
 

 

Two stage multiple imputation SEM for continuous variables 

1. Moment matrices 
 

Suppose that the rows of ( )n pX  are 𝑛 observations of 𝑝 continuous variables 
1 2, , , px x x  with mean vector μ  and 

covariance matrix Σ . The sample covariance matrix, S , is an unbiased estimator of Σ  and may be expressed as 
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where ix  and x  denote observation 𝑖 and the sample mean vector of 1 2 px x x
 =  x , respectively. A typical element 

of a consistent estimator, U, of the asymptotic covariance matrix,  , of the sample variances and covariances (Browne 

1984) is given by 
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The robust ML, DWLS, WLS, and ULS methods can be used to fit structural equation models for continuous variables to the 

sample covariance matrix by using the estimated asymptotic covariance matrix of the sample variances and covariances. 

 

The correlation matrix, P  , of 1 2, , , px x x  is the covariance matrix of the standardized variables 1 2, , , pz z z  where 
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where σD denotes a diagonal matrix with the standard deviations 
1 2, , , p   of 

1 2, , , px x x on the diagonal. The 

sample correlation matrix, R , is an unbiased estimator of P and may be expressed as 
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where s
D denotes a diagonal matrix with the sample standard deviations 

1 2, , , ps s s of 
1 2, , , px x x on the diagonal. A 

typical element of a consistent estimator, U , of the asymptotic covariance matrix, , of the sample correlations (Steiger 

and Hakstian 1982) is given by 

( ) ( ) ( ),

1 1 1

4 2 2
ij kl ijkl ij kl iikk jjkk iill jjll ij iikl jjkl kl ijkk ijllu r r r r r r r r r r r r r= + + + + − + − +  

where 

 ( )
1

1

1
n

ijkl im jm km lm

m

r n z z z z
−

=

= −    

and 

( )
1

1

1
n

ij im jm

m

r n z z
−

=

= −   

and 

 im i
im

i

x x
z

s

−
=   

The robust DWLS, WLS, and ULS methods can be used to fit structural equation models for continuous variables to the 

sample correlation matrix by using the estimated asymptotic covariance matrix of the sample correlations. 

 

2. Multiple imputation 
2.1 The MCMC method 

 

Suppose now that the 𝑛 observations of the 𝑝 continuous variables include missing data values with 𝑘 missing data value 

patterns and that the joint distribution of the variables is a multivariate normal distribution with mean vector μ  and 

covariance matrix Σ . The EM algorithm and the MCMC method for multiple imputation of incomplete data can be used to 

impute the missing data values of the continuous variables. 

 

Suppose that oX  denote the observed data values. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to 

compute the maximum likelihood estimate of Σ . The minus two observed-data log likelihood may be expressed as 
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where in  denotes the number of observations of missing data value pattern 1,2, ,i k= , iΣ  denotes the population 

covariance matrix of missing data value pattern 𝑖, iμ  denotes the mean vector of missing data value pattern 𝑖, and 
oijx  is 

the
thj vector of observed values of missing data value pattern 𝑖. 

 

The initial estimate for the M-step is the sample covariance matrix,S , of the complete data or 
pI  if the number of complete 

observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the observed 

variables of the missing data value patterns are computed and used to compute an updated estimate  
( 1)ˆ t+

Σ  of Σ . Iteration 

of the consecutive M and E steps is terminated when the absolute difference between 
( 1)ˆ t+

Σ   and 
( )ˆ t

Σ  is below the tolerance 

limit   = 10−5. 

 

The EM estimate, Σ̂ , of Σ  is used as the initial covariance matrix of the multivariate normal distribution in the first step 

of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the MCMC method, an estimate of Σ  is 

simulated from an inverse Wishart distribution. In the I-step, observations are simulated from the conditional normal 

distributions of the missing variables given the observed k  missing data value patterns and used to replace the missing data 

values. The next estimate of Σ  is then obtained by computing the sample covariance matrix of the completed data. The P 

and I steps are repeated for a fixed number of times. 

 

2.2 The FCS regression method 
 

Suppose now that the 𝑛 observations of the 𝑝 continuous variables include missing data values and that a joint (multivariate) 

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) regression method (Brand 1999; Van 

Buuren 2007) can be used to impute the missing data values. The FCS regression method performs a fixed number of 

imputations to impute the missing data values. Each imputation consists of a filled-in phase and an imputation phase. In the 

filled-in phase, the missing data values are filled-in by using a sequence of regression analyses for the 𝑝 continuous 

variables. These filled-in data are then used as the initial data for the imputation phase in which the missing data values are 

imputed by using a sequence of regression analyses for the 𝑝 continuous variables. These imputed data are then used as the 

initial data for the next iteration of the imputation phase and a fixed number of iterations are executed for each imputation. 

