 .591 53.512 4 EDUCAT LEFTRIGH AGE GENDER

Recall that chi-square is a test of the hypothesis that none of the covariates has any effect. This
hypothesis is rejected for any equation with EDUCAT included. Note that chi-square increases con-
siderably when LEFTRIGH is added to EDUCAT and when AGE is added to EDUCAT and LEFTRIGH but
not when GENDER is added. The chi-square difference 48.638 — 40.136 = 8.502 with one degree of
freedom is a test of the hypothesis that LEFTRIGH has no effect, given that EDUCAT is included. This
hypothesis is rejected. Thus, LEFTRIGH should be included with EDUCAT. Similarly, the chi-square
difference 53.494 — 48.638 = 4.856 with one degree of freedom is a test of the hypothesis that AGE
has no effect, given that EDUCAT and LEFTRIGH are included. This hypothesis is also rejected (at
the 5% level). Thus, AGE should be included with EDUCAT and LEFTRIGH. But one cannot reject the
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hypothesis that GENDER has no effect, given that EDUCAT, LEFTRIGH, and AGE are included in the
equation because 53.512 — 53.494 = 0.018 is not significant.

Using (22) and the estimated parameter values, one can compute estimated category probabilities
for any specified set of covariate values. I illustrate this for the probit and logit regressions of NOSAY.
Table 13 gives estimated probabilities for 16 different combinations of the four covariates for the
probit model and Table 14 gives the same probabilities estimated under the logit model.

Table 13: Estimated Category Probabilities (probit)

Covariates Probabilities
Gender LeftRight Education Age | AS A D DS
1 2 1 30 | 0.026 0.138 0.622 0.215
1 2 1 60 | 0.018 0.114 0.611 0.257
1 2 3 30 | 0.004 0.041 0.483 0.472
1 2 3 60 | 0.003 0.031 0.440 0.527
1 8 1 30 | 0.014 0.095 0.595 0.296
1 8 1 60 | 0.010 0.076 0.570 0.345
1 8 3 30 | 0.002 0.024 0.401 0.573
1 8 3 60 | 0.001 0.017 0.356 0.626
2 2 1 30 | 0.025 0.136 0.621 0.218
2 2 1 60 | 0.018 0.112 0.610 0.260
2 2 3 30 | 0.004 0.040 0.480 0.476
2 2 3 60 | 0.002 0.030 0.437 0.530
2 8 1 30 | 0.013 0.093 0.594 0.299
2 8 1 60 | 0.009 0.074 0.568 0.348
2 8 3 30 | 0.002 0.023 0.398 0.577
2 8 3 60 | 0.001 0.017 0.353 0.629

Table 13 shows that a young male with low education and “leftist” opinion is most likely to respond
Disagree (P = 0.622) to the NOSAY statement. This may be contrasted with an old male with high
education and “rightist” opinion whose most likely response is Disagree Strongly (P = 0.626). It
is also seen that any person is more likely to respond Disagree or Disagree Strongly than Agree or
Agree Strongly no matter what his characteristics are. The probability of an Agree Strongly response
is very small for all types of persons. Table 14 shows very similar probabilities, but note that all
probabilities for Agree Strongly are larger than the corresponding probabilities in Table 13 and most
of the probabilities for Disagree Strongly are larger in Table 14 than in Table 13. This is in line with
the remark made earlier that the logit model gives more probability to the outer categories than the
probit model.

5.10 Probit and Logit Regression of All Efficacy Variables

To analyze all the six efficacy variables jointly with the four covariates, just replace the PR line in
ORD52.PR2 with (see ORD53.PR2 where the Standard Parameterization is used):

PR NOSAY - INTEREST on GENDER - AGE
A slight editing of the output file ORD53.0UT gives the following estimated probit regressions.
NOSAY = 0.00899*GENDER + 0.0424*LEFTRIGH + 0.360*EDUCAT + 0.00453%AGE + Error

(0.0675) (0.0184) (0.0519) (0.00207)
0.133 2.308 6.946 2.187
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Table 14: Estimated Category Probabilities (logit)

