
 

 

Two stage multiple imputation SEM for ordinal variables 

1. Polychoric Correlations 
 

Suppose that the rows of ( )n pX  are 𝑛 observations of 𝑝 ordinal variables 
1 2, , , px x x with 

1 2, , , pm m m categories, 

respectively.  Suppose further that these 𝑝 ordinal variables are the result of the discretization of the underlying 𝑝 continuous 

standard normal variables 
1 2, , , pz z z as such that 

1 2 ( , )pz z z N
 =  z 0 P  and 
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where P denotes the population correlation matrix of z and 
0 1 2 , ii i i i m   − =    = are parameters known as 

thresholds. The model for the univariate marginal of variable ix  is 
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where (.)  denotes the probability density function of the standard normal distribution. The maximum likelihood estimator 

of ik  (Jöreskog, 1994) is given by  
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where 
1(.)−  denotes the inverse of the cumulative distribution function of the standard normal distribution and 

1 2, , ,
ii i imp p p denote the marginal sample proportions for ix .  

The polychoric correlation matrix, R, is a consistent estimator of the population correlation matrix P. The model for the 

bivariate marginal of variables ix  and jx  is 
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where 2( , , )iju v  denotes the probability density function of the bivariate standard normal distribution with correlation 

ij . The maximization of the bivariate likelihood function is equivalent to minimization of the discrepancy function 
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where ˆ iτ  and ˆ
jτ  denote the maximum likelihood estimators of the 1im −  and 1jm −  thresholds of variables ix  and 

jx , 

respectively and 
ijklp  is the sample proportion for ix k=  and 

jx l= . The gradient of ( )F   (Olsson (1979)) may be 

expressed as 
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where (Olsson (1979))  
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where ( )2   denotes the density function of the bivariate standard normal distribution with correlation
ij . The information 

(Jöreskog, 1994) is given by 
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The Fisher scoring algorithm is used to minimize ( )F   with respect to 
ij . Let

ij = . If 
( )ˆ t  denotes the 𝑡𝑡ℎ successive 

approximation to ̂ , then the ( 1)stt +  approximation is obtained from 
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Iteration is terminated when the absolute gradient value is below the tolerance limit  = 10−3.  

 

The asymptotic covariance matrix,  , of the 
* ( 1) / 2p p p= −  polychoric correlations is a 

* *( 1) / 2p p +  matrix. A typical 

element of ̂  (Jöreskog, 1994) may be expressed as 
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where  
i1  denotes an 1im   column vector and 
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where iA  denotes the ( )1i im m −  matrix given by 
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Typical elements of 
ijα , iβ , and 

jβ  are given by 
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where 
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The robust DWLS, WLS, or ULS methods can be used to fit structural equation models for ordinal variables to the polychoric 

correlation matrix by using the estimated asymptotic covariance matrix of the polychoric correlations (Chung and Cai 

(2019)). 

 

2. Multiple Imputation 

2.1 The MCMC method 

 

Suppose now that the 𝑛 observations of the 𝑝 ordinal variables include missing data values with 𝑘 missing data value 

patterns. The EM algorithm and the MCMC method for multiple imputation of incomplete data are intended for continuous 

variables and cannot readily be applied to ordinal variables. However, they can be applied to the underlying continuous 

variables 1 2, , , pz z z associated with the ordinal variables 1 2, , , .px x x Although no observations for these continuous 

variables are available, these variables are assumed to have a multivariate standard normal distribution with a population 

covariance matrix Σ . As a result, we can simulate data from this distribution by using the polychoric correlation matrix of 

the complete data of the variables if the number of complete cases is large enough and use either the EM algorithm or the 

MCMC algorithm to impute the missing data values for the underlying continuous variables. After imputation, the estimated 

thresholds can be used to replace the missing data values for the corresponding ordinal variables by using the relationship 

between the ordinal variables, the underlying continuous variables, and the thresholds. 

 

Suppose that the rows of ( )n pZ  are 𝑛 observations of the 𝑝 underlying continuous variables 1 2, , , pz z z simulated 

from the ( , )N 0 Σ  distribution and that oZ  denotes the observed data values that corresponds with the observed data values 

of X. The EM algorithm (Dempster, Laird, and Rubin 1977) can be used to compute the maximum likelihood estimate of 

Σ . The minus two observed-data log likelihood may be expressed as 
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where in  denotes the number of observations of missing data value pattern 𝑖 = 1,2, ⋯ , 𝑘, iΣ  denotes the population 

covariance matrix for missing data value pattern 𝑖, and oijz is the 𝑗𝑡ℎ vector of observed values of missing data value pattern 

𝑖. 

 

The initial estimate for the M-step is the sample covariance matrix, S , of the complete data or 
pI  if the number of complete 

observations is too small. In the E-step, the conditional covariance matrices of the missing variables given the observed 

variables for the missing data value patterns are computed and used to compute an updated estimate,
( 1)ˆ t+

Σ  of Σ . Iteration 

of the consecutive M and E steps is terminated when the absolute difference between 
( 1)ˆ t+

Σ   and 
( )ˆ t

Σ  is below the tolerance 

limit   = 10−5. 