 

The filled-in stage fits the following 𝑝 regression models sequentially to the data, namely 
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where the elements of 10 20 , 1p p   −

 =  β  denote unknown regression weights and 1 2, , , pe e e   are 𝑝 error variables. 

The first model is fitted to the complete data for 1x . The corresponding estimates are then used to simulate new parameter 

values from the posterior distributions of the parameters which in turn is used to fill-in the missing data values for 1x . The 

second model is then fitted to the complete data for 2x  and the filled-in data for 1x . The final model is fitted to the complete 

data for px  and the filled-in data for 1 2 1, , , .px x x −  The filled-in data for 1 2, , , px x x  are used for the first iteration of 



the imputation phase. The simulation of the new parameter values from the posterior distributions of the parameters and the 

imputation of the missing data values for each of the 𝑝 regression models use the same steps as outlined next for each 

iteration of the imputation stage. 

 
For each iteration of the imputation stage, the following regression models are fitted sequentially either to the filled-in data 

or the imputed data, namely 
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 =  β denote 𝑝 unknown regression weights, and 
je   

denotes an error variable with variance 
2

j . The estimated covariance matrix of the estimator ˆ jβ  of 
jβ  may be expressed 

as 
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where ( )jX  denotes rows 1,2, , 1, , ,j j p−  of the filled-in or imputed data. New values for the parameters are then 

simulated from their posterior distributions as 

 ( )

2

2

2

ˆ

ˆ

jt j tj hj

j j

tj

n p

c






= +

−
=

β β V z

  

where hjV  denotes the upper triangular matrix in the Cholesky decomposition of j hj hj
=V V V , z denotes a 1p  standard 

normal vector, and 𝑐 is a Chi-square variable with 
jn p−  degrees of freedom. The missing data values are then imputed as 

 ( )ijm jt i j tjx z= +β x   

where 
ijmx  denotes a missing data value in row 𝑖 and column 𝑗 of X, 

( )i jx  denotes row 𝑖 of ( )jX , and 𝑧 is a standard normal 

variable. 

 

3. Average unstandardized moment matrices 
 

Suppose that 1 2, , , mX X X  are 𝑚 imputed data sets for the incomplete data matrix, X , of the 𝑝 continuous variables 

1 2, , , px x x  and that 1 2, , , mS S S and 1 2, , , mU U U denote the corresponding sample covariance matrices and the 

estimated asymptotic covariance matrices of the variances and covariances, respectively. Then, the average sample 

covariance matrix is 
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Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be 

used as a weight matrix for the robust ML, DWLS, WLS, and ULS methods for continuous structural equational modeling. 

A corrected weight matrix is obtained by correcting for the between-imputation variation in the estimated variances and 

covariances and is obtained as the inverse of 
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where s denotes the ( )1 / 2p p +  vector consisting of the nonduplicated elements of the p p symmetric matrixS . S  and 

̂ can be used to fit structural equation models to the average sample covariance matrix with the robust ML, DWLS, WLS, 

and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung and Cai (2019) is given 

by 

 ˆ ˆ( 1)( ( )) ( ( ))BT n = − − −s σ θ V s σ θ  

where 
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where Δ̂ denotes the Jacobian matrix of ( )σ θ with respect to the unknown parameters θ of the structural equation model 

evaluated at ˆ.=θ θ  The small sample adjusted BT  test statistic (Yuan and Bentler 1997) is given by 
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4. Average standardized moment matrices 
 

Suppose that 1 2, , , mX X X  are 𝑚 imputed data sets for the incomplete data matrix, X , of the 𝑝 continuous variables 

1 2, , , px x x  and that 1 2, , , mR R R and 1 2, , , mU U U denote the corresponding sample correlation matrices and the 

estimated asymptotic covariance matrices of the sample correlations, respectively. Then, the average sample correlation 

matrix is 
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Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be 

used as a weight matrix for the robust DWLS, WLS, and ULS methods for continuous structural equational modeling for 

correlation matrices. A corrected weight matrix is obtained by correcting for the between-imputation variation in the 

estimated correlations and is obtained as the inverse of 
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where r denotes the ( )1 / 2p p −  vector consisting of the nondiagonal and the nonduplicated elements of the p p  

symmetric matrix R . R  and ̂ can be used to fit structural equation models to the average sample correlation matrix with 

the robust DWLS, WLS, and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung 

and Cai (2019) is given by 
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where 
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where Δ̂ denotes the Jacobian matrix of ( )ρ θ with respect to the unknown parameters θ of the structural equation model 

evaluated at ˆ.=θ θ  The small sample adjusted BT  test statistic (Yuan and Bentler 1997) is given by 
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