Two stage multiple imputation SEM for mixed correlations
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1. Correlations
1.1 Polychoric correlations

Suppose that the rows of X(nx p) are n observations of p ordinal variables X, X,, ..., X, with m;,m,, ..., m, categories,
respectively. Suppose further that these p ordinal variables are the result of the discretization of the underlying p continuous

standard normal variables z,,z,,..., z, as such that z :[zl Z, ... zp] ~N(0,P) and

X =1 ifr,<z <7,
X =2 ifr,<z <7,

where P denotes the population correlation matrix of z and —0=17,, <7, <7;,...<7;,, =00 are parameters known as

i,m;

thresholds. The model for the univariate marginal of variable X; is



= j $(u)du

where ¢(.) denotes the probability density function of the standard normal distribution. The maximum likelihood estimator
of 7, (Joreskog, 1994) is given by

7 :q)_l(pil+ Pip +-..t pik)

where @ () denotes the inverse of the cumulative distribution function of the standard normal distribution and
Pus Pigs ---» Py, denote the marginal sample proportions for X; .

The polychoric correlation matrix, R, is a consistent estimator of the population correlation matrix P. The model for the
bivariate marginal of variables X; and X; is

=], [ AU, p)dudy

where ¢, (u, Vv, pij) denotes the probability density function of the bivariate standard normal distribution with correlation

p;;- The maximization of the bivariate likelihood function is equivalent to minimization of the discrepancy function

m M

F (Pt t)= 2pijk,(In{pijk,}—ln{ﬂijk,})

k=1 1=1

where 7; and T; denote the maximum likelihood estimators of the m; —1 and m, —1 thresholds of variables X; and X;,

respectively and py,, is the sample proportion for X, = k and X; =1. The gradient of F () (Olsson (1979)) may be

expressed as
& Pi | 07
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where (Olsson (1979))
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where ¢, () denotes the density function of the bivariate standard normal distribution with correlation p,; . The information

£ A
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(Joreskog, 1994) is given by

The Fisher scoring algorithm is used to minimize F () with respect to p;. Let@ = p; . If 6" denotes the ¢ successive
approximation to @, then the (t+1)* approximation is obtained from

g(pij!%i’%j)
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Iteration is terminated when the absolute gradient value is below the tolerance limit ¢ = 1073,

1.2 Pearson product-moment correlations

Suppose that the rows of X(nx p) are n observations of p continuous variables X, X,, ..., X, with mean vector p and

covariance matrix X . The sample covariance matrix, S, is an unbiased estimator of £ and may be expressed as

where X; and X denote observation i and the sample mean vector of X = [xl X .o X, ] , respectively.

The correlation matrix, P, of X, X,,..., X, is the covariance matrix of the standardized variables z,,z,,...,Z, where

p p

P=D'XD’
and
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where D denotes a diagonal matrix with the standard deviations o,,0,,..., o, of X,X,,..., X, on the diagonal. The

sample correlation matrix, R, which contains the Pearson product-moment correlations (Pearson 1896), is an unbiased
estimator of P and may be expressed as

R=D/RD_

where D, denotes a diagonal matrix with the sample standard deviations s, s,, ..., S, of X,X,,..., X, on the diagonal.

1.3 Polyserial correlations

Suppose that the rows of X(nx p):[XO Xc] are n observations of p, ordinal variables X Koy eey Xy with

m,m,,...,m, categories, respectively and p. continuous variables X, X,,..., X, as such that p, + p, = p . Suppose

Pe
further that the p, ordinal variables are the result of the discretization of the underlying p, continuous standard normal

variables z,,z,, ..., z, as such that z=[z1 z, ... zpo] ~N(0,P,) and
X =1 ifr,<z <7,
X =2 ifr,<z <7,

X =m ifr, , <z<rt

i,m-1 = "i,m

where P, denotes the population correlation matrix of zand —o=17,, <7, <7,,...<7,, =00 are parameters known as

i,m;

thresholds. The model for the univariate marginal of variable X; is



me=[" plu)du

where ¢(.) denotes the probability density function of the standard normal distribution. The maximum likelihood estimator
of 7, (Joreskog, 1994) is given by

TAik :q)_l(pil"' Pip +...+ pik)

where @ () denotes the inverse of the cumulative distribution function of the standard normal distribution and
Pus Pigs ---» Py, denote the marginal sample proportions for X; .