 

The correlation matrix of the EM estimate, Σ̂ , of Σ  is used as the initial covariance matrix of the multivariate standard 

normal distribution in the first step of the Monte Carlo Markov Chain (MCMC) method. In the first step (P-step) of the 

MCMC method, an estimate of Σ  is simulated form an inverse Wishart distribution. In the I-step, observations are simulated 

from the conditional standard normal distributions of the missing variables given the observed 𝑘 missing data value patterns 

and used to replace the missing data values. The next estimate of Σ  is then obtained by computing the sample correlation 

matrix of the completed data. The P and I steps are repeated for a fixed number of times. 

 

Let the rows of ( )i n pZ  contain the observed and the imputed data values for the standard normal variables 
1 2, , , pz z z

. The observed data for the ordinal variables are obtained from the corresponding observed data values of X. The missing 

data values of X are then replaced by the values obtained from the corresponding imputed data values of Z and the estimated 

thresholds by using the relationship between the ordinal variables, the underlying continuous variables, and the thresholds. 

 

 

2.2 The FCS ordinal logistic regression method 
 

Suppose now that the 𝑛 observations of the 𝑝 ordinal variables include missing data values and that a joint (multivariate) 

distribution of the variables exists. In this case, the Fully Conditional Specified (FCS) ordinal logistic regression method 

(Brand 1999; Van Buuren 2007) can be used to impute the missing data values. The FCS ordinal logistic regression method 

performs a fixed number of imputations to impute the missing data values. Each imputation consists of a filled-in phase and 

an imputation phase. In the filled-in phase, the missing data values are filled-in by using a sequence of ordinal logistic 

regression analyses for the 𝑝 ordinal variables. These filled-in data are then used as the initial data for the imputation phase 

in which the missing data values are imputed by using a sequence of ordinal logistic regression analyses for the 𝑝 ordinal 

variables. These imputed data are then used as the initial data for the next iteration of the imputation phase and a fixed 

number of iterations are executed for each imputation. 

 

The filled-in stage fits the following 𝑝 ordinal logistic regression models sequentially to the data, namely 
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where 
1 2 1( | , , , )ijk j jP x k x x x −=  , logit( ) ln( ) ln( )

jjk jk im  = − , and the elements of 

11 12 21 , 1p p    −

 =  γ  denote unknown regression weights. The first model is fitted to the complete data for 1x . 

The corresponding estimates are then used to simulate new parameter values from the posterior distribution of the 

parameters which in turn is used to fill-in the missing data values for 1x . The second model is then fitted to the complete 

data for 2x  and the filled-in data for 1x . The final model is fitted to the complete data for 
px  and the filled-in data for 

1 2 1, , , px x x −
. The filled-in data for 

1 2, , , px x x  are used for the first iteration of the imputation phase. The simulation 

of the new parameter values from the posterior distribution of the parameters and the imputation of the missing data values 

for each of the p ordinal logistic regression models use the same steps as outlined next for each iteration of the imputation 

stage. 

 

For each iteration of the imputation stage, the following ordinal logistic regression models are fitted sequentially either to 

the filled-in data or the imputed data, namely 
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where 
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 =  γ  denote 1jp m+ −  unknown regression weights, 1,2,...,j p= , and 

1,2,..., 1jk m= − . Let 
jV  denote the estimated covariance matrix of the estimator ̂  of 

jγ .  

 

New values for the parameters are then simulated from their posterior distribution as 

ˆ
jt j hj = +γ V z  

where 
'

hjV  denotes the upper triangular matrix in the Cholesky decomposition of j hj hj
=V V V , and z is a ( 1) 1jp m+ −   

standard normal vector. These new parameter values are then used to compute the predicted cumulative probability ˆ jk  for 

1,2,..., 1jk m= − . A random uniform variable, u , between 0 and 1 is simulated and the missing data values for jx  are 

imputed as 1 if 1
ˆ
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3. Average moment matrices 
 

Suppose that 1 2, , , mX X X  are 𝑚 imputed data sets for the incomplete data matrix, X , of the 𝑝 ordinal variables 

1 2, , , px x x  and that 1 2, , , mR R R and 1 2, , , mU U U denote the corresponding polychoric correlation matrices and 



the estimated asymptotic covariance matrices of the polychoric correlations, respectively. Then, the average polychoric 

correlation matrix is 

1

1 m

i

im =

= R R  

and the average estimated asymptotic covariance matrix is 
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Chung and Cai (2019) point out that U only captures uncertainty based on complete data. As a result, its inverse cannot be 

used as a weight matrix for the robust DWLS, WLS, and ULS methods for ordinal structural equational modeling. A corrected 

weight matrix is obtained by correcting for the between-imputation variation in the estimated polychoric correlations and is 

obtained as the inverse of 
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where r denotes the 𝑝 × (𝑝 − 1)/2 vector consisting of the nondiagonal and nonduplicated elements of the 𝑝 × 𝑝 symmetric 

matrix R. R and ̂  can be used to fit structural equation models to the average polychoric correlation matrix with the 

robust DWLS, WLS, and ULS methods. The corrected robust DWLS and ULS Chi-square test statistic proposed by Chung 

and Cai (2019) is given by 

( 1)( ( )) ( ( ))BT n = − − −r ρ θ V r ρ θ  

where 

1 1 1 1ˆ ˆ ˆ ˆˆ ˆ ˆ( )− − − − = −V Δ ΔΔ Δ    

where Δ̂ denotes the Jacobian matrix of ( )ρ θ  with respect to the unknown parameters, θ , of the structural equation model 

evaluated at .=θ θ   The small sample adjusted BT  test statistic (Yuan and Bentler 1997) is given by 
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