Covariates Probabilities
Gender LeftRight Education Age | AS A D DS
1 2 1 30 | 0.032 0.124 0.638 0.205
1 2 1 60 | 0.026 0.102 0.626 0.246
1 2 3 30 | 0.009 0.039 0.465 0.486
1 2 3 60 | 0.007 0.031 0.417 0.545
1 8 1 30 | 0.020 0.081 0.599 0.300
1 8 1 60 | 0.016 0.066 0.567 0.351
1 8 3 30 | 0.005 0.024 0.359 0.611
1 8 3 60 | 0.004 0.019 0.311 0.665
2 2 1 30 | 0.033 0.125 0.638 0.204
2 2 1 60 | 0.026 0.103 0.626 0.245
2 2 3 30 | 0.009 0.039 0.466 0.485
2 2 3 60 | 0.007 0.032 0.418 0.544
2 8 1 30 | 0.020 0.081 0.600 0.299
2 8 1 60 | 0.016 0.066 0.568 0.350
2 8 3 30 | 0.005 0.024 0.360 0.610
2 8 3 60 | 0.004 0.019 0.312 0.664

VOTING = - 0.0344*GENDER - 0.0217+*LEFTRIGH + 0.447+EDUCAT - 0.00634*AGE + Error
(0.0667) (0.0181) (0.0515) (0.00205)
-0.516 -1.195 8.673 -3.096

COMPLEX = - 0.212*GENDER - 0.0233*LEFTRIGH + 0.494+EDUCAT + 0.000881*AGE + Error
(0.0678) (0.0184) (0.0525) (0.00207)
-3.135 -1.267 9.402 0.425

NOCARE = - 0.0402*GENDER + 0.0240*LEFTRIGH + 0.371*EDUCAT + 0.00288*AGE + Error
(0.0669) (0.0182) (0.0514) (0.00205)
-0.600 1.319 7.219 1.407

TOUCH = 0.0382*GENDER + 0.0118*LEFTRIGH + 0.290*EDUCAT + 0.00540*AGE + Error
(0.0676) (0.0184) (0.0516) (0.00207)
0.565 0.643 5.632 2.604

INTEREST = 0.0316*GENDER - 0.00604*LEFTRIGH + 0.249*EDUCAT + 0.00467*AGE + Error

(0.0672) (0.0183) (0.0511) (0.00206)
0.470 -0.331 4.864 2.266

Thus,

e GENDER has a significant effect only for COMPLEX.
e LEFTRIGH is significant only for NOSAY.
e EDUCAT is significant for all the ordinal variables.

e AGE is significant for NOSAY, VOTING, TOUCH, and INTEREST. Note that the effect of AGE on
VOTING is negative.

The fit file ORD53.FIT gives the following information about the fit of the probit regressions.

71



Variable -21nl. Chi-square df Covariates

NOSAY 2344.591 53.512 4 GENDER LEFTRIGH EDUCAT AGE
VOTING 2470.648 106.818 4 GENDER LEFTRIGH EDUCAT AGE
COMPLEX 2284.676 108.725 4 GENDER LEFTRIGH EDUCAT AGE
NOCARE 2401.907 53.767 4 GENDER LEFTRIGH EDUCAT AGE
TOUCH 2249.115 35.305 4 GENDER LEFTRIGH EDUCAT AGE
INTEREST 2338.651 26.163 4 GENDER LEFTRIGH EDUCAT AGE

The second column gives a deviance but since we have no base model to compare it with this does
not provide any information about whether the probit model fits the data or not. The third and
fourth column give a chi-square test of the hypothesis that all regression coefficients are zero. It is
seen that this hypothesis is rejected for all ordinal variables. This is as it should be.

For comparison, I give the fit statistics for the logit regressions obtained by putting LR instead of
PR in ORD53.PR2, see file ORD53A.PR2.