If x; denotes the i™ ordinal variable and X; denotes the j™ continuous variable with mean 4; and standard deviation o ;

and p; is the polyserial correlation of x; and X;, the corresponding bivariate log-likelihood function (Olsson, Drasgow,
and Dorans 1982) is given by

L a : . N
|(pij,‘ri,,uj,aj):;In(ﬂikjm)—g[ln(Zﬂ)Hn[Gjﬂ—zézfm

where

and
Tijm = P (TiTq'm ) - (T:k—l,jm )

where k denotes the observed category of X, @ denotes the cumulative distribution function of the standard normal
distribution, and

* Tik = PijZjm

Tikjm = '_l—pi?

The maximization of the log-likelihood function is equivalent to minimizing the following discrepancy function
n
F(pij’%ivﬁj’é-j):_Zln(ﬂikjm)
m=1

The gradient of F(.) follows as

T I e
g ('Oij A ) - mZ:; Tikjm 8/0:1'
where (Olsson, Drasgow, and Dorans 1982)
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where ¢ denotes the probability density function of the standard normal distribution. The information follows as
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The Fisher scoring algorithm is used to minimize F () with respectto p; . Let 0= p; . If 9" denotes the ¢ successive

approximation tod, then the (t+1)*" approximation is obtained from

g(pij’%i’/&j’&j)
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Iteration is terminated when the absolute gradient value is below the tolerance limit &= 1073,

2. Mixed correlation and asymptotic covariance matrices

Suppose that the rows of X(nx p):[X0 XC] are n observations of p, ordinal variables X X ooy X with

m;,m,,...,m, categories, respectively and p. continuous variables X;,X,,...,X, as such that p,+p,=p. Let

Pc
R, (p, x p,) denote the polychoric correlation matrix of the p, ordinal variables, R (p, x p.) denote the Pearson product-

moment correlation matrix of the p. continuous variables x,X,,...,X, , and R_.(p,x p,) denote the polyserial

Pe
correlation matrix of the ordinal and continuous variables. The correlation matrix, R, of the ordinal and continuous
variables may then be expressed as
R — [ RO ROC:|
R. R

c

If Fij denotes the discrepancy function which is minimized with respect to p,; to obtain the maximum likelihood estimate
of p;, then the asymptotic covariance matrix, Y, of the polychoric, polyserial, and Pearson product-moment correlations

(Muthen 1984) may be approximated by the matrix, U , with typical element given by
Ui = nilz Tijm Jim
m=1

where g, denotes the gradient of F; for observation mevaluated at p; = ;. If r; is a polychoric correlation, this gradient
is given by

Oijm = i[% (Tik’TiI )_¢2 (Ti,k—l’TjI )_¢2 (Ti,k'z—j,l—l)+¢2 (Ti,k—l’fj,l—l):|

ijki

where ¢, () denotes the density function of the bivariate standard normal distribution with correlation p; and k and |

denote the observed category of X; and X; for observation m, respectively. In the case of a Pearson product-moment
correlation, the gradient for observation m may be expressed as

2 2 2 3
Zimzjm+(1_zim_zjm)rij +Zimzjmrij _rij
2\2
(1-%7)

Qijm =



If r; denotes the polyserial correlation of ordinal variable x; and continuous variable X;, the gradient for observation m
is given by

¢(Tik )(Tikrij - ij)_¢(fi,k—l)(ri,k—lrij - ij)
(1_nj2)3/2

where ¢ denotes the probability density function of the standard normal distribution and k denotes the observed category

Oijm =
of X;.

