
 

 

Two stage multiple imputation SEM for mixed correlations 
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1. Correlations 

1.1 Polychoric correlations 
 

Suppose that the rows of ( )n pX  are 𝑛 observations of 𝑝 ordinal variables 
1 2, , , px x x with 1 2, , , pm m m categories, 

respectively.  Suppose further that these 𝑝 ordinal variables are the result of the discretization of the underlying 𝑝 continuous 

standard normal variables 1 2, , , pz z z as such that 
1 2 ( , )pz z z N

 =  z 0 P  and 
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where P denotes the population correlation matrix of z and 0 1 2 , ii i i i m   − =    = are parameters known as 

thresholds. The model for the univariate marginal of variable ix  is 
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where (.)  denotes the probability density function of the standard normal distribution. The maximum likelihood estimator 

of ik  (Jöreskog, 1994) is given by  

 
1

1 2
ˆ ( )ik i i ikp p p −= + + +   

where 
1(.)−  denotes the inverse of the cumulative distribution function of the standard normal distribution and 

1 2, , ,
ii i imp p p denote the marginal sample proportions for ix .  

The polychoric correlation matrix, R, is a consistent estimator of the population correlation matrix P. The model for the 

bivariate marginal of variables ix  and 
jx  is 
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where 
2( , , )iju v  denotes the probability density function of the bivariate standard normal distribution with correlation 

ij . The maximization of the bivariate likelihood function is equivalent to minimization of the discrepancy function 
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where ˆ iτ  and ˆ
jτ  denote the maximum likelihood estimators of the 1im −  and 1jm −  thresholds of variables ix  and 

jx , 

respectively and 
ijklp  is the sample proportion for ix k=  and 

jx l= . The gradient of ( )F   (Olsson (1979)) may be 

expressed as 
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where (Olsson (1979))  
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where ( )2   denotes the density function of the bivariate standard normal distribution with correlation ij . The information 

(Jöreskog, 1994) is given by 
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The Fisher scoring algorithm is used to minimize ( )F   with respect to ij . Let ij = . If 
( )ˆ t  denotes the 𝑡𝑡ℎ successive 

approximation to 


, then the ( 1)stt +  approximation is obtained from 
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Iteration is terminated when the absolute gradient value is below the tolerance limit  = 10−3.  

 

1.2 Pearson product-moment correlations 
 

Suppose that the rows of ( )n pX  are 𝑛 observations of 𝑝 continuous variables 
1 2, , , px x x  with mean vector μ  and 

covariance matrix Σ . The sample covariance matrix, S , is an unbiased estimator of Σ  and may be expressed as 

 ( )( )
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1
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= − −
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where ix  and x  denote observation 𝑖 and the sample mean vector of 1 2 px x x
 =  x , respectively. 

The correlation matrix, P , of 
1 2, , , px x x  is the covariance matrix of the standardized variables 

1 2, , , pz z z  where 
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where σD denotes a diagonal matrix with the standard deviations 
1 2, , , p   of 

1 2, , , px x x on the diagonal. The 

sample correlation matrix, R , which contains the Pearson product-moment correlations (Pearson 1896), is an unbiased 

estimator of P and may be expressed as  

  
1 1− −=

s s
R D RD  

where s
D denotes a diagonal matrix with the sample standard deviations 

1 2, , , ps s s of 
1 2, , , px x x on the diagonal. 

 

1.3 Polyserial correlations 
 

Suppose that the rows of  ( ) o cn p =X X X  are 𝑛 observations of 𝑝𝑜 ordinal variables 
1 2, , ,

opx x x with 

1 2, , ,
opm m m categories, respectively and 𝑝𝑐 continuous variables 

1 2, , ,
cpx x x as such that o cp p p+ =  .  Suppose 

further that the 𝑝𝑜 ordinal variables are the result of the discretization of the underlying 𝑝𝑜 continuous standard normal 

variables 1 2, , ,
opz z z as such that 1 2 ( , )

op oz z z N
 =  z 0 P  and 
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where P𝑜 denotes the population correlation matrix of z and 0 1 2 , ii i i i m   − =    = are parameters known as 

thresholds. The model for the univariate marginal of variable ix  is 
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where (.)  denotes the probability density function of the standard normal distribution. The maximum likelihood estimator 

of ik  (Jöreskog, 1994) is given by  

 
1

1 2
ˆ ( )ik i i ikp p p −= + + +   

where 
1(.)−  denotes the inverse of the cumulative distribution function of the standard normal distribution and 

1 2, , ,
ii i imp p p denote the marginal sample proportions for ix .  