Variable -21nl. Chi-square df Covariates
NOSAY 2340.790 57.313 4 GENDER LEFTRIGH EDUCAT AGE
VOTING 2467.314 110.152 4 GENDER LEFTRIGH EDUCAT AGE
COMPLEX 2279.764 113.637 4 GENDER LEFTRIGH EDUCAT AGE
NOCARE 2392.594 63.081 4 GENDER LEFTRIGH EDUCAT AGE
TOUCH 2244.766 39.653 4 GENDER LEFTRIGH EDUCAT AGE
INTEREST 2334.276 30.538 4 GENDER LEFTRIGH EDUCAT AGE

Does the logit model fit better than the probit model? The answer is Yes, Yes, Yes, Yes, Yes, and Yes.
The two models have the same number of parameters but the deviance is smaller for the logit model
than for the probit model for all variables. Take NOSAY, for example. The difference in deviance is
2344.591 — 2340.790 = 3.801. Note that one can obtain the same number as the difference between
the two chi-squares in the reverse order: 57.313 — 53.512 = 3.801.

5.11 Estimating the Joint Covariance Matrix

To estimate the joint covariance matrix of the continuous variables underlying the ordinal variables
and the covariates as defined in Section 5.5, one must use a Fixedvariables command (or FI
command for short), see Joreskog & Sorbom (1999a, pp. 180-183). Instead of Fixedvariables
one can write Covariates. In addition to all probit regressions, these commands give estimates
of the conditional covariance matrix and the joint unconditional covariance matrix as defined in
Section 5.5. File ORD54.PR2 illustrates this using the Standard Parameterization. It also shows how
one can obtain the asymptotic covariance matrix of the joint unconditional covariance matrix. File
ORD54.PR2 is

Computing Covariance Matrix
SY=USA.PSF

Covariates: GENDER - AGE

Output MA=CM CM=USA.CM AC=USA.ACC WP

All variables specified on the Covariates: line are automatically treated as continuous variables.
All other variables are assumed to be ordinal.

The output file ORD54.0UT gives the conditional covariance matrix as
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NOSAY VOTING COMPLEX NOCARE TOUCH  INTEREST

NOSAY 1.000
VOTING 0.284 1.000
(0.034)
8.312
COMPLEX 0.270 0.204 1.000
(0.035) (0.035)
7.746 5.766
NOCARE 0.567 0.223 0.379 1.000
(0.027) (0.035) (0.032)
21.089 6.412 11.720
TOUCH 0.367 0.206 0.274 0.637 1.000
(0.033) (0.035) (0.035) (0.024)
11.106 5.824 7.874 26.169
INTEREST 0.460 0.200 0.305 0.657 0.674 1.000
(0.030) (0.035) (0.034) (0.023) (0.023)
15.117 5.677 8.963 28.183 29.221

In this case, when the Standard Parameterization is used, this is the correlation matrix of the error
terms. All correlations are highly significant. This means that the covariates alone do not account
for the correlations of the ordinal variables (or more correctly the variables underlying the ordinal
variables). This is not surprising since we know from Section 2 that we need the latent variables
Efficacy and Respons to account for these correlations. In Section 5.12 I will use these latent
variables as well.

The output ORD54.0UT also gives the joint covariance matrix of the variables underlying the
ordinal variables and the covariates. This is too large to list here. It is saved in the file USA.CM
and its asymptotic covariance matrix is saved in the file USA.ACC. The covariance matrix USA.CM
is an unconstrained covariance matrix just as a sample covariance matrix for continuous variables.
It can therefore be used for modeling in LISREL just as if all variables were continuous. The only
restriction is that the covariates must not be treated as indicators of latent variables. In LISREL,
one can estimate the model either by WLS using the inverse of USA.ACC as a weight matrix or by
ML using USA.ACC to correct standard errors and chi-square for non-normality.

In Section 2, T used the ordinal Efficacy variables to establish a measurement model for the two

latent variables Efficacy and Respons. Now I will investigate to what extent the covariates affect
these two latent variables. To investigate this, one can use a MIMIC model described in Section 5.12.