3. Multiple Imputation
3.1 The MCMC method

Suppose now that the n observations of the p, ordinal variables include missing data values with k, missing data value
patterns. The EM algorithm and the MCMC method for multiple imputation of incomplete data are intended for continuous
variables and cannot readily be applied to ordinal variables. However, they can be applied to the underlying continuous

variables z,,z,, ..., z, associated with the ordinal variables X, X,, ..., X, - Although no observations for these continuous

variables are available, these variables are assumed to have a multivariate standard normal distribution with a population
covariance matrix X . As a result, we can simulate data from this distribution by using the polychoric correlation matrix

of the complete data of the variables if the number of complete cases is large enough and use either the EM algorithm or the
MCMC algorithm to impute the missing data values for the underlying continuous variables. After imputation, the estimated
thresholds can be used to replace the missing data values for the corresponding ordinal variables by using the relationship
between the ordinal variables, the underlying continuous variables, and the thresholds.

Suppose that the rows of Z(nx p,) are n observations of the p, underlying continuous variables z,,z,, ..., z, simulated
from the N(O,X,) distribution and that Z, denotes the observed data values that corresponds with the observed data

values of X,. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to compute the maximum likelihood
estimate of X . The minus two observed-data log likelihood may be expressed as

[ ko N
—-2InL(%, |Z,) = Zni |n|Eoi|+ZZZ;ijZ;ilZoij
i1

i=1 j=1

where n, denotes the number of observations of missing data value pattern i = 1,2,---,k,, X denotes the population

covariance matrix for missing data value pattern i, and Z; is the j th vector of observed values of missing data value pattern

i.

The initial estimate for the M-step is the sample covariance matrix, Spo , of the complete ordinal data or | . if the number
of complete observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the
observed variables for the missing data value patterns are computed and used to compute an updated estimate, 2 of )R

(o)
. Iteration of the consecutive M and E steps is terminated when the absolute difference between 8% and £ is below
the tolerance limit & = 1075.



A

The correlation matrix of the EM estimate, X, of X is used as the initial covariance matrix of the multivariate standard

normal distribution in the first step of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the
MCMC method, an estimate of X is simulated form an inverse Wishart distribution. In the I-step, observations are simulated

from the conditional standard normal distributions of the missing variables given the observed k missing data value patterns
and used to replace the missing data values. The next estimate of X is then obtained by computing the sample correlation

matrix of the completed data. The P and | steps are repeated for a fixed number of times.

Let the rows of Z,(nx p) contain the observed and the imputed data values for the standard normal variables

2,,Z,,..., Z, - The observed data for the ordinal variables are obtained from the corresponding observed data values of

P
X, . The missing data values of X_ are then replaced by the values obtained from the corresponding imputed data values

of Z and the estimated thresholds by using the relationship between the ordinal variables, the underlying continuous
variables, and the thresholds.

Suppose further that the n observations of the p. continuous variables include missing data values with k. missing data
value patterns and that the joint distribution of the variables is a multivariate normal distribution with mean vector p_ and

covariance matrix X . The EM algorithm and the MCMC method for multiple imputation of incomplete data can be used to
impute the missing data values of the continuous variables.

Suppose that X, denote the observed data values. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to

compute the maximum likelihood estimate of X_. The minus two observed-data log likelihood may be expressed as

k k 0 '
_2 In L(Zc | Xco) = Z r]i In |Eci | + ZZ(Xcoij _l'lci ) 20;1 (Xcoij - pci )
i=1

i=1 j=1

where n. denotes the number of observations of missing data value pattern i=1,2,...,k., X, denotes the population

sy Rey

covariance matrix of missing data value pattern i, p denotes the mean vector of missing data value pattern i, and X is

coij

the jth vector of observed values of missing data value pattern i.

The initial estimate for the M-step is the sample covariance matrix, Spc , of the complete data or | b, if the number of complete
observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the observed
variables of the missing data value patterns are computed and used to compute an updated estimate ):“.ﬁ”l) of X_ . Iteration

of the consecutive M and E steps is terminated when the absolute difference between ﬁ‘.ﬁ”l) and )if)t) is below the tolerance
limit & = 107°.