If ix  denotes the ith ordinal variable and 
jx denotes the jth continuous variable with mean 

j  and standard deviation 
j  

and 
ij  is the polyserial correlation of ix  and 

jx , the corresponding bivariate log-likelihood function (Olsson, Drasgow, 

and Dorans 1982) is given by 
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where k denotes the observed category of ix ,   denotes the cumulative distribution function of the standard normal 

distribution, and 
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The maximization of the log-likelihood function is equivalent to minimizing the following discrepancy function 

( ) ( )
1

ˆ ˆ ˆ, , , ln
n

ij i j j ikjm

m

F    
=

= −τ  

The gradient of ( ).F  follows as 
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where (Olsson, Drasgow, and Dorans 1982) 
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where   denotes the probability density function of the standard normal distribution. The information follows as 
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The Fisher scoring algorithm is used to minimize ( )F   with respect to 
ij . Let 

ij = . If 
( )ˆ t  denotes the 𝑡𝑡ℎ successive 

approximation tô , then the ( 1)stt +  approximation is obtained from 
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Iteration is terminated when the absolute gradient value is below the tolerance limit  = 10−3.  

 

2. Mixed correlation and asymptotic covariance matrices 
 

Suppose that the rows of  ( ) o cn p =X X X  are 𝑛 observations of 𝑝𝑜 ordinal variables 
1 2, , ,

opx x x with 

1 2, , ,
opm m m categories, respectively and 𝑝𝑐 continuous variables 

1 2, , ,
cpx x x as such that o cp p p+ = . Let 

( )o o op pR  denote the polychoric correlation matrix of the 𝑝𝑜 ordinal variables, ( )c c cp pR  denote the Pearson product-

moment correlation matrix of the 𝑝𝑐 continuous variables 
1 2, , ,

cpx x x , and ( )oc o cp pR  denote the polyserial 

correlation matrix of the ordinal and continuous variables. The correlation matrix, R , of the ordinal and continuous 

variables may then be expressed as 
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If 
ijF  denotes the discrepancy function which is minimized with respect to 

ij  to obtain the maximum likelihood estimate 

of 
ij , then the asymptotic covariance matrix, 𝚼, of the polychoric, polyserial, and Pearson product-moment correlations 

(Muthen 1984) may be approximated by the matrix, U , with typical element given by 
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where 
ijmg denotes the gradient of

ijF for observation m evaluated at ij ijr = . If 
ijr  is a polychoric correlation, this gradient 

is given by 
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where ( )2   denotes the density function of the bivariate standard normal distribution with correlation ij  and k  and l  

denote the observed category of ix  and jx  for observation m , respectively. In the case of a Pearson product-moment 

correlation, the gradient for observation m may be expressed as 
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If 
ijr  denotes the polyserial correlation of ordinal variable ix  and continuous variable 

jx , the gradient for observation m

is given by 
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where   denotes the probability density function of the standard normal distribution and k  denotes the observed category 

of ix . 

 

3. Multiple Imputation 

3.1 The MCMC method 

 

Suppose now that the 𝑛 observations of the 𝑝𝑜 ordinal variables include missing data values with 𝑘𝑜  missing data value 

patterns. The EM algorithm and the MCMC method for multiple imputation of incomplete data are intended for continuous 

variables and cannot readily be applied to ordinal variables. However, they can be applied to the underlying continuous 

variables 
1 2, , ,

opz z z associated with the ordinal variables 
1 2, , , .

opx x x Although no observations for these continuous 

variables are available, these variables are assumed to have a multivariate standard normal distribution with a population 

covariance matrix oΣ . As a result, we can simulate data from this distribution by using the polychoric correlation matrix 

of the complete data of the variables if the number of complete cases is large enough and use either the EM algorithm or the 

MCMC algorithm to impute the missing data values for the underlying continuous variables. After imputation, the estimated 

thresholds can be used to replace the missing data values for the corresponding ordinal variables by using the relationship 

between the ordinal variables, the underlying continuous variables, and the thresholds. 