5.12 A MIMIC Model for Efficacy and Respons

The idea of a MIMIC model is that a set of possibly explanatory variables (covariates) affects latent
variables which are indicated by other observed variables, in this case ordinal variables. Thus there
are multiple indicators and multiple causes of latent variables, see Joreskog & Goldberger (1975).
For examples of MIMIC models with continuous indicators see Joreskog & Sérbom (1999b). The
MIMIC model considered here is shown in Fig. 10.

A SIMPLIS command file for estimating the model in Fig. 10 is ORD55. SPL:

MIMIC Model
Observed Variables: NOSAY VOTING COMPLEX NOCARE TOUCH INTEREST
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Figure 10: MIMIC Model for Efficacy and Respons

GENDER LEFTRIGH EDUCAT AGE
Covariance Matrix from File USA.CM
Asymptotic Covariance Matrix from File USA.ACC
Sample Size: 1076
Latent Variables: Efficacy Respons
Relationships:

NOSAY COMPLEX NOCARE = Efficacy

NOCARE TOUCH INTEREST = Respons

NOSAY = 1xEfficacy

INTEREST = 1xRespons

Efficacy Respons = GENDER LEFTRIGH EDUCAT AGE
Let the errors of Efficacy and Respons correlate
Path Diagram

The output gives the structural equations as

Efficacy = - 0.19*GENDER - 0.025«LEFTRIGH + 0.43*EDUCAT - 0.00052%AGE
(0.065) (0.019) (0.066) (0.0021)
-2.94 -1.28 6.48 -0.25
Respons = - 0.075*%GENDER - 0.031*LEFTRIGH + 0.30*EDUCAT + 0.0021*AGE
(0.068) (0.021) (0.057) (0.0023)
-1.11 -1.45 5.32 0.90

which shows that GENDER has a significant effect on Efficacy and EDUCAT has significant effects on
both Efficacy and Respons. LEFTRIGH and AGE have no significant effects on either of the latent
variables. The fact that they are non-significant does not mean they do not exist, only that the
sample size is not sufficiently large to make them significant.

The model fits the data reasonably well as judged by the following fit statistics. For this conclusion
I use the information about RMSEA and the guidelines of Browne & Cudeck (1993).

Degrees of Freedom = 15
Minimum Fit Function Chi-Square = 40.95 (P = 0.00032)
Root Mean Square Error of Approximation (RMSEA) = 0.040
90 Percent Confidence Interval for RMSEA = (0.026 ; 0.055)
P-Value for Test of Close Fit (RMSEA < 0.05) = 0.85
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Appendix 1: Derivation of the RMSEA Measure

In this Appendix, I sketch the derivation of the RMSEA measure and the P-value for test of close fit
for underlying bivariate normality.

Let a run over all cells in the bivariate contingency and let m, = m,(0) be the model and p, be the
sample proportion. Suppose the sample proportions p converge in probability to g as the sample
size increases. Fitting the model 7 (0) to g gives 0o and 7o = 71'(90). The model holds if 7y = 7
and the model does not hold if g # (. Fitting the model 7(6) to the sample data p gives 0 and
T = w(@) We can now distinguish between three kinds of errors:

e Approximation Error: g — mg
e Estimation Error: «# — 7

e Total Error: # — mg

To define measures of these errors, I write the fit function (6) as a general fit function F(p,q) of
two vectors of probabilities p and q and assume that F' is non-negative and zero if and only if p = q.
We can then define measures of the three kinds of errors as

A = F(7r0,7i'0)
E = F(#, #0)
T = F(ﬁ',ﬂ'o)

Here A is a constant independent of sample data, whereas E and T are random variables depending
of sample data. A is a measure of the degree of approximation in the population. I will estimate a
transformation of A.