The EM estimate, Xc, of X_ is used as the initial covariance matrix of the multivariate normal distribution in the first step

of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the MCMC method, an estimate of X_ is

simulated from an inverse Wishart distribution. In the I-step, observations are simulated from the conditional normal
distributions of the missing variables given the observed k. missing data value patterns and used to replace the missing data



values. The next estimate of X_ is then obtained by computing the sample covariance matrix of the completed data. The P
and | steps are repeated for a fixed number of times.

3.2 The FCS ordinal logistic regression method

Suppose that the n observations of the p,ordinal variables include missing data values and that a joint (multivariate)

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) ordinal logistic regression method
(Brand 1999; Van Buuren 2007) can be used to impute the missing data values. The FCS ordinal logistic regression method
performs a fixed number of imputations to impute the missing data values. Each imputation consists of a filled-in phase and
an imputation phase. In the filled-in phase, the missing data values are filled-in by using a sequence of ordinal logistic

regression analyses for the p, ordinal variables. These filled-in data are then used as the initial data for the imputation phase

in which the missing data values are imputed by using a sequence of ordinal logistic regression analyses for the p, ordinal

variables. These imputed data are then used as the initial data for the next iteration of the imputation phase and a fixed
number of iterations are executed for each imputation.

The filled-in stage fits the following p, ordinal logistic regression models sequentially to the data, namely

logit(z, ) = oy,
logit(r,,) = a, + BoX
logit(7y, ) = g + BayX + BarX,

|Ogit(7rp0k) =%k +ﬂpolxl +ﬁp02x2 +'"+'Bpo,po—lxpo—1
where Ty =P(X <KX, %000 X4 ), logit(z, ) =In(x; ) - In(7rimj ), and the elements of

Y= [an Ao for - 'Bpo,pg—l:' denote unknown regression weights. The first model is fitted to the complete data for X, .

The corresponding estimates are then used to simulate new parameter values from the posterior distribution of the
parameters which in turn is used to fill-in the missing data values for X, . The second model is then fitted to the complete

data for X, and the filled-in data for x,. The final model is fitted to the complete data for X, and the filled-in data for

TR TR The filled-in data for X, X,, ..., X, are used for the first iteration of the imputation phase. The simulation

of the new parameter values from the posterior distribution of the parameters and the imputation of the missing data values
for each of the p ordinal logistic regression models use the same steps as outlined next for each iteration of the imputation
stage.

For each iteration of the imputation stage, the following ordinal logistic regression models are fitted sequentially either to
the filled-in data or the imputed data, namely

logit(7 ) = + BX +-+ B X1+ BiaXja He iy X,

where 7y = POG <KX, o X, X X ), logit(z,, ) = In(ﬂjk)—ln(ﬂimj), the elements of

jra e Xy

Y :[al Ay Oy 4 ﬂl"'ﬂj—lﬂj+l"'ﬂpo:| denote p,+m;—1 unknown regression weights, j=12,..,p,, and

k=12,.., m, —1. Let Vj denote the estimated covariance matrix of the estimator f(j of Y-



New values for the parameters are then simulated from their posterior distribution as

Vi = Y it Vr:jZ
where ng denotes the upper triangular matrix in the Cholesky decomposition of V; = Vr:thj :
standard normal vector. These new parameter values are then used to compute the predicted cumulative probability ﬁjk for

andzisa (p, +m; —1)x1

k=12,.., m; —1. A random uniform variable, U, between 0 and 1 is simulated and the missing data values for x; are

imputedas 1if u <7, askif 7;, , <u<7y,andas m; if u>7z;,

3.3 The FCS regression method

Suppose now that the n observations of the p, continuous variables include missing data values and that a joint (multivariate)

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) regression method (Brand 1999; Van
Buuren 2007) can be used to impute the missing data values. The FCS regression method performs a fixed number of
imputations to impute the missing data values. Each imputation consists of a filled-in phase and an imputation phase. In the
filled-in phase, the missing data values are filled-in by using a sequence of regression analyses for the p, continuous

variables. These filled-in data are then used as the initial data for the imputation phase in which the missing data values are
imputed by using a sequence of regression analyses for the p, continuous variables. These imputed data are then used as the

initial data for the next iteration of the imputation phase and a fixed number of iterations are executed for each imputation.