 

Suppose that the rows of ( )on pZ  are 𝑛 observations of the 𝑝𝑜 underlying continuous variables 
1 2, , ,

opz z z simulated 

from the ( , )oN 0 Σ  distribution and that oZ  denotes the observed data values that corresponds with the observed data 

values of X𝑜. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to compute the maximum likelihood 

estimate of oΣ . The minus two observed-data log likelihood may be expressed as 

1

1 1 1
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= = =

− = + Σ Z Σ z Σ z  

where in  denotes the number of observations of missing data value pattern 𝑖 = 1,2, ⋯ , 𝑘𝑜, oiΣ  denotes the population 

covariance matrix for missing data value pattern 𝑖, and oijz is the 𝑗𝑡ℎ vector of observed values of missing data value pattern 

𝑖. 

 

The initial estimate for the M-step is the sample covariance matrix, 
opS , of the complete ordinal data or 

opI  if the number 

of complete observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the 

observed variables for the missing data value patterns are computed and used to compute an updated estimate,
( 1)ˆ t

o

+
Σ  of oΣ

. Iteration of the consecutive M and E steps is terminated when the absolute difference between 
( 1)ˆ t

o

+
Σ   and 

( )ˆ t

oΣ  is below 

the tolerance limit   = 10−5. 



 

The correlation matrix of the EM estimate, ˆ oΣ , of oΣ  is used as the initial covariance matrix of the multivariate standard 

normal distribution in the first step of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the 

MCMC method, an estimate of oΣ  is simulated form an inverse Wishart distribution. In the I-step, observations are simulated 

from the conditional standard normal distributions of the missing variables given the observed 𝑘 missing data value patterns 

and used to replace the missing data values. The next estimate of oΣ  is then obtained by computing the sample correlation 

matrix of the completed data. The P and I steps are repeated for a fixed number of times. 

 

Let the rows of ( )i n pZ  contain the observed and the imputed data values for the standard normal variables 

1 2, , ,
opz z z . The observed data for the ordinal variables are obtained from the corresponding observed data values of 

oX . The missing data values of oX  are then replaced by the values obtained from the corresponding imputed data values 

of Z and the estimated thresholds by using the relationship between the ordinal variables, the underlying continuous 

variables, and the thresholds. 

 

Suppose further that the 𝑛 observations of the 𝑝𝑐 continuous variables include missing data values with 𝑘𝑐 missing data 

value patterns and that the joint distribution of the variables is a multivariate normal distribution with mean vector cμ  and 

covariance matrix cΣ . The EM algorithm and the MCMC method for multiple imputation of incomplete data can be used to 

impute the missing data values of the continuous variables. 

 

Suppose that coX  denote the observed data values. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to 

compute the maximum likelihood estimate of cΣ . The minus two observed-data log likelihood may be expressed as 
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where in  denotes the number of observations of missing data value pattern 1,2, , ci k= , ciΣ  denotes the population 

covariance matrix of missing data value pattern 𝑖, ciμ  denotes the mean vector of missing data value pattern 𝑖, and coijx  is 

the
thj vector of observed values of missing data value pattern 𝑖. 

 

The initial estimate for the M-step is the sample covariance matrix,
cpS , of the complete data or 

cpI if the number of complete 

observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the observed 

variables of the missing data value patterns are computed and used to compute an updated estimate  
( 1)ˆ t

c

+
Σ of cΣ . Iteration 

of the consecutive M and E steps is terminated when the absolute difference between 
( 1)ˆ t

c

+
Σ and 

( )ˆ t

oΣ  is below the tolerance 

limit   = 10−5. 

 

The EM estimate, c



Σ , of cΣ  is used as the initial covariance matrix of the multivariate normal distribution in the first step 

of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the MCMC method, an estimate of cΣ  is 

simulated from an inverse Wishart distribution. In the I-step, observations are simulated from the conditional normal 

distributions of the missing variables given the observed ck  missing data value patterns and used to replace the missing data 



values. The next estimate of cΣ is then obtained by computing the sample covariance matrix of the completed data. The P 

and I steps are repeated for a fixed number of times. 

 

3.2 The FCS ordinal logistic regression method 
 

Suppose that the 𝑛 observations of the op ordinal variables include missing data values and that a joint (multivariate) 

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) ordinal logistic regression method 

(Brand 1999; Van Buuren 2007) can be used to impute the missing data values. The FCS ordinal logistic regression method 

performs a fixed number of imputations to impute the missing data values. Each imputation consists of a filled-in phase and 

an imputation phase. In the filled-in phase, the missing data values are filled-in by using a sequence of ordinal logistic 

regression analyses for the op ordinal variables. These filled-in data are then used as the initial data for the imputation phase 

in which the missing data values are imputed by using a sequence of ordinal logistic regression analyses for the op ordinal 

variables. These imputed data are then used as the initial data for the next iteration of the imputation phase and a fixed 

number of iterations are executed for each imputation. 

 

The filled-in stage fits the following op ordinal logistic regression models sequentially to the data, namely 
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where 
1 2 1( | , , , )ijk j jP x k x x x −=  , logit( ) ln( ) ln( )

jjk jk im  = − , and the elements of 

11 12 21 , 1o op p    −

 =  γ  denote unknown regression weights. The first model is fitted to the complete data for 1x . 

The corresponding estimates are then used to simulate new parameter values from the posterior distribution of the 

parameters which in turn is used to fill-in the missing data values for 1x . The second model is then fitted to the complete 

data for 2x  and the filled-in data for 1x . The final model is fitted to the complete data for 
opx  and the filled-in data for 

1 2 1, , ,
opx x x − . The filled-in data for 1 2, , ,

opx x x  are used for the first iteration of the imputation phase. The simulation 

of the new parameter values from the posterior distribution of the parameters and the imputation of the missing data values 

for each of the p ordinal logistic regression models use the same steps as outlined next for each iteration of the imputation 

stage. 

 

For each iteration of the imputation stage, the following ordinal logistic regression models are fitted sequentially either to 

the filled-in data or the imputed data, namely 

 1 1 1 1 1 1logit( )
o oijk k j j j j p px x x x     − − + += + + + + + +   

where 1 1 1( | , , , , )
oijk j j j pP x k x x x x − +=  , logit( ) ln( ) ln( )

jjk jk im  = − , the elements of 

1 2 1 1 1 1i oj m j j p      − − +

 =  γ  denote 1o jp m+ −  unknown regression weights, 1,2,..., oj p= , and 

1,2,..., 1jk m= − . Let jV  denote the estimated covariance matrix of the estimator ˆ jγ  of jγ .  



 

New values for the parameters are then simulated from their posterior distribution as 

ˆ
jt j hj

= +γ γ V z  

where hj
V  denotes the upper triangular matrix in the Cholesky decomposition of j hj hj

=V V V , and z is a ( 1) 1o jp m+ −   

standard normal vector. These new parameter values are then used to compute the predicted cumulative probability ˆ
jk  for 

1,2,..., 1jk m= − . A random uniform variable, u , between 0 and 1 is simulated and the missing data values for 
jx  are 

imputed as 1 if 
1

ˆ
ju  , as 𝑘 if 

, 1
ˆ ˆ

j k jku −   , and as 
jm  if .

ˆ
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3.3 The FCS regression method 
 

Suppose now that the 𝑛 observations of the cp continuous variables include missing data values and that a joint (multivariate) 

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) regression method (Brand 1999; Van 

Buuren 2007) can be used to impute the missing data values. The FCS regression method performs a fixed number of 

imputations to impute the missing data values. Each imputation consists of a filled-in phase and an imputation phase. In the 

filled-in phase, the missing data values are filled-in by using a sequence of regression analyses for the cp continuous 

variables. These filled-in data are then used as the initial data for the imputation phase in which the missing data values are 

imputed by using a sequence of regression analyses for the cp continuous variables. These imputed data are then used as the 

initial data for the next iteration of the imputation phase and a fixed number of iterations are executed for each imputation. 

 

The filled-in stage fits the following cp regression models sequentially to the data, namely 
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where the elements of 01 02 , 1c cp p   −

 =  β  denote unknown regression weights and 1 2, , ,
cpe e e   are cp error 

variables. The first model is fitted to the complete data for 1x . The corresponding estimates are then used to simulate new 

parameter values from the posterior distributions of the parameters which in turn is used to fill-in the missing data values 

for 1x .  The second model is then fitted to the complete data for 2x  and the filled-in data for 1x . The final model is fitted 

to the complete data for 
cpx  and the filled-in data for 1 2 1, , , .

cpx x x −  The filled-in data for 1 2, , ,
cpx x x  are used for the 

first iteration of the imputation phase. The simulation of the new parameter values from the posterior distributions of the 

parameters and the imputation of the missing data values for each of the cp regression models use the same steps as outlined 

next for each iteration of the imputation stage. 

 
For each iteration of the imputation stage, the following regression models are fitted sequentially either to the filled-in data 

or the imputed data, namely 



0 1 1 1 1 1 1 c cj j j j j p p jx x x x x e    − − + += + + + + + + +  

where 1,2, , cj p= , the elements of 0 1 1 1 cj j j p    − +

 =  β denote cp unknown regression weights, and 
je   

denotes an error variable with variance 
2

j . The estimated covariance matrix of the estimator ˆ jβ  of 
jβ  may be expressed 

as 
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where ( )c jX  denotes rows 1,2, , 1, , , cj j p−  of the filled-in or imputed data. New values for the parameters are then 

simulated from their posterior distributions as 
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−
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where hjV  denotes the upper triangular matrix in the Cholesky decomposition of j hj hj
=V V V , z denotes a 1cp   standard 

normal vector, and 𝑐 is a Chi-square variable with 
j cn p−  degrees of freedom. The missing data values are then imputed 

as 

 ( )cijm jt ci j ijx z= +β x   

where 
cijmx  denotes a missing data value in row 𝑖 and column 𝑗 of cX , 

( )ci jx  denotes row 𝑖 of ( )c jX , and 𝑧 is a standard 

normal variable. 

 

4. Average moment matrices 
 

Suppose that 1 2, , ,i i miX X X  are 𝑚 imputed data sets for the incomplete data matrix, X , of the of 𝑝𝑜 ordinal variables 

1 2, , ,
opx x x and the 𝑝𝑐 continuous variables 

1 2, , ,
cpx x x and that 1 2, , , mR R R and 1 2, , , mU U U denote the 

corresponding mixed correlation matrices and the estimated asymptotic covariance matrices of the mixed correlations, 

respectively. Then, the average mixes correlation matrix is 

1

1 m

i

im =

= R R  

and the average estimated asymptotic covariance matrix is 

1

1 m

i

im =

= U U  

Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be 

used as a weight matrix for the robust DWLS, WLS, and ULS methods for structural equational modeling. A corrected weight 

matrix is obtained by correcting for the between-imputation variation in the estimated mixed correlations and is obtained as 

the inverse of 
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1ˆ
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m

i i
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m

m m =

+  = + − − −  
U r r r r  

where r denotes the 𝑝 × (𝑝 − 1)/2 vector consisting of the nondiagonal and nonduplicated elements of the 𝑝 × 𝑝 symmetric 

matrix R. R  and ̂  can be used to fit structural equation models to the average mixed correlation matrix with the robust 

DWLS, WLS, and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung and Cai 

(2019) is given by 

_ _

( 1)( ( )) ( ( ))BT n
 

= − − −r ρ θ V r ρ θ  

where 

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ( )− − − − = −V Δ ΔΔ Δ    

where Δ̂ denotes the Jacobian matrix of ( )ρ θ  with respect to the unknown parameters, θ , of the structural equation model 

evaluated at ˆ.=θ θ   The small sample adjusted BT  test statistic (Yuan and Bentler 1997) is given by 

.
1 / ( 1)

B
YB

B

T
T

nT n
=

+ −
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