Let ¢ = 2N F[p,ﬂ(é)} = 2NFE. Then, as stated previously, if the model holds exactly, ¢ has
approximately a chi-square distribution with d degrees of freedom. However, if the model does not
hold exactly but holds approximately, then c has a non-central chi-square distribution with d degrees
of freedom and non-centrality parameter A\, where

The non-centrality parameter A can be estimated as
A = maz(c —d,0) . (42)

Fy is the required measure of approximation in the population. Since it is approximately the sum of
d squares, it is more convenient to define the Root Mean Squared Error of Approzimation (RMSEA)
(Steiger, 1990)

€a =/ Fo/d = \/\/2Nd , (43)

which can be estimated as

RMSEA = ¢, = \/\/2Nd = \/maz[(c — d)/2Nd, 0] , (44)

Practical experience based on a large number of contingency tables suggests that a reasonably
acceptable degree of approximation in the population is ¢, < 0.1. This represents a close fit in
contrast to €, = 0 which represents exact fit. The P-value for a test of close fit is obtained as

P=1.0-G(c|0.1?°Nd,d) , (45)

where G(z | A, d) is the non-central chi-square distribution function with non-centrality parameter A
and degrees of freedom d.

16Sik-Yum Lee (personal communication) gave me a handwritten proof of this statement.
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Appendix 2: Questions and Answers

Here are some questions often asked:

Q: Why cannot I just add the items up and use this as a measure of Efficacy?

A: You can. But you should first investigate whether the items measure a single unidimensional
latent variable. If they do not you will have a validity problem, i.e., the composite variable does not
measure what you think it does.

Q: Why cannot I just dichotomize all variables and use tetrachoric correlations instead of polychoric
correlations?

A: You can, but it is questionable whether you gain anything by doing so. If respondents can
distinguish between Agree and Agree Strongly and between Disagree and Disagree Strongly you will
throw away information. Collapsing categories is a good idea if there are many zero cells in the
bivariate contingency tables.

Q: Why cannot I just use the numbers 1, 2, 3, and 4 as they are and compute an ordinary covariance
matrix or correlation matrix?

A: That assumes that the numbers 1, 2, 3, and 4 are on an interval scale, i.e., that 2 is twice as much
as 1, 3 is three times 1, etc. But here, 1, 2, 3, and 4 are just labels for a set of ordered categories.
Even if one were to assume interval scale properties, the distribution is discrete and therefore not
continuous (only four values are possible; there are no values between the numbers).

Q: Why cannot I just compute the polychoric correlation matrix and use this with the ML method
in LISREL? Why do I have to compute the asymptotic covariance matrix?

A: The ML method in LISREL assumes that we have a sample covariance matrix from a multivariate
normal distribution. This is not the case here. The asymptotic covariance matrix is the price you
pay for non-normality. The WLS method based on the polychoric correlations and its asymptotic
covariance matrix gives correct standard errors and chi-squares in large samples.

Q: But the asymptotic covariance matrix requires a large sample to estimate. How large a sample
do I need?

A: For a small data set like this, probably 400 is OK. With more variables the sample must be
larger. It is difficult to give a general guideline because it depends on both number of categories and
number of variables. If there are many zero cells in the bivariate contingency tables, the sample size
should be considered too small.

If the asymptotic covariance matrix is poorly estimated due to a small sample, the inverse of it is
even more severely affected thereby making the WLS method unstable. In this situation, a reasonable
compromise is to fit the model by ML and correct the standard error and chi-squares by using the
asymptotic covariance matrix as described in Section 2.6. Then the asymptotic covariance matrix
need not be inverted.

Q: What should I do if I have many ordinal variables and a small sample?

A: What do you want to know? You may not be able to use LISREL to estimate an elaborate model
using all your ordinal variables, but PRELIS data screening provides a lot of information about the
data which could be useful.

If you have a strong measurement theory so that you know which latent variables you want to
measure and which observed variables might be used as indicators of each latent variable, I suggest
you analyze the indicators of one latent variable at a time to investigate if they are unidimensional.
The result of this investigation will provide information about which variables to eliminate if neces-
sary. You can then form two or three subscales by adding indicators. These subscales can then be
used as indicators in a LISREL model with all the latent variables.

If you do not have a strong measurement theory so that you don’t know what the ordinal variables
are supposed to measure, I suggest that you do an exploratory factor analysis of the polychoric
correlation matrix and then proceed as in the previous paragraph for each factor clearly identified
and interpreted.
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