The filled-in stage fits the following p, regression models sequentially to the data, namely

X = ﬁm +€
X, = 1302 + 1321)(1 +€,
X3 = 1803 + ﬂSlxl + ﬂazxz +€

Xo, = Bop, T BoaXi B oXo tooet By aXp 1 18y

where the elements of Bz[ﬂm B, ---,Bpupc_l] denote unknown regression weights and €, ¢€,,...,€  are p,error

Pc
variables. The first model is fitted to the complete data for X, . The corresponding estimates are then used to simulate new
parameter values from the posterior distributions of the parameters which in turn is used to fill-in the missing data values
for X,. The second model is then fitted to the complete data for X, and the filled-in data for X, . The final model is fitted
to the complete data for X, and the filled-in data for X, X,, ..., Xp,-1- The filled-in data for X, X,, ..., X, are used for the
first iteration of the imputation phase. The simulation of the new parameter values from the posterior distributions of the
parameters and the imputation of the missing data values for each of the p, regression models use the same steps as outlined
next for each iteration of the imputation stage.

For each iteration of the imputation stage, the following regression models are fitted sequentially either to the filled-in data
or the imputed data, namely



X; =B+ BX + 4 BiaXiy + BiaXju + o+ B X, +€

where j =1,2,..., p., the elements of B; :[,BO B ...ﬂj_lﬂj+1...ﬂpc] denote p, unknown regression weights, and ¢,

denotes an error variable with variance crjz . The estimated covariance matrix of the estimator ; of B; may be expressed
as

2Ny _ _2(~t -1
oV, =0j; (Xc(j)xc(n)

where X, ;, denotes rows 1,2,..., j=1, j,..., p, of the filled-in or imputed data. New values for the parameters are then

C

simulated from their posterior distributions as

where V; denotes the upper triangular matrix in the Cholesky decomposition of V; = Vr:thj , zdenotesa p, x1 standard

normal vector, and ¢ is a Chi-square variable with n; —p, degrees of freedom. The missing data values are then imputed
as

!
Xeijm _Bjtxci(j) + 05

where X

«jm denotes a missing data value in row i and column j of X, X, denotes row i of X, and z is a standard

ci(j)
normal variable.

4. Average moment matrices

Suppose that X;;, X,;,..., X, are m imputed data sets for the incomplete data matrix, X, of the of p,, ordinal variables
b, and that R;,R,,...,R_, and U;,U,,...,U

corresponding mixed correlation matrices and the estimated asymptotic covariance matrices of the mixed correlations,
respectively. Then, the average mixes correlation matrix is

X X ooy X and the p. continuous variables X, X,, ..., X denote the

m m

R=

s
ey

S|
F

and the average estimated asymptotic covariance matrix is

U.

-

U=

3|+

1]
4N

Chung and Cai (2019) point out that ] only captures uncertainty based on complete data. As a result, its inverse cannot be
used as a weight matrix for the robust DWLS, WLS, and ULS methods for structural equational modeling. A corrected weight
matrix is obtained by correcting for the between-imputation variation in the estimated mixed correlations and is obtained as
the inverse of



where r denotes the p X (p — 1) /2 vector consisting of the nondiagonal and nonduplicated elements of the p X p symmetric

matrix R. R and Y can be used to fit structural equation models to the average mixed correlation matrix with the robust
DWLS, WLS, and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung and Cai
(2019) is given by

T, = (n—1)(7- p(6))'V(r—p(®))
where

V=Y"-YAAA) AT

where A denotes the Jacobian matrix of p(0) with respect to the unknown parameters, 0 , of the structural equation model
evaluated at @ =0. The small sample adjusted T, test statistic (Yuan and Bentler 1997) is given by

TB
Te=r—— —
1+nT,;/(n-1